第43课时--整式分式绝对值不等式的解法

合集下载

《高三数学复习课件》含绝对值不等式及分式不等式的解法

《高三数学复习课件》含绝对值不等式及分式不等式的解法

2020/6/5
13
双基固化
§1.3.2含绝对值不等式及分式不等式的解法
1.绝对值不等式的解法 例1 解下列不等式 (1)|x2-3|>2x. (2)|x+2|>|x-1|-3.
【解析】(1)法一:(定义法)
原不等式
①②x>3或x≤-
x2-3≥0
①或 x2-3<0
x2-3>2x,
-(x2-3)>2x.
边分解因式,在数轴上将各因式为零的根标出来,
然后根据各个因式在每个区间上的正负,直接写
出不等式的解集(即数轴标根法) 当分子分母含有
公因式时,也不可随意约去.
2020/6/5
19
能力提升
§1.3.2含绝对值不等式及分式不等式的解法
3.含参数的不等式的解法. 例3.设a>0,b>0,解关于x的不等式|ax-2|≥bx.
x 1
由数轴标根法得x>1或-1<x<0.故选A.
2020/6/5
6
§1.3.2含绝对值不等式及分式不等式的解法
5.已知集合A={x||x-1|<2,x∈Z},B={x| x 3 <0,
x
x∈Z},则集合A∪B的子集个数为
( C)
A.4
B.6
C.8
D.9
【解析】∵|x-1|<2 -1<x<3,∴A={0,1,2}. ∵ x 3<0 0<x<3,
x2 3x2
4x 1 7x 2
1
0
2x2 3x 1 3x2 7x 2
0
(2x 1)(x 1) 0. (3x 1)(x 2)
利用数轴标根法,得其解集为
2020/6/5
18
§1.3.2含绝对值不等式及分式不等式的解法
(, 1) U(1 ,1) U(2, ). 32

绝对值不等式的解题方法与技巧

绝对值不等式的解题方法与技巧

绝对值不等式的解题方法与技巧绝对值不等式是指形式为|ax + b| < c或|ax + b| > c的不等式,其中a、b、c为实数且a不等于0。

解绝对值不等式的方法和技巧如下:1. 分类讨论法,对于形如|ax + b| < c或|ax + b| > c的绝对值不等式,可以根据ax + b的正负情况分别讨论。

当ax + b大于等于0时,即ax + b >= 0,此时不等式化简为ax + b < c或ax + b > c;当ax + b小于0时,即ax + b < 0,此时不等式化简为-(ax + b) < c或-(ax + b) > c。

分别解出这两种情况下的不等式,得到的解集合再取并集即为原不等式的解集合。

2. 图像法,可以将|ax + b|看作一个以点(-b/a, 0)为中心,以c为半径的圆形,|ax + b| < c对应的是圆心到直线ax + b = c的距离小于c的区域,|ax + b| > c对应的是圆心到直线ax + b = c的距离大于c的区域。

通过绘制图像,可以直观地找到不等式的解集合。

3. 代数法,对于形如|ax + b| < c或|ax + b| > c的绝对值不等式,可以通过代数方法将其转化为一元一次不等式进行求解。

例如,对于|2x 3| < 5,可以分别得到-5 < 2x 3 < 5,进而得到-2 < x < 4,即解集合为(-2, 4)。

4. 绝对值性质法,利用绝对值的性质,如|a| < b等价于-b <a < b,可以将绝对值不等式转化为一元一次不等式进行求解。

总之,解绝对值不等式的方法和技巧有很多种,可以根据具体的不等式形式和题目要求选择合适的方法进行求解,需要灵活运用代数、几何和逻辑推理等知识。

希望以上回答能够帮助到你。

分式和绝对值不等式的解法

分式和绝对值不等式的解法

(一)分式不等式: 型如:0)()(>x x f ϕ或0)()(<x x f ϕ(其中)(、x x f ϕ)(为整式且0≠)(x ϕ)的不等式称为分式不等式。

(1)分式不等式的解法:解关于x 的不等式0231>-+x x 方法一:等价转化为: 方法二:等价转化为:⎩⎨⎧>->+02301x x 或⎩⎨⎧<-<+02301x x 0)23)(1(>-+x x 变式一:0231≥-+x x 等价转化为:⎩⎨⎧≠-≥-+0230)23)(1(x x x 比较不等式0231<-+x x 及0231≤-+x x 的解集。

(不等式的变形,强调等价转化,分母不为零) (2)归纳分式不等式与整式不等式的等价转化:(1)0)()(0)()(>⋅⇔>x x f x x f ϕϕ (3)0)()(0)()(<⋅⇔<x x f x x f ϕϕ (2)⎩⎨⎧≠≥⋅⇔≥0)(0)()(0)()(x x x f x x f ϕϕϕ (4)⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x x x f x x f ϕϕϕ (3)小结分式不等式的解法步骤:(1)移项通分,不等式右侧化为“0”,左侧为一分式(2)转化为等价的整式不等式(3)因式分解,解整式不等式(注意因式分解后,一次项前系数为正)练一练:解关于x 的不等式 051)1(>--x x 3532)2(≤-x例1、 解关于x 的不等式:232≥+-x x 解:0232≥-+-x x 03)3(22≥++--x x x 即,038≥+--x x 038≤++x x (保证因式分解后,保证一次项前的系数都为正) 等价变形为:⎩⎨⎧≠+≤++030)3)(8(x x x ∴原不等式的解集为[)3,8-- 例2、解关于x 不等式23282<+++x x x 方法一:322++x x 恒大于0,利用不等式的基本性质方法二:移项、通分,利用两式同号、异号的充要条件,划归为一元一次或一元二次不等式。

分式不等式绝对值不等式的解法

分式不等式绝对值不等式的解法

龙文教育1对1个性化教案教导处签字:日期: 年 月 日学生 王泽宇 学 校 华附 年 级 高一教师胡江勇授课日期12.11.10授课时段16:00-18:00课题 分式不等式、绝对值不等式的解法重点 难点 1、熟练掌握一元一次不等式、分式不等式、绝对值不等式、不等式组的解法; 2、对含参数的不等式问题,要学会对参数的分类讨论。

教 学 步 骤 及 教 学 内 容一、知识整合:1、一元一次不等式的解法:2、分式不等式的解法:3、绝对值不等式的解法:4、不等式组的解法:二、典例精析:三、课后练习:课后评价一、学生对于本次课的评价O 特别满意O 满意O 一般O 差二、教师评定1、学生上次作业评价O好O较好O一般O差2、学生本次上课情况评价O 好O 较好O 一般O 差作业布置教师留言教师签字:家长意见家长签字:日期:年月日分式不等式、绝对值不等式的解法◆重点、难点:3、熟练掌握一元一次不等式、分式不等式、绝对值不等式、不等式组的解法;4、对含参数的不等式问题,要学会对参数的分类讨论。

◆教学过程:一、知识整合:1、一元一次不等式的解法: 解一元一次不等式的一般步骤:(1)去分母:不等式的两边同乘以各分母的 ; (2)去括号:括号前是“-”的,去括号后各项要 ;(3)移 项:将含未知数的项移到一边,其余各项移到另一边,注意移项后该项要 ; (4)合并同类项:将不等式化成)(o a b ax b ax ≠<>或 的形式; (5)系数化成1:不等式的两边同除以a ,若0<a ,则不等号要 。

2、分式不等式的解法:(1)基本思路:分式不等式化为整式不等式来求解。

(2)基本步骤:①不等式的右边化为0:将右边各项移到不等式的左边; ②通分:将不等式化成0)()(0)()(<>x g x f x g x f 或的形式; ③化为整式不等式:;0)(0)()(0)()(,0)()(0)()(≠≥⇔≥>⇔>x g x g x f x g x f x g x f x g x f 且 ④解整式不等式。

2012高考数学二轮复习(新人教A版)第43课时--整式分式绝对值不等式的解法

2012高考数学二轮复习(新人教A版)第43课时--整式分式绝对值不等式的解法

课题:整式、分式、绝对值不等式的解法教学目标:在掌握一元一次不等式、一元二次不等式、简单的高次不等式、分式不等式的解法的基础上,掌握某些简单的不等式的解法.(一) 主要知识:1.同解变形是解不等式应遵循的主要原则,高中阶段所解的不等式最后都要转化为一元一次或一元二次不等式,因此,等价转化是解不等式的主要思路;2.不等式组的解是本组各不等式解集的交集,取交集时,一定要将各不等式的解集在同一数轴上标出来,不同不等式解集的示意线最好在高度上有所区别.3.含绝对值的不等式的性质:①||||||||||a b a b a b -≤+≤+,当()0a b b +≤时,左边等号成立;当 0 ab ≥时,右边等号成立.②||||||||||a b a b a b -≤-≤+,当()0a b b -≥时,左边等号成立;当0ab ≤时,右边等号成立.③进而可得: ||||||||||a b a b a b -≤±≤+.4.绝对值不等式的解法:①0a >时,|()|()()f x a f x a f x a >⇔><-或;|()|()f x a a f x a <⇔-<<; ②去绝对值符号是解绝对值不等式的常用方法;③根据绝对值的几何意义,通过数形结合解绝对值不等式.5.简单的一元高次不等式用根轴法(注意最高项的系数化为正数).6.分式不等式通过移项、通分后化为根轴法或由实数符号确定法则分类讨论.(二)典例分析:问题1.(08届高三萧山二中) 已知不等式20x ax b +-≥的解{|23}x x x ≤-≥或, 则不等式05222≤+--+bx x ax x 的解集为问题2.()1 解不等式:32260x x x -++>()2已知三次函数32()f x ax bx cx d =+++的图象如图所示,则.A (),0b ∈-∞ .B ()0,1b ∈.C ()1,2b ∈ .D ()2,b ∈+∞问题3.设函数()2f x ax =+,不等式()6f x <的解集是()1,2-,解不等式()x f x ≤1.问题4.()1解关于x 的不等式11x a x <-- ()2若不等式221(1)x m x ->-对满足||2m ≤的所有m 都成立,求x 的取值范围.问题5.(08届高三天津南开中学二模)设有关于x 的不等式()lg 37x x a ++-> ()1当1a =时,解此不等式,()2当a 为何值时,此不等式的解集是R(三)课后作业:1.若不等式21--+x x >a 在R x ∈上有解,则a 的取值范围是.A ()3,3- .B (]3,3- .C ()3,∞- .D ()3,-∞-2.不等式22|2log |2|log |x x x x -<+成立,则x ∈3.如果12log 3x π-≥12log 2π,那么x sin 的取值范围是.A ⎥⎦⎤⎢⎣⎡-21,21 .B ⎥⎦⎤⎢⎣⎡-1,21 .C 111,,1222⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ .D 13,12⎡⎫⎛⎤- ⎢⎥ ⎣⎭⎝⎦4.解不等式:()122234x x x x -->--; ()222032x x x -<+-;()32x >5.(06湖北模拟)若不等式28x x a -+≤4x -的解集为[]4,5,则实数a =6.解不等式1318329x x +-+⋅>7.(08届高三河北唐山市五校联考)已知函数33()1log 2log f x x x =-++,求使 ()f x ≤2成立的x 的取值范围.8.(08届高三萧山二中)设函数()y f x =的图象与函数()y g x =的图象关于原点对称,且2()2f x x x =+.()1求()y g x =的解析式;()2解关于x 的不等式:()g x ≥1()1f x x --.9.(08届高三湖北孝昌二中)已知22()()2x a f x x R x -=∈+在区间[1,1]-上是增函数。

分式不等式和绝对值不等式

分式不等式和绝对值不等式

§2.3其它不等式的解法(1)---分式不等式的解法学习要求:1、掌握简单的分式不等式的解法.2、体会化归、等价转换的数学思想方法.学习重难点简单的分式不等式的解法. 不等式的同解变形.课前预习1.分式不等式的概念_________________________________________________________2、分式不等式的解法一般地,分式不等式分为两类:(1)()()0f x g x >(0<)⇔()()0f x g x >(0<); (2)()()0f x g x ≥(0≤)⇔()()()()000f xg x g x ≥≤⎧⎪⎨≠⎪⎩. 课堂互动:例1 解不等式:1232x x +>-. 解法一:(化分式不等式为一元一次不等式组) 解法二:(利用两数的商与积同号(00a ab b >⇔>,00a ab b <⇔<)化为一元二次不等式)例2 解下列不等式(1)105x x -+>-. (2)2335x≥-. (3)28223x x x +<++.(两种解法) 例3 当m 为何值时,关于x 的不等式()()132m x x -=+的解是(1)正数? (2)是负数?归纳总结分式不等式的求解通法:(1)不要轻易去分母,可以移项通分,使得不等号的右边为零.(2)利用两数的商与积同号,化为一元二次不等式求解. 学后反思作业:练习册第18页1、2、3题§2.3其它不等式的(2)---绝对值不等式的解法学习要求:1、掌握简单的绝对值不等式的解法.2、能对简单的绝对值不等式给出几何解释。

3、体会化归、等价转换的数学思想方法.学习重难点简单的绝对值不等式的解法. 不等式的同解变形.课前预习(1) 实数绝对值定义________________几何意义______________________________.(2) 绝对值的性质1.任意x R ∈,0x ≥,等号成立⇔0x =.2.任意x R ∈x =⇔22x x =. 3.任意x 、y R ∈,x x x x x ±≤⇔-≤±≤.xy x y =⋅,x x y y=(0y ≠). 含绝对值的不等式的解法 (1)x a >(0>a )的解集____________________________________________________. 数轴上表示(2)a x <(0>a )的解集____________________________________________________. 数轴上表示 想一想:a x b <<(0a b <<)上的解集.课堂互动例1 解下列不等式(1)235x -<.(2)1223x <-.(3)2325x <-<.例2 解下列不等式(1)11x x x x>++. (2)234x x ->. (3)2560x x -+>. (4)2312x x ->+. 议一议: 解不等式:125x x ++->.归纳总结绝对值的不等式的解法(1)x a >(0>a )的解集____________________________________________________. 数轴上表示(2)a x <(0>a )的解集____________________________________________________. 数轴上表示学后反思____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________作业:练习册第18页4、5、6以及第19页1、2、3题(英文版)Two regulations promulgated for implementation is in the party in power for a long time and the rule of law conditions, the implementation of comprehensive strictly strategic plan, implementation in accordance with the rules and discipline to manage the party, strengthen inner-party supervision of major initiatives. The two regulations supporting each other, the < code > adhere to a positive advocate, focusing on morality is of Party members and Party leading cadres can see, enough to get a high standard; < rule > around the party discipline, disciplinary ruler requirements, listed as "negative list, focusing on vertical gauge, draw the party organizations and Party members do not touch the" bottom line ". Here, the main from four square face two party rules of interpretation: the first part introduces two party Revised regulations the necessity and the revision process; the second part is the interpretation of the two fundamental principles of the revision of laws and regulations in the party; the third part introduces two party regulations modified the main changes and needs to grasp several key problems; the fourth part on how to grasp the implementation of the two regulations of the party. < code > and < Regulations > revised the necessity and revised history of the CPC Central Committee the amendment to the Chinese CommunistParty members and leading cadres honest politics several guidelines > and < Chinese Communist Party discipline and Punishment Regulations > column 1 by 2015 to strengthen party laws and regulations focus. Two party regulations revision work lasted a Years, pooling the wisdom of the whole party, ideological consensus, draw historical experience, respect for the wisdom of our predecessors, which reflects the unity of inheritance and innovation; follow the correct direction, grasp the limited goals, adhere to the party's leadership, to solve the masses of the people reflect a focus on the problem. The new revision of the < code > and < rule >, reflects the party's 18 and the eighth session of the third, the spirit of the fourth plenary session, reflecting the experience of studying and implementing the General Secretary Xi Jinping series of important speech, reflects the party's eighteen years comprehensive strictly practice. (a) revised two regulations of the party need of < the ICAC guidelines > in < in 1997 Leaders as members of the Communist Party of China clean politics certain criteria (Trial) > based on revised, the promulgation and implementation of January 2010, to strengthen the construction of the contingent of leading cadres play an important role. But with the party to manage the party strictly administering the deepening, has not been able to fully meet the actual needs. Content is toocomplicated, "eight prohibition, 52 are not allowed to" hard to remember, and also difficult to put into practice; the second is concisely positive advocated by the lack of prohibited provisions excessive, no autonomy requirements; the third is banned terms and discipline law, both with the party discipline, disciplinary regulations repeat and Criminal law and other laws and regulations repeat; the fourth is to "clean" the theme is not prominent, not for the existing problems, and is narrow, only needle of county-level leading cadres above. < rule > is in 1997 < Chinese Communist Party disciplinary cases (Trial) > based on revision, in December 2003 the promulgation and implementation, to strengthen the construction of the party play very important role. Along with the development of the situation, which many provisions have been unable to fully meet the comprehensive strictly administering the practice needs. One is Ji law, more than half of the provisions and criminal law and other countries laws and regulations Repetition; two is the political discipline regulations is not prominent, not specific, for violation of the party constitution, damage the authority of Party Constitution of misconduct lack necessary and serious responsibility to pursue; third is the main discipline for the leading cadres, does not cover all Party members. Based on the above situation, need to < the criterion of a clean and honestadministration > and < rule > the two is likely to be more relevant regulations first amendment. By revising, really put the authority of Party discipline, the seriousness in the party tree and call up the majority of Party members and cadres of the party constitution of party compasses party consciousness. (II) two party regulations revision process the Central Committee of the Communist Party of China attaches great importance to two regulations revision . Xi Jinping, general books recorded in the Fifth Plenary Session of the eighth session of the Central Commission for Discipline Inspection, on the revised regulations < > made clear instructions. According to the central deployment, the Central Commission for Discipline Inspection from 2014 under six months begin study two regulations revision. The Standing Committee of the Central Commission for Discipline Inspection 4 review revised. Comrade Wang Qishan 14 times held a special meeting to study two regulations revision, amendment clarifies the direction, major issues of principle, path and target, respectively held a forum will listen to part of the province (area) secretary of the Party committee, Secretary of the Discipline Inspection Commission, part of the central ministries and state organs DepartmentThe first party committee is mainly responsible for people, views of experts and scholars and grassroots party organizations andParty members. Approved by the Central Committee of the Communist Party of China, on 7 September 2015, the general office of the Central Committee of the Party issued a notice to solicit the provinces (autonomous regions, municipalities) Party, the central ministries and commissions, state ministries and commissions of the Party (party), the General Political Department of the military, every 3 people organization of Party of two regulations revision opinion. Central Commission for Discipline Inspection of extensive solicitation of opinions, careful study, attracting, formed a revised sent reviewers. In October 8 and October 12, Central Committee Political Bureau Standing Committee and the Political Bureau of the Central Committee After consideration of the two regulations revised draft. On October 18, the Central Committee of the Communist Party of China formally issued two regulations. Can say, two laws amendment concentrated the wisdom of the whole party, embodies the party. Second, < code > and < Regulations > revision of the basic principles of two party regulations revision work and implement the party's eighteen, ten eight plenary, the spirit of the Fourth Plenary Session of the Eleventh Central Committee and General Secretary Xi Jinping important instructions on the revised < low political criterion > and < Regulations >, highlighting the ruling partycharacteristics, serious discipline, the discipline quite in front of the law, based on the current, a long-term, advance as a whole, with Bu Xiuding independent < rule > and < rule >. Main principle is: first, adhere to the party constitution to follow. The constitution about discipline and self-discipline required specific, awaken the party constitution of party compasses party consciousness, maintaining the authority of the constitution. General Secretary Xi Jinping pointed out that "no rules, no side round. Party constitution is the fundamental law, the party must follow the general rules. In early 2015 held the eighth session of the Central Commission for Discipline Inspection Fifth Plenary Session of the 16th Central Committee, Xi Jinping again pointed out that constitution is the party must follow the general rules, but also the general rules." the revision of the < code > and < rule > is Method in adhere to the regulations established for the purpose of combining rule of virtue is to adhere to the party constitution as a fundamental to follow, the constitution authority set up, wake up the party constitution and party rules the sense of discipline, the party constitution about discipline and self-discipline specific requirements. 4 second is to adhere to in accordance with the regulations governing the party and the party. The Party of rule of virtue "de", mainly refers to the party's ideals and beliefs, excellent traditional style. The revised the< code > closely linked to the "self-discipline", insisting on the positive initiative, for all members, highlight the "vital few", emphasized self-discipline, focusing on the morality, and the majority of Party members and the ideological and moral standards. The revised < > Ji method separately, Ji, Ji Yan to Method, as a "negative list", emphasizing the heteronomy, focusing on vertical gauge. Is this one high and one low, a positive reaction, the strict party discipline and practice results transformation for the integration of the whole party to observe moral and discipline requirements, for the majority of Party members and cadres provides benchmarking and ruler. Third, insist on to. In view of the problems existing in the party at the present stage, the main problems of Party members and cadres in the aspect of self-discipline and abide by the discipline to make clearly defined, especially the party's eighteen years strict political discipline and political rules, organization and discipline and to implement the central eight provisions of the spirit against the four winds and other requirements into Disciplinary provisions. Not one pace reachs the designated position, focusing on in line with reality, pragmatic and effective. After the revision of major changes, major changes in the < code > and < rule > modified and needs to grasp several key problems (a) < code > < code > adhere to according to regulationsgoverning the party and party with morals in combination, for at the present stage, the leadership of the party members and cadres and Party members in existing main problems of self-discipline, put forward principles, requirements and specifications, showing Communists noble moral pursuit, reflected at all times and in all over the world ethics from high from low 5 common requirements. One is closely linked to the "self-discipline", removal and no direct relation to the provisions of . the second is adhere to a positive advocate, "eight prohibition" 52 are not allowed to "about the content of the" negative list moved into synchronization amendment < cases >. Three is for all the party members, will apply object from the leadership of the party members and cadres to expand to all Party members, fully embodies the comprehensive strictly required. The fourth is prominent key minority, seize the leadership of the party members and cadres is the key, and put forward higher requirements than the ordinary Party members. Five is to simplify, and strive to achieve concise, easy to understand, easy to remember. The revised < code > is the ruling Party since the first insists on a positive advocate forAll Party members and the self-discipline norms, moral declaration issued to all members of the party and the National People's solemn commitment. > < criterion of a clean and honest administration consists of 4 parts, 18,more than 3600 words. After the revision of the < code >, a total of eight, 281 words, including lead, specification and Party member cadre clean fingered self-discipline norms, etc. Part 3 members low-cost clean and self-discipline, the main contents can be summarized as "four must" "eight code". Lead part, reiterated on ideal and faith, fundamental purpose, the fine traditions and work style, noble sentiments, such as "four must" the principle of requirements, strong tone of self-discipline, The higher request for 6 and supervised tenet, the foothold in permanent Bao the party's advanced nature and purity, to reflect the revised standards requirements. Members of self-discipline norms around the party members how to correctly treat and deal with the "public and private", "cheap and rot" thrifty and extravagance "bitter music", put forward the "four norms". Party leader cadre clean fingered self-discipline norms for the leadership of the party members and cadres of the "vital few", around the "clean politics", from civil servant of the color, the exercise of power, moral integrity, a good family tradition and other aspects of the leadership of the party members and cadres of the "four norms" < > < norm norm. "The Party member's self-discipline norms" and "party members and leading cadre clean fingered self-discipline norms," a total of eight, collectively referred to as the "eight". "Four must" and "eight" of thecontent from the party constitution and Party's several generation of leaders, especially Xi Jinping, general secretary of the important discussion, refer to the "three discipline and eight points for attention" statements, and reference some embody the Chinese nation excellent traditional culture essence of epigrams. (2) the revised regulations, the main changes in the revised Regulations > to fully adapt to the strictly requirements, reflects the according to the regulations governing the law of recognition of deepening, the realization of the discipline construction and Jin Ju. < rule > is party a ruler, members of the basic line and follow. And the majority of Party members and cadres of Party organizations at all levels should adhere to the bottom line of thinking, fear discipline, hold the bottom line, as a preventive measure, to keep the party's advanced nature and purity. 1, respect for the constitution, refinement and discipline. Revised < rule > from comprehensive comb physical constitution began, the party constitution and other regulations of the Party of Party organizations and Party discipline requirements refinement, clearly defined in violation of the party constitution will be in accordance with regulations to give the corresponding disciplinary action. The original 10 categories of misconduct, integration specification for political discipline, discipline, honesty and discipline masses Ji Law and discipline and discipline andother six categories, the content of < rule > real return to Party discipline, for the majority of Party members and listed a "negative list. 7 2, highlighting the political discipline and political rules. > < Regulations according to the stage of the discipline of outstanding performance, emphasizing political discipline and political rules, organization and discipline, in opposition to the party's leadership and the party's basic theory, basic line, basic program and basic experience, the basic requirement of behavior made prescribed punishment, increase the cliques, against the organization such as violation of the provisions, to ensure that the central government decrees and the Party of centralized and unified. 3, adhere to strict discipline in the law and discipline In front, Ji separated. Revised < Regulations > adhere to the problem oriented, do Ji separated. Any national law existing content, will not repeat the provisions, the total removal of 79 and criminal law, repeat the content of the public security management punishment law, and other laws and regulations. In the general reiterated that party organizations and Party members must conscientiously accept the party's discipline, die van comply with national laws and regulations; at the same time, to investigate violations of Party members and even criminal behavior of Party discipline and responsibility, > < Regulations distinguish five different conditions, with special provisions weremade provisions, so as to realize the connection of Party discipline and state law. 4, reflect Wind building and anti-corruption struggle of the latest achievements. < rule > the party's eighteen years implement the spirit of the central provisions of the eight, against the requirements of the "four winds" and transformation for disciplinary provisions, reflecting the style construction is always on the road, not a gust of wind. In the fight against corruption out of new problems, increase the trading rights, the use of authority relatives profit and other disciplinary terms. Prominent discipline of the masses, the new against the interests of the masses and ignore the demands of the masses and other disciplinary terms and make provisions of the disposition and the destruction of the party's close ties with the masses.Discipline to protect the party's purpose. 8 of these regulations, a total of three series, Chapter 15, 178, more than 24000 words, after the revision of the regulations a total of 3 series, Chapter 11, 133, 17000 words, divided into "general" and "special provisions" and "Supplementary Provisions" Part 3. Among them, add, delete, modify the provisions of the proportion of up to nearly 90%. 1, the general general is divided into five chapters. The first chapter to the regulations of the guiding ideology, principles and scope of application of the provisions, highlight the strengthening of the partyconstitution consciousness, maintenance the authority of Party Constitution, increase the party organizations and Party members must abide by the party constitution, Yan Centralized centralized, would examine at all levels of the amended provisions implementing and maintaining Party discipline, and consciously accept the party discipline, exemplary compliance with national laws and regulations. The second chapter of discipline concept, disciplinary action types and effects of the regulations, will be a serious warning from the original a year for a year and a half; increase the Party Congress representative, by leaving the party above (including leave probation) punishment, the party organization should be terminated its representative qualification provisions. The third chapter of the disciplinary rules of use prescribed in the discipline rectifying process, non convergence, not close hand classified as severely or heavier punishment. "Discipline straighten "At least eighteen years of five years, these five years is to pay close attention to the provisions of the central eight implementation and anti -" four winds ". The fourth chapter on suspicion of illegal party disciplinary distinguish five different conditions, with special provisions were made provisions, to achieve effective convergence of Party and country 9 method. < rule > the provisions of Article 27, Party organizations in thedisciplinary review found that party members have committed embezzlement, bribery, dereliction of duty dereliction of duty and other criminal law act is suspected of committing a crime shall give cancel party posts, probation or expelled from the party. The second is < Regulations > Article 28 the provisions of Party organizations in the disciplinary review But found that party members are stipulated in the criminal law, although not involved in a crime shall be investigated for Party discipline and responsibility should be depending on the specific circumstances shall be given a warning until expelled punishment. This situation and a difference is that the former regulation behavior has been suspected of a crime, the feeling is quite strict, and the latter for the behavior not involving crime, only the objective performance of the provisions of the criminal code of behavior, but the plot is a crime to slightly. < Regulations > the 29 provisions, Party organizations in the discipline review found that party members and other illegal behavior, affect the party's image, the damage to the party, the state and the people's interests, we should depend on the situation Seriousness given disciplinary action. The loss of Party members, seriously damaging the party's image of behavior, should be given expelled from the party. At this article is party member is in violation of the criminal law outside the other illegal acts, such as violatesthe public security administration punishment law, customs law, financial laws and regulations behavior. The fourth is < cases > Article 32 stipulates, minor party members and the circumstances of the crime, the people's Procuratorate shall make a decision not to initiate a prosecution, or the people's court shall make a conviction and exempted from criminal punishment shall be given within the party is removed from his post, probation or expelled from the party. Party members and crime, sheets were fined in accordance with For acts; the principal Ordinance amended the provisions of the preceding paragraph. This is the new content, in order to achieve Ji method effective convergence. Five is < > the thirty third article 10 of the provisions, the Party member due to an intentional crime is sentenced to criminal law (including probation) sheets or additional deprivation of political rights; due to negligence crime and was sentenced to three years or more (excluding three years) a penalty, shall give expelled punishment. Due to negligence crime is convicted and sentenced to three years (including three years) in prison or be sentenced to public surveillance, detention, shall in general be expelled from the party. For the individual may not be expelled from the party, should control Approval. This is followed and retained the original > < Regulations the provisions of punishment party authorization rules and report to a level partyorganizations. For is "party members with criminal acts, and by the criminal punishment, generally should be expelled from the party". The fifth chapter of probationary Party member of the discipline and discipline after missing members of the treatment and punishment decisions, such as the implementation of the provisions, clear the related party discipline and punishment decision made after, for duties, wages and other relevant alteration formalities for the longest time. 2, sub sub section will the original regulations of10 categories of acts of violation of discipline integration revised into 6 categories, respectively, in violation of the punishments for acts of political discipline "in violation of discipline behavior of punishment" in violation of integrity of disciplinary action points "of violation punishments for acts of mass discipline" "the violation of work discipline, punishment" in violation of discipline of life behavior punishment "6 chapters. 3, annex" Supplementary Provisions "clear authority making supplementary provisions of, cases of interpretative organ, as well as regulations implementation time and retroactivity etc.. 11 (3) learning understanding > < regulations needs to grasp several key problems The first problem -- about the violation of political discipline behavior > < new ordinance chapter 6 the political discipline column for the six disciplines, that is the main opposition to Party leadership and the opposition of the basictheory, basic line, basic program and basic experience, basic requirements of misconduct made provisions of the disposition, especially the eighteen since the CPC Central Committee put forward the Yan Mingzheng treatment of discipline and political rules requirements and practical achievements transformation for Discipline article, increase the false debate central policies, cliques, against the organization review, make no discipline of the principle of harmony terms. These are the party's eighteen years in comprehensive strictly Process combined with the practice of rich content. (1) false debate the central policies and undermine the Party of centralized and unified the problem is made in accordance with the provisions of the party constitution. Constitution in general programme requirements adhere to democratic centralism is one of the requirements of the construction of the party must adhere to the four cardinal. Application of this principle is not only the party the basic organization principle and is also the mass line in party life, it requires that we must fully develop inner-party democracy, respect for the dominant position of Party members, safeguarding the Party member democratic rights, give full play to the enthusiasm and creativity of the party organizations at all levels and Party members, at the same time, also must implement the right concentration, ensure the party's mission < the chaos in unity and concertedaction to ensure that the party's decision to get quickly and effectively implementing. The Party Central Committee formulated the major principles and policies, through different channels and ways, fully listen to the party organizations and Party members of the opinions and suggestions, but 12 is some people face to face not to say back blather "" will not say, after the meeting said, "" Taiwan does not say, and nonsense ", in fact, not only disrupt the people thought, some causing serious consequences, the damage to the Party of the centralized and unified, hinder the central policy implementation, but also a serious violation of the democratic system of principles. There is no doubt that shall, in accordance with the Regulations > 4 Specified in Article 6 to give the appropriate punishment. For did not cause serious consequences, to give criticism and education or the corresponding tissue processing. (2) about the destruction of the party's unity < New Regulations > the forty eighth to fifty second article, to damage Party's unity unified and violation of political discipline, punishment situation made explicit provisions. Article 52 of the new "in the party get round group, gangs seek private gain, cliques, cultivate private forces or through the exchange of interests, for their own to create momentum and other activities to gain political capital, given a serious warning or withdraw from their party posts disposition; if the。

含绝对值不等式的解法 ppt课件

含绝对值不等式的解法  ppt课件

x<1或x>3,

即x≤9, x≥-5.
∴-5≤x<1 或 3<x≤9.
∴原不等式解集为{x|-5≤x<1 或 3<x≤9}.
ppt课件
10
法二:原不等式可转化为 -7≤2-x<-1或1<2-x≤7, ∴3<x≤9或-5≤x<1, ∴原不等式解集为{x|-5≤x<1或3<x≤9}. 【名师点评】 本例题是不等式的一种常见 题,第二种解法要比第一种解法更为简 单.也可根据绝对值的意义解题.
ppt课件
31
误区警示
例 求使不等式|x-4|+|x-3|<a有解的a的取 值范围. 【错解】 ∵|x-4|+|x-3|≥|x-4+3-x|=1. ∴|x-4|+|x-3|有最小值为1. ∴a<1时原不等式有解. 【错因】 “|x-4|+|x-3|<a有解”理解错. 上述解法是无解的情况.
ppt课件
ppt课件
29
【名师点评】 解关于恒成立问题时注意等 价转化思想的应用.
f(x)<a恒成立⇔f(x)max<a. f(x)>a恒成立⇔f(x)min>a.
ppt课件
30
变式训练3 若不等式|x+3|-|x-5|<m对 x∈R恒成立,则m的取值范围为________. 解析:|x+3|-|x-5|≤|x+3-x+5|=8, ∴|x+3|-|x+5|的最大值为8, ∴m>8. 答案:(8,+∞)
ppt课件
6
(3)原不等式可化为-5<x2-3x+1<5, x2-3x+1>-5,
即x2-3x+1<5. ∴x-∈1R<x,<4, 即-1<x<4. ∴原不等式的解集为{x|-1<x<4}.

人教版数学高二备课资料含绝对值的不等式的解法

人教版数学高二备课资料含绝对值的不等式的解法

打印版含绝对值的不等式的解法解含绝对值符号不等式的基本思想就是去掉绝对值符号,使不等式变为不含绝对值的不等式,去掉绝对值符号是解题的关键.怎样才能更合理有效地去掉绝对值符号呢?本文就各种常见的不同类型的含绝对值不等式如何去掉绝对值符号,进行适当地归纳总结.一、基本型绝对值不等式的基本型是指形如|x|<a(a>0)或|x|>a(a>0)的含绝对值符号的不等式,这类不等式需要根据绝对值的定义,或者根据|x|<a(a>0) ⇔-a<x<a ,|x|>a(a>0)⇔ x<-a 或x>a 利用其等价性去掉绝对值符号.例1 已知适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3,求p 的值.分析:x 的最大值为3说明x -3≤0,可以去掉一个绝对值符号,再利用绝对值的定义去掉另一个绝对值符号。

解:∵适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3,∴x -3≤0,∴|x -3|=3-x若|x 2-4x +p |=-x 2+4x -p ,则原不等式为x 2-3x +p +2≥0,其解集不可能为{x |x ≤3}的子集,∴|x 2-4x +p |=x 2-4x +p ∴原不等式为x 2-4x +p +3-x ≤0,即x 2-5x +p -2≤0,令x 2-5x +p -2=(x -3)(x -m ),可得m =2,p =8点评:对于|ax +b|>c 或|ax +b|<c 型的绝对值不等式宜利用等价性直接求解,对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x|≤b ⇔a ≤x ≤b 或-b ≤x ≤-a 求解.二、平方法例2 解关于x 的不等式|x -1|<|x +a|(a ∈R ).分析:由于两边均为非负数,根据不等式的性质,可以通过两边平方去掉绝对值符号.解:由于|x -1|≥0,|x +a|>0,所以两边平方有|x -1|2<|x +a|2, 即有x 2-2x +1<x 2+2ax +a 2, 整理得:(2a +2)x >1-a 2,当2a +2>0,即a >-1时,不等式的解为x >21(1-a); 当2a +2 = 0,即a =-1时,不等式无解; 当2a +2<0,即a <-1时,不等式的解为x <21(1-a). 点评:对于两边都含有“单项”绝对值的不等式,利用|x|2= x 2可将不等号两边的绝对值符号同时去掉,这样解题要比利用绝对值定义,通过讨论去掉绝对值符号简捷.本题在解题时还要注意a 为任意实数,没有明确2a +2的符号,因此需要分类讨论,这是解含参数不等式时务必要注意的.三、零点分段法打印版例3 解不等式|x+1|-|x-1|>1.分析: 本题含两个绝对值符号,可以通过讨论,或者用平方法去绝对值号.解法一:(分段讨论)不等式左边有两个零值点x 1=-1,x 2=1,于是可分为三段进行讨论.(1)当x<-1时,原不等式可化为⎩⎨⎧>-++--<11)1(1x x x ,解得 ∅∈x .(2)当-1≤x ≤1时,原不等式可化为⎩⎨⎧>-++≤≤-11111x x x ,解得 x <21≤1 .(3)当x>1时,即不等式可化为⎩⎨⎧>--+>1)1(11x x x ,解得 x>1 .综上,原不等式的解集为 }21|{>x x .点评 含两个或两个以上绝对值号的不等式,可先求出每个绝对值的零值点,这些零值点把数轴分为若干区间,可从左到右,对每个区间上的情况进行讨论,得出不等式在各区间上的解集,再把它们并起来,即为原不等式的解集.解法二 :(平方法)1|1||1|1|1||1|+->+⇒>--+x x x x , 两边平方可得 1|1|2121222+-++->++x x x x x ,整理得 212|1|-<-x x ,等价于 -(212-x )<2121-<-x x ,解得21>x . ∴ 原不等式解集为 }21|{>x x .点评 移项后,不等式两边均非负,可以使用不等式的性质同解变形,去掉一个绝对值符号,整理后,即可利用|x|<a ⇔-a<x<a 去掉另一个绝对值符号而获解决.四、数形结合法 例4 对任意实数x ,若不等式| x +1|-| x -2 |>k 恒成立,求 k 的取值范围. 分析一:要使| x +1|-| x -2 |>k 对任意x 恒成立,只要| x +1|-| x -2 |的最小值大于k .因| x +1|的几何意义为数轴上点x 到-1的距离,| x -2 |的几何意义为数轴上点x 到2的距离,| x +1|-| x -2 |的几何意义为数轴上点x 到-1与2的距离的差,其最小值可求.解法一:根据绝对值的几何意义,设数x ,-1,2在 数轴上对应的点分别为P 、A 、B ,原不等式即求| PA|-| PB|>k 成立,因为|AB| = 3,即| x +1|-| x -2 |≥-3,故当k <-3时,原不等式恒成立.分析二:如果把不等式的左边用零点分段的方法改写成分段函数,通过画出其图象,从图象观察k 的取值范围.解法二:令y = | x +1|-| x -2 |,则 y =⎪⎩⎪⎨⎧≥<<---≤-.2.321,121,3x x x x要使| x+1|-| x-2 |>k恒成立,从图象可以看出,只要k<-3即可.故k<-3满足题意思.点评:本题的解法较多,可以用零点区间讨论法,也可用图像法,但都不如解法一利用数轴求解简单.以上是列举了四种类型的含绝对值的不等式的基本解法,相信只要大家能掌握了这些去掉绝对值符号的思想方法,那么对于还未列举出的绝对值不等式解起来也就应该没有问题了.打印版。

含绝对值的不等式解法PPT教学课件

含绝对值的不等式解法PPT教学课件
一、复习回顾
• 不等式解集含义; • 会在数轴上表示解集; • 不等式性质及其利用; • 绝对值的定义,含有绝对值的不等式的解法,
当a>0时,
| x | a a x a; | x | a x a或x a.
二、定理:
| a | | b || a b || a | | b |
证明: | a | a | a |
例4.已知|a|<1,|b|<1,求证:
证明:a b 1 ab
1
ab 1 ab
2
1
a b 1. 1 ab
a2 2ab b2 1 2ab a2b2
1 a2 b2 a2b2 0
1 a2 1 b2 0.
由 a 1, b 1,可得 1 a 2 1 b2 0成立,所以
在设置情境上绞尽脑汁的原因。从教育现象学视角审视“情境教学”“情境学习”与“情境教育”,或许会更深入。
ab 1 ab
1.
注 这道题的证明过程中,用了
这一结论.
定理:| a | | b || a b || a | | b |
四. 练习:
2.求证:
(1)|(A+B)-(
五、课时小结
1. 含绝对值不等式解法关键是去掉绝对 值符号;
2. 注意在解决问题过程中不等式的几何 意义;
如果我们能够从现象学的视角去思考与把握,那么任何一个平常的经验就可以转化为教学资源。试想,学生有了亲身经验,而且是当下或者最近的经验,他们会无话可说、无文可写吗?马克 斯·范梅南说:“从某种意义上说,所有现象学都是指向实践的——生活的实践。”②我以为,这个论断对杜威的“教育即生活”做了很好的诠释,同时也为我们正确地理解情境与教学提供了一种思
=|x|+2|y|+3|z|.

绝对值不等式的解法说课稿PPT课件

绝对值不等式的解法说课稿PPT课件

-c<ax+b<c
|ax+b|>c
ax+b>c 或 ax+b<-c
思考:如何求不等式|x-1|+|x+2|≥5 的解集?
第9页/共24页
2.探究:怎么解不等式|x-1|+|x+2|≥5
呢? 解绝对值不等式关键是去绝对值符号,
你有什么方法解决这个问题呢?
方法一:利用绝对值的几何意义(体现了数形结 合的思想).
第4页/共24页
2、教学重点与难点
本节注重培养学生“数形结合”、“分类讨论”思想及解 决问题分析问题的能力,因而确定重、难点为:
重点:掌握|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法。 难点:处理含绝对值的不等式变换时的等价性.
第5页/共24页
三、教法分析
根据学生现有的认知水平,本节通过师生之间的 相互探讨和交流进行教学,即以探究研讨法为主,通 过讲练结合法等展开教学.
第18页/共24页
6、作业布置
1.必做题:P20 8题
2.选做题: (1)解不等式|2x+1|-|x-4|>2. (2) (2012·新课标高考)已知函数f(x)=|x+a|+|x-2|.
(i)当a=-3时,求不等式f(x)≥3的解集;
(ii)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
⑴ 运用绝对值的几何意义, 数形结合;
⑵ 零点分段法:分类讨论去绝对值符号;
(含两个或两个以上绝对值符号)



x1
x2
⑶ 构造函数:利用函数图象来分析.
第13页/共24页
.
3、例题讲解

绝对值不等式的解法课件

绝对值不等式的解法课件
绝对值不等式的解法
1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法 只需将ax+b看成一个整体,即化成|x|≤a,|x|≥a(a>0)型不 等式求解. |ax+b|≤c(c>0)型不等式的解法:先化为__-__c_≤__a_x_+__b_≤__c_, 再由不等式的性质求出原不等式的解集.
.
(2)原不等式价于||xx- -22||≥ ≤24, .
① ②
由①得x-2≤-2,或x-2≥2,∴x≤0或x≥4.
由②得-4≤x-2≤4,∴-2≤x≤6.
∴原不等式的解集为{x|-2≤x≤0或4≤x≤6}.
|ax+b|≥c和|ax+b|≤c型不等式的解法: ①当c>0时,|ax+b|≥c⇔ax+b≥c或ax+b≤-c,|ax+ b|≤c⇔-c≤ax+b≤c. ②当c=0时,|ax+b|≥c的解集为R,|ax+b|<c的解集为∅. ③当c<0时,|ax+b|≥c的解集为R,|ax+b|≤c的解集为∅.
[例3] 已知不等式|x+2|-|x+3|>m. (1)若不等式有解; (2)若不等式解集为R; (3)若不等式解集为∅,分别求出m的取值范围. [思路点拨] 解答本题可以先根据绝对值|x-a|的意 义或绝对值不等式的性质求出|x+2|-|x+3|的最大值和 最小值,再分别写出三种情况下m的取值范围.
C,P,而B点对应的实数为
1 2
,B点到C点的距离与到A点的
距离之差为1.
由绝对值的几何意义知,当点P在射线Bx上(不含B点)
时不等式成立,故不等式的解集为xx>12
.
法二:原不等式⇔①x-<-x-1,3+x+1<1
或②--1x≤-x3<3-,x+1<1

绝对值不等式和分式不等式

绝对值不等式和分式不等式

绝对值不等式和分式不等式绝对值不等式一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。

(一)、公式法:即利用a x >与a x <的解集求解。

主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。

2、a x >与a x <型的不等式的解法。

当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。

把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。

当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;例1 解不等式32<-x(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。

例2。

解不等式22x xx x >++。

(三)、平方法:解()()f x g x >型不等式。

例3、解不等式123x x ->-。

二、分类讨论法:即通过合理分类去绝对值后再求解。

例4 解不等式125x x -++<。

三、几何法:即转化为几何知识求解。

例5 对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为 ()(A)k<3 (B)k<-3(C)k ≤3(D)k ≤-3四、典型题型1、解关于x 的不等式10832<-+x x2、解关于x 的不等式2321>-x3、解关于x 的不等式212+<-x x4、解关于x 的不等式1212-<-m x )(R m ∈5、解关于x 的不等式1312++<--x x x6、解关于x 的不等式521≥++-x x分式不等式一、分式不等式的解法(一)、()()()()00f xf xg xg x>⇔⋅>;(二)、()()()()()f xg xf xg x g x⋅≥⎧⎪≥⇔⎨≠⎪⎩。

不等式解法整式分式根式

不等式解法整式分式根式

§ 不等式的解法一一线名师精讲基础知识串讲解不等式的基本原则:1、解不等式实质是一个等价变形的过程,当元的取值范围扩大时,应与原有取值范围求交集;2、解不等式是一个由繁到简的转化过程,其转化的总思路为:3、解含有等号的不等式时,应该将等式与不等式分开解答后取并集;基本类型不等式的解法: 一、整式不等式的解法 1、一元一次不等式标准形式:b ax >或)0(≠<a b ax .解法要点:在不等式的两端同时除以a 后,若0<a 则不等号要反向;2、一元二次不等式标准形式:02>++c bx ax 或02<++c bx ax 其中0>a ;解法要点:解一元二次不等式一般可按以下步骤进行:1整形:将不等式化为标准形式; 2求根:求方程02=++c bx ax 的根; 3写解:根据方程02=++c bx ax 根的情况写出对应不等式的解集;当两根明确时,可由“大于0,两根外;小于0,两根内”的口诀写解,当0≤∆时,则可由函数c bx ax y ++=2的草图写解;3、一元高次不等式可分解因式型标准形式:0)())((21>---n x x x x x x a 或0)())((21<---n x x x x x x a ()0>a ;解法要点:用“数轴穿根”的方法最为简便,一般可按如下步骤进行:1整形:将不等式化为标准形式; 2求根:求出对应方程的根;3穿根:将方程的根标在数轴上,用一条曲线从右上方开始依次穿过;方程有重根时,奇数重根按正常情况穿过,偶数重根则不穿过,反弹回来后继续穿根;即“奇过偶不过”;4写解:数轴上方所对应曲线的区间为0)())((21>---n x x x x x x a 的解,数轴下方所对应曲线的区间为0)())((21<---n x x x x x x a 的解;二、分式不等式的解法 标准形式:0)()(>x f x g ,或0)()(<x f x g ; 解法要点:解分式不等式的关键是去分母,将分式不等式转化为整式不等式求解;若分母的正负可定,可直接去分母;若分母的正负不定,则按以下原则去分母:0)()(0)()(>⋅⇔>x g x f x g x f 0)()(0)()(<⇔<x g x f x g x f 三、根式不等式的解法 标准形式:)()(x g x f >;)()(x g x f >;以及)()(x g x f <;解法要点:解根式不等式的关键是去根号,应抓住被开方数的取值范围以及不等式乘方的条件这两大要点进行等价变换:⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(x g x f x g x f x g x f ⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(2x g x f x f x g x g x f 或⎩⎨⎧≥<0)(0)(x f x g ⎪⎩⎪⎨⎧<≥>⇐<)()(0)(0)()()(2x g x f x f x g x g x f 基本题型指要【例1】 解下列不等式或不等式组:1⎪⎩⎪⎨⎧+<<-+220)1)(3(2x x x x 20)4)(2()3(2≤-+-x x x 3x x x x x <-+-+222322402)1(2≥---x x x1思路导引:按规范化程序操作,化为标准形式后求解,可以有效的防止错误;解析:将0)1)(3(<-+x x 化为标准形式0)1)(3(>-+x x ,易得:1,3>-<x x 或;由222+<x x 得01)1(2>+-x ,所以R x ∈; 综上所述,原不等式组的解集为{}13|>-<x x x 或,;2解析:由已知,0)4)(2()3(2≥-+-x x x , 用数轴穿根法易得原不等式的解集为:{}342|=≥-≤x x x x 或,,或误区警示:若不化为标准形式求解,易将解集错写为{}42|≤≤-x x ;另外,建议将这类等式与不等式的混合式中的“等式”单独求解,以防止漏掉3=x 这类解;3思路导引:解分式不等式的关键是去分母;但本题分母正负不明,若直接去分母应分类讨论,较为复杂,使用移项通分化为标准形式的方法较好;解析:将x x x x x <-+-+222322化为标准形式,得:0)1)(3()1)(2(2>+-++-x x x x x ,因为12>++x x 恒成立,所以,0)1)(3()2(>+--x x x ;用数轴穿根法易得原不等式的解集为:{}321|><<-x x x 或,;4思路导引:解根式不等式关键是抓住乘方的条件,对原不等式实施等价转换,去除根号;解析:原不等式等价于:02)1(2>---x x x (1)或02)1(2=---x x x (2)由1得:⎪⎩⎪⎨⎧>->--01022x x x ,解得2>x ;由2得12-==x x ,或;所以,原不等式的解集为{}12|-=≥x x x ,或; 误区警示:请找出下面解法的错误: 由022≥--x x ,得01≥-x ,所以,原不等式的解为1≥x ;点评:解等式与不等式的混合型不等式,最好将等式与不等式分开求解,以避免错误; ◆题型二:解含参数的不等式不少同学都怕解含参数的不等式,究其原因,关键是没有把握住解题技巧;其实,解含有参数的不等式在总思路上与解普通不等式完全相同,当参数不影响式子的变形时,与解普通不等式没有差异,在参数影响式子的变形时,就需弄清参数的取值范围或者予以分类讨论,才能顺利的解出不等式;例2解下列关于x 的不等式: 102>+ax 2x t tx )2(22+>+3)1,0(1log 22log 3≠>-<-a a x x a a 1思路导引:本题在求解x 时必须去除系数a ,由于a 的范围不明,无法直接变形,若将a 按变形的要求分为正、负、零三类,则在每一小类中式子就能顺利变形了;解析:由已知,2->ax ; ①、当0>a 时,a x 2->; ②、当0<a 时, ax 2-<; ③、当0=a 时,20->恒成立,R x ∈ ;故,原不等式解集当0>a 时为⎭⎬⎫⎩⎨⎧->a x x 2|,当0<a 时为⎭⎬⎫⎩⎨⎧-<a x x 2|,当0=a 时为R ;2思路导引:解含参数的二次不等式通常是在以下三个地方实施分类讨论:一是平方项系数有参数时需分正、负、零讨论,二是判别式△有参数时的需分正、负、零讨论,三是两根有参数时需根据他们的大小关系分类讨论;本题中的不等式即0)2)(1(>--tx x ,在求解过程中参数会在两个地方影响式子变形:一是平方项系数t 的正、负、零,二是对应的二次方程的根1与t2是否存在、谁大谁小;此时,同一字母t 形成了不同的分类,可将t 在0、2处分段统筹安排进行分类如图;解析:原不等式即0)2)(1(>--tx x ;① 当0<t 时,可以化为0)2)(1(<+--tx x , 易知12<t ,所以12<<x t; ② 当0=t 时,原不等式即022>+-x ,所以 1<x ;③ 当20<<t 时,易知12>t,可得,1<x tx 2>或; ④ 当2=t 时,原不等式即0)1(22>-x ,所 以1≠∈x R x ,且;⑤ 当2>t 时,易知12<t ,可得,tx 2< 1>x 或;综上所述,原不等式的解集当0<t 时,为 ⎭⎬⎫⎩⎨⎧<<12|x t x ;当0=t 时,为{}1|<x x ;当20<<t 时,为⎭⎬⎫⎩⎨⎧><t x x x 21|,或;当2=t 时,为{}1|≠∈x R x x ,且;当2>t 时,为⎭⎬⎫⎩⎨⎧><12|x t x x ,或;误区警示:本题易漏掉20==t t 和两种特殊情况的讨论;另外,在0<t 时,解集易错为⎭⎬⎫⎩⎨⎧><12|x t x x ,或;3思路导引:本题关键是抓住根式不等式的解题特点,对不等式进行乘方处理,去除根号;若令t x a =log 进行换元,会使书写变得更简便;解析:按根式不等式的解题思路,易知原不等式等价于⎪⎩⎪⎨⎧>--<-≥-)3(01log 2)2()1log 2(2log 3)1(02log 32 x x x x a a a a由1得,32log ≥x a 由2得,1log ,43log ><x x a a 或 由3得.21log >x a 由此得,1log ,43log 32><≤x x a a 或 当1>a 时,易求得原不等式的解集为}|{4332a xa x a x ><≤,或;当10<<a 时,易求得原不等式的解集为}0|{3243a x a x ax <<≤<,或;误区警示:在乘方去除根号的过程中,要注意不等式乘方的条件以及根号内式子的取值范围,保证不等式的变形为等价变形;点评:从本例的解答过程可以看出,解含参数的不等式关键是抓住以下两个要点来处理不等式中的参数:一是由“参数是否影响不等式变形”来确定该不该对参数进行分类讨论,二是由“参数是怎样影响不等式变形” 来确定怎样对参数进行分类讨论;已知不等式的解集求参数值或范围是一类很常见也很重要的题型;由于该题型解法较为灵活,我们在解题时若不能把握住它的解题规律,往往会觉得变化莫测而无可适从;解答本题型关键是要抓住以下两个要点:一是按其正向题型“解不等式”变化,试解原不等式;二是利用已知的解集或解集的部分信息去逆向推测它们与参数的关系;两个要点结合,就会比较容易找到所求参数的方程或不等式,从而求出它们的值或范围;例3已知不等式022>++bx ax 1若不等式的解集为31,21-,求b a +;2若不等式的解集为R,求b a 、应满足的条件; 1思路导引:从解集的形式可知:原不等式必为二次不等式;再从解不等式的角度来看,原不等式的解集可由方程022=++bx ax 的二根来得出,但二根不方便写出,自然会想到用韦达定理列式解题;解析:由题意,方程022=++bx ax 的二根为3121和-, 所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+->⨯-<aa b a b a 23121312102402易解得212-=-=b a ,, 所以,14-=+b a ;误区警示:不能遗漏条件0242>⨯-a b 和0<a ;2思路导引:原不等式022>++bx ax 的系数b a 、范围未定,可能形成二次型、一次型、常数型三类不等式;因为原不等式的解集为R,故原不等式只能为二次型、常数型不等式;解析:1当0==b a 时, 原不等式为02>,其解集显然为R,符合题意;2当0≠a 时,因为原不等式解集为R ,所以,⎪⎩⎪⎨⎧<⨯->02402a b a化简得a b a 802<>,且;综上所述,b a 、应满足的条件为:0==b a ;或a b a 802<>且;点评: 已知二次不等式的解集求参数值可分为两种类型:若解集为“两根内外”型,一般用韦达定理求解;若解集为R 或φ,则通常用数形结合解题;例4若不等式组⎪⎩⎪⎨⎧<+++>--05)25(20222k x k x x x 的整数解只有-2,求实数k 的取值范围;思路导引:本题的解题思路与已知不等式的解集求参数值相似,只是要注意不等式组的解集应是各个不等式解集的交集;解析: ⎪⎩⎪⎨⎧<+++>--)2(05)25(2)1(0222 k x k x x x由1解得12-<>x x ,或;由2得0))(52(<++k x x ;因为-2是不等式组的解,故0)2](5)2(2[<+-+-⨯k ,得 2<k ,所以25->-k ,2的解为k x -<<-25; 由此可知,原不等式组的解为Ⅰ⎪⎩⎪⎨⎧-<<--<k x x 251,或⎪⎩⎪⎨⎧-<<->k x x 252;因为2<k ,所以2->-k ,故Ⅰ的整数解为-2;而原不等式组的整数解只有-2,所以Ⅱ应该没有整数解,所以33-≥≤-k k ,即;综上所述,23<≤-k ;阅卷老师评题例51996年全国高考解不等式.1)11(log >-xa命题目的:本题综合考查了对数不等式、分式不等式、二次不等式的解法,以及分类讨论的思想和运算能力;考情分析:该题本身的能力要求并不高,但在解答的过程中却多次涉及易错点,故当年考生的得分率较低,区分度达;思路导引:因为对数函数的单调性与a 有关,故应对a 分类讨论去除对数符号,将原不等式化为分式不等式,然后再化为整式不等式求解;解析:Ⅰ当1>a 时,原不等式等价于: ⎪⎩⎪⎨⎧>->-)2(11)1(011 a x x 因1>a ,故只需解2式,由此得 )3(11 xa >- 因为,01<-a 所以,0<x 由3可得 .011<<-x aⅡ当10<<a 时,原不等式等价于: ⎪⎩⎪⎨⎧<->-)5(11)4(011 a xx 由4得,,01<>x x 或 由5得,011>->a x,故0>x , 易解得5的解为ax -<<111; 所以ax -<<111; 综上所述:当1>a 时,不等式的解集为 };011|{<<-x ax 当10<<a 时,不等式的解集为}.111|{ax x -<< 点评:解不等式要注意不等式变形的等价性,对常见的易错点应熟记于心,这样才能有效地避免错误;此外,在解题时注意充分使用已知条件,常常会得到简便解法;如解不等式25时利用a 的范围判断出x 的正负后,就能很方便的去分母了;本题也可由011>-x得出10><x x ,或后,分0<x 和1>x 两类解答;例62004年上海高考记函数fx=132++-x x 的定义域为A,g x =lg x -a -12a -xa <1 的定义域为B;1 求A ;2 若B ⊆A, 求实数a 的取值范围.命题目的:本小题主要考查集合的有关概念, 考查二次不等式、分式不等式、对数不等式的解法,以及分析问题和推理计算能力;考情分析:此题型在各地高考中经常出现;本题难度较小,得分率较高,但有的考生在求a 的范围时没充分使用1>a 的条件,引起解题过程复杂或出错;解析:1由2-13++x x ≥0, 得11+-x x ≥0, 解得 x <-1或x ≥1, 即A=-∞,-1∪1,+ ∞2 由x -a -12a -x >0, 得x -a -1x -2a <0.因为a <1,所以a +1>2a ,故B=2a ,a +1; 由B ⊆A 知:2a ≥1或a +1≤-1, 解得a ≥21或a ≤-2; 因为a <1, 所以21≤a <1或a ≤-2, 故当A B ⊆时, 实数a 的取值范围是-∞,-2∪21,1 . 好题优化训练基础巩固1、1652->+-x x x 的解集为 A )1,(-∞ B ),2(+∞ C )35,1[ D )35,(-∞答案:D解析:取0=x 可排除B 、C ;取1=x 可排除A;故选D; 2、满足3121-><xx 与的x 的取值范围是 A 2131<<x B 21>x C 31-<x D 3121-<>x x ,或 答案:D解析:解不等式组或验证排除; 3、解不等式212->-x x答案:⎭⎬⎫⎩⎨⎧<≤521|x x解析:原不等式等价于Ⅰ⎩⎨⎧<-≥-02012x x ,或Ⅱ⎪⎩⎪⎨⎧->-≥-≥-2)2(1202012x x x x由Ⅰ解得221<≤x , 由Ⅱ解得52<≤x所以,原不等式的解集为⎭⎬⎫⎩⎨⎧<≤521|x x ;点评:若令t x =-12,则该不等式可化为一个关于t 的二次不等式求解;4、解关于x 的不等式04)1(22<++-x a ax ; 答案:原不等式的解集当0=a 时,为{}2|>x x ;当10<<a 时,为⎭⎬⎫⎩⎨⎧<<a x x 22|;当1=a 时为 φ;当1>a 时,为⎭⎬⎫⎩⎨⎧<<22|x a x ;当0<a 时,为⎭⎬⎫⎩⎨⎧><22|x a x x ,或;解析: 原不等式即0)2)(2(<--x ax ,a 的范围明显会影响不等式的解集,故需分类讨论: 10=a 时,原不等式即042<+-x ,解得2>x ; 210<<a 时,22>a ,不等式的解为ax 22<<; 31=a 时,原不等式为0)2(2<-x ,Φ∈x ; 41>a 时,22<a ,不等式的解为22<<x a; 50<a 时,原不等式可化为0)2)(2(>-+-x ax , 易知22<a ,所以不等式的解为22><x a x ,或; 5、不等式13642222<++++x x m mx x 对一切实数x 均成立,求m 的取值范围; 答案:1,3;解析:已知分母恒正,故原不等式可化为:3642222++<++x x m mx x , 即0)3()26(22>-+-+m x m x , 由题意,该式对一切实数x 恒成立; 所以,0)3(8)26(2<---=∆m m , 容易解得31<<m ;技能培训6、不等式0343>---x x 的解集为:_______; 答案:3,+∞;解析:原不等式等价于⎪⎩⎪⎨⎧->-≥-≥-34303043x x x x ,解得3≥x ;7、设1)(2+-=ax x x f ;若方程0)(=x f 没有正根,则a 的取值范围为____________; 答案:)2(,-∞;解析:因为方程0)(=x f 没有正根,由图 易知;⎪⎩⎪⎨⎧<≥-=∆0242aa , 或042<-=∆a ; 解得:2<a ; 8、若关于x 的不等式0342>+++x x a x 的解是13-<<-x ,或2>x ,则a 的值为 A 2 B 2- C21D 21-答案:B解析:原不等式即0)3)(1)((>+++x x a x ,由其解集易知2-=a ;9、若0)1(3)1()1()(2<-+--+=m x m x m x f 对于 一切实数x 恒成立,则m 的取值范围是 A ),1(+∞ B )1,(--∞ C )1113,(--∞ D ),1()1113,(+∞--∞ 答案:C解析:由已知,⎪⎩⎪⎨⎧<-+--<+0)1)(1(12)1(012m m m m ,解得1113-<x ; 10、解关于x 的不等式)1(12)1(≠>--a x x a ; 答案:不等式的解集当0<a 时为⎭⎬⎫⎩⎨⎧<<--212|x a a x ;当10<<a 时为⎭⎬⎫⎩⎨⎧--<<122|a a x x ;当0=a 时为Φ;当1>a 时,为⎭⎬⎫⎩⎨⎧--<>122|a a x x x ,或; 解析: 原不等式可化为02)2()1(>--+-x a x a ,所以0)]2()1)[(2(>-+--a x a x ; 1当0<a 时,21201<--<-a a a ,,原不等式的解集为⎭⎬⎫⎩⎨⎧<<--212|x a a x ; 2当10<<a 时,212>--a a ,原不等式的解集为⎭⎬⎫⎩⎨⎧--<<122|a a x x ;3当0=a 时,原不等式为10>,所以∈x Φ; 4当1>a 时,212<--a a ,,所以原不等式的解集为⎭⎬⎫⎩⎨⎧--<>122|a a x x x ,或;11、某工厂生产商品M,若每件定价80元,则每年可销售80万件;税务部门对市场销售的商品征收附加费,为了既增加国家收入又有利于活跃市场,必须合理确定征收的税率;根据调查分析,若政府对商品M 征收的税率为p %时,每年销售减少10p 万件,试问:1若税务部门对商品M 每年所收税金不少96万元,求p 的取值范围;2在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,因如何确定p 值3若仅考虑每年税收金额最高,又应如何确定p 值答案:162≤≤p ;22=p ;34=p ;解析: 1税率为%p 时,销售量为p 1080-万件,销售金额为)1080(80p -万元80<<p ;由题意易得:⎩⎨⎧<<≥⋅-8096%)1080(80p p p ,解得62≤≤p ;2销售金额最大即)1080(80p -最大,由1可知,62≤≤p ,所以,当2=p 时 ,最大销售金额为4800万元;3由1知易知,销售金额为)1080(80p -,故税金为128)4(8%)1080(802+--=⋅-p p p , 因为80<<p ,所以,4=p 时,国家所得税金最多,为128万元;12、若不等式02>++c bx ax 的解集为),(βα,且βα<<0,求不等式02<++a bx cx 的解集; 答案:⎭⎬⎫⎩⎨⎧><αβ1,1|x x x 或解析:依题意,方程02=c bx ax ++的二根为βα、,故有:⎪⎪⎩⎪⎪⎨⎧>=<+-=)2(0)1(0)( αββαac ab所以,)(βα+-=a b ,)(αβa c =,这样即可将不等式02<++a bx cx 化为0)()(2<++-a x a x a βααβ,由题意易知0<a ,所以0)1)(1(>--x x βα; 因为βα<<0,所以αβ110<<,故所求不等式的解集为⎭⎬⎫⎩⎨⎧><αβ11|x x x ,或;13、解不等式)0(122>->-a x a ax答案:⎭⎬⎫⎩⎨⎧≥2|a x x解析:原不等式可化为:Ⅰ⎪⎩⎪⎨⎧->-≥-)2()1(2)1(0122 x a ax x 或Ⅱ⎪⎩⎪⎨⎧≥-<-)4(02)3(012a ax x 由1得1≤x ,由2得a a x a a 2121++<<-+, 由3得1>x , 由4得2ax ≥; 因为0>a ,所以121>++a a ; 1当20≤<a 时,121≤-+a a ,12≤a,故不等式组Ⅰ的解为121≤<-+x a a ,不等式组Ⅱ的解为1>x ,此时,原不等式的解为a a x 21-+>;2当2>a 时,121>-+a a ,12>a,此时不等式组Ⅰ的解为Φ,不等式组Ⅱ的解为2ax ≥,原不等式的解为2a x ≥; 综上所述,原不等式的解集当20≤<a 时为{}a a x x 21|-+>,当2>a 时为⎭⎬⎫⎩⎨⎧≥2|a x x ;点评:本题也可用图形法求解;思维拓展14、k 为何值时,方程0412=++-k kx x 的二实根的绝对值都小于1 答案: 5285-≤<-k 解析: 作函数41)(2++-==k kx x x f y ;因为方程0412=++-k kx x 的二实根的绝对值都小于1,所以函数图象与x 轴的交点的横坐标在-1与1之间如图 ; 分析图形特点可得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>+=->=<⨯--<-≥+--0452)1(045)1(11210)41(4)(2k f f k k k 解得5285-≤<-k ; 点评:已知一元二次方程的根在某个指定区间内时,常常数形结合,抓住判别式△、对称轴的位置以及区间端点的函数值列式解题;。

含绝对值不等式

含绝对值不等式

含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.2.分式不等式的解法(1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

绝对值不等式的解法

绝对值不等式的解法

画出数轴
在数轴上标出关键点,如$a$和 $a+b$,以及不等式的解集范围。
确定解集
根据数轴上的位置关系,确定不等式 的解集。例如,对于不等式$|x-a| < b$,解集为$(a-b, a+b)$。
区间表示法
开区间表示法
使用开区间表示不等式的解集,例如$(a, b)$表示$a < x < b$。
闭区间表示法
使用闭区间表示不等式的解集,例如$[a, b]$表示$a leq x leq b$。对于一元一次绝对值不等式,通常使用开区间表示 法。
03
一元二次绝对值不等式解法
转化为一元二次不等式组
去掉绝对值符号
根据绝对值的定义,将绝对值不等式转化为一元二次 不等式组。
解一元二次不等式
利用一元二次不等式的解法,分别求出不等式组的解 集。
其中$a, b, c, d, e$为常数,且$c neq 0, e neq 0$)的不等式。
几何意义与数轴表示
几何意义
绝对值不等式表示数轴上的点到某一点的距离与某个值的大小关系。例如,不等式$|x - a| < b$(其 中$b > 0$)表示数轴上到点$a$的距离小于$b$的点的集合。
数轴表示
通过数轴可以直观地表示绝对值不等式的解集。例如,对于不等式$|x - a| < b$(其中$b > 0$), 解集为$(a - b, a + b)$,在数轴上表示为以点$a$为中心、长度为$2b$的开区间。
绝对值不等式的解法
汇报人:XX
• 绝对值不等式基本概念 • 一元一次绝对值不等式解法 • 一元二次绝对值不等式解法 • 高次及分式绝对值不等式解法 • 含有参数绝对值不等式解法 • 总结与拓展

高二数学人选修课件绝对值不等式的解法

高二数学人选修课件绝对值不等式的解法
数轴表示方法
在数轴上标出绝对值符号内表达式的 零点,然后根据不等式的性质确定解 集所在的区间,用实心点或空心点表 示区间的端点。
ቤተ መጻሕፍቲ ባይዱ
02
一元一次绝对值不等式解法
转化为一元一次不等式组求解
去掉绝对值符号
根据绝对值的定义,将绝对值不等式转化 为两个一元一次不等式组。
解一元一次不等式组
分别解出两个不等式组的解集。
绝对值定义
对于任意实数$x$,其绝对值$|x|$定义为:若$x geq 0$,则$|x| = x$;若$x < 0$,则$|x| = -x$。
绝对值性质
绝对值具有非负性,即$|x| geq 0$;同时满足三角不等式$|x + y| leq |x| + |y|$和$||x| - |y|| leq |x - y|$。
平方消去根号
通过对不等式两边平方,消去根 号,转化为普通的不等式求解。
分类讨论
根据根式内表达式的正负情况, 将原不等式分为几种情况进行讨
论,分别求解。
换元法
通过换元将根式不等式转化为普 通的不等式,简化求解过程。
混合型复杂问题处理策略
综合运用
针对混合型复杂问题,需要综合 运用分式型、根式型绝对值不等 式的处理方法,以及普通绝对值
04
含参数绝对值不等式解法
参数分类讨论思想在解题中应用
参数取值范围确定
根据题目中给出的条件,确定参数的可能 取值范围。
分类讨论
针对不同的参数取值范围,分别讨论不等 式的解集情况。
汇总结论
将不同参数取值范围下的解集情况进行汇 总,得出最终结论。
含参数问题转化为标准形式求解
01
02
03

高中数学绝对值不等式的解法.ppt

高中数学绝对值不等式的解法.ppt

三、例题讲解
例1、(1)不等式|x-1|<2的解集是_____.
【解析】由|x-1|<2得-2<x-1<2,解得-1<x<3.
答案:(-1,3)
(2)不等式|4-3x|≥2的解集是_____. 【解析】|4-3x|≥2⇔|3x-4|≥2⇔3x-4≤-2 或3x-4≥2,解得 x 或x≥2. 答案:
3 x 4 , 或 1 x 0 .
原不等式的解集是 { x | 1 x 0 , 或 3 x 4 }.
0 4
-1
3
三、例题讲解
例3、解不等式|2x-1|<2-3x.
解:原不等式等价为 3x-2<2x-1<2-3x,
2x-1<2-3x, 5x<3, 即 得 2x-1>3x-2, x<1,
2 3
2 ( , ) [2 , ) 3
三、例题讲解
例2、解不等式 3<|3-2x|≤5 .
3 |2 x 3 | 5 解法 1 : 3 | 3 2 x | 5
| 2x 3|3 2 x 3 3 , 或 2 x 3 3 | 2x 3|5 5 2 x 3 5
”;此后十年间,航空事业获得较快发展。
筹办航空事宜

三、从驿传到邮政 1.邮政
(1)初办邮政: 1896年成立“大清邮政局”,此后又设
邮传部 邮传正式脱离海13年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国邮联大会 。
2.电讯 (1)开端:1877年,福建巡抚在 办电报的开端。 (2)特点:进程曲折,发展缓慢,直到20世纪30年代情况才发生变 化。 3.交通通讯变化的影响

绝对值不等式的解法

绝对值不等式的解法

小结:理解和掌握绝对值不等式的两个定理:
|a+b|≤|a|+|b|(a,b∈R,ab≥0时等号成 立) |a-c|≤|a-b|+|b-c|(a,b,c∈R,
(a-b)(b-c)≥0时等号成立) 能应用定理解决一些证明和求最值问题。
2、绝对值不等式的解法
复习:如果a>0,则
|x|<a的解集是(-a, a); |x|>a的解集是(-∞,-a)∪(a,+∞)
数都不是原不等式的解 将点A向左移动 个单位 。 1 到点A1, 这时有 A1 A A1 B 5; 同理, 将点B向 右移动一个单位到点 1, 这时也有 B1 A B1 B 5, B 从数轴上可以看到点 1与B1之间的任何点到点 , A A B的距离之和都小于 ; 点A1的左边或点 1的右边 5 B 的任何点到点 , , 的距离之和都大于 故原不等 A 。
8.解不等式:
( 2) x 2 x 3 4 解 : 当x 3时, 原 不 等 式 可 化 为 ( x 2) ( x 3) 4, x 3 5 解 得x , 即 不 等 式 组 2 x2 x3 4 的 解 集 是 ,3]. ( 当 3 x 2时, 原 不 等 式 可 化 为 ( x 2) ( x 3) 4, 3 x 2 即5 4显 然 成 立 所 以 不 等 式 组 , x2 x3 4 的 解 集 为 3,2). ( 当x 2时, 原 不 等 式 可 化 为x 2) ( x 3) 4, ( x 2 3 即x , 不 等 式 组 的 解 集 是 2, ). [ 2 x2 x3 4 综上所述 原不等式的解集是 . , R
b
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

301
课题:整式、分式、绝对值不等式的解法
教学目标:在掌握一元一次不等式、一元二次不等式、简单的高次不等式、分式不等式的解法的基础上,掌握某些简单的不等式的解法.
(一) 主要知识:
1.同解变形是解不等式应遵循的主要原则,高中阶段所解的不等式最后都要转化为一元一次或一元二次不等式,因此,等价转化是解不等式的主要思路;
2.不等式组的解是本组各不等式解集的交集,取交集时,一定要将各不等式的解集在同一数轴上标出来,不同不等式解集的示意线最好在高度上有所区别.
3.含绝对值的不等式的性质:
①||||||||||a b a b a b -≤+≤+,当()0a b b +≤时,左边等号成立;当 0 ab ≥时,右边等号成立.②||||||||||a b a b a b -≤-≤+,当()0a b b -≥时,左边等号成立;当0ab ≤时,右边等号成立.③进而可得:||||||||||a b a b a b -≤±≤+.
4.绝对值不等式的解法:
①0a >时,|()|()()f x a f x a f x a >⇔><-或;|()|()f x a a f x a <⇔-<<; ②去绝对值符号是解绝对值不等式的常用方法;
③根据绝对值的几何意义,通过数形结合解绝对值不等式.
5.简单的一元高次不等式用根轴法(注意最高项的系数化为正数).
6.分式不等式通过移项、通分后化为根轴法或由实数符号确定法则分类讨论.
(二)典例分析:
问题1.(08届高三萧山二中) 已知不等式20x ax b +-≥的解{|23}x x x ≤-≥或, 则不等式05
222≤+--+bx x ax x 的解集为
问题2.()1 解不等式:32260x x x -++>
()2已知三次函数32()f x ax bx cx d =+++的图象
如图所示,则.A (),0b ∈-∞ .B ()0,1b ∈
.C ()1,2b ∈ .D ()2,b ∈+∞
302
问题3.设函数()2f x ax =+,不等式()6f x <的解集是()1,2-,解不等式()
x f x ≤1.
问题4.()1解关于x 的不等式
11x a x <-- ()2若不等式221(1)x m x ->-对满足||2m ≤的所有m 都成立,求x 的取值范围.
问题5.(08届高三天津南开中学二模)设有关于x 的不等式()lg 37x x a ++-> ()1当1a =时,解此不等式,()2当a 为何值时,此不等式的解集是R
303
(三)课后作业:
1.若不等式21--+x x >a 在R x ∈上有解,则a 的取值范围是
.A ()3,3- .B (]3,3- .C ()3,∞- .D ()3,-∞-
2.不等式22|2log |2|log |x x x x -<+成立,则x ∈
3.如果12log 3x π-≥12log 2π,那么x sin 的取值范围是
.A ⎥⎦
⎤⎢⎣⎡-21,21 .B ⎥⎦⎤⎢⎣⎡-1,21 .C 111,,1222⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ .
D 12⎡⎤-⎢⎥⎣⎭⎝⎦
4.解不等式:()122234x x x x -->--; ()22
2032x x x -<+-;()
32x >
5.(06湖北模拟)若不等式28x x a -+≤4x -的解集为[]4,5,则实数a =
6.解不等式1318329x x +-+⋅>
304
7.(08届高三河北唐山市五校联考)已知函数33()1log 2log f x x x =-++,求使 ()f x ≤2成立的x 的取值范围.
8.(08届高三萧山二中)设函数()y f x =的图象与函数()y g x =的图象关于原点对称,且2()2f x x x =+.()1求()y g x =的解析式;()2解关于x 的不等式:()g x ≥1()1f x x --.
305
9.(08届高三湖北孝昌二中)已知22()()2
x a f x x R x -=∈+在区间[1,1]-上是增函数。

(Ⅰ)求实数a 的值所组成的集合A ;(Ⅱ)设关于x 的方程1()f x x
=的两个根为1x 、2x ,若对任意x A ∈及[1,1]t ∈-,不等式2121m tm x x ++≥-恒成立,求m 的取值范围.
306
()2是否存在实数,a b ()a b <,使得函数()y f x =
的定义域、值域都是,a b ,若存在,
求出,a b 的值,若不存在,请说明理由.
(四)走向高考:
11.(07安徽)若对任意x R ∈,不等式x ≥ax 恒成立,则实数a 的取值范围是
.A 1a <- .B a ≤1 .C a <1 .D a ≥1
307
12.(06北京)在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠, ()1221()f x f x x x -<-恒成立”的只有
.A 1()f x x
=
.B ()f x x = .C ()2x f x = .D 2()f x x =
13.(06上海)三个同学对问题“关于x 的不等式232255x x x ++-≥ax 在[]1,12上恒成立,求实数a 的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于x 的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是
14.(06重庆)设0,1a a >≠,函数2l g (23)()x x f x a -+=有最大值,则不等式()2log 570a x x -+>的解集为
308 15.(07海南)设函数()214f x x x =+--.
()1解不等式()2f x >;()2求函数()y f x =
的最小值.
16.(07北京文)记关于x 的不等式01
x a x -<+的解集为P ,不等式1x -≤1的解集为Q . ()1若3a =,求P ;()2若Q P ⊆,求正数a 的取值范围.。

相关文档
最新文档