3.4随机变量的独立性与条件分布

合集下载

概率论与数理统计(随机变量的相互独立性)

概率论与数理统计(随机变量的相互独立性)

即X与Y独立.
3.4 随机变量的相互独立性
反之,若X与Y独立,由于f(x,y),fX(x),fY(y)都是 连续函数,故对所有的x,y,有
f ( x, y) fX ( x) fY ( y)
特别,令 x 1, y 2,可以得到
1
1
2 1 2 1 2 2 1 2
从而 0.
☺课堂练习
已知 ( X ,Y ) 的分布律为
( X ,Y ) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)
111 1
pij
6
9 18
3


(1) 求 与 应满足的条件; (2) 若 X 与 Y 相互独立,求 与 的值.
解:将 ( X ,Y ) 的分布律改写为
(2) P{ X1 X2 1} D f ( x1, x2 )dx1d x2
x2
1
x1 x2 1 D
O
1

1 0
1 x2 0
1 9
e ( x1 x2 )/ 3
d
x1
d
x2
1 9
1 ex2 / 3 (
0
1 0
x2
e

x1
/
3
d
x1
)dx2
x1

9
18
3.4 随机变量的相互独立性
【例3.17】已知随机变量X与Y相互独立且都服从参 数为1/2的0-1分布,定义随机变量
1 当X Y为偶数 Z 0 当X Y为奇数
求Z的分布律,(X,Z)的分布律, 并问X与Z是否独立?
解:由X与Y的分布律
X
0

3-4随机变量的独立

3-4随机变量的独立
0
2
2. 连续随机变量 X 、Y 相互独立的充分必要条件是: 相互独立的充分必要条件是: 都有: 对所有的实数 x、y ,都有: 、 f (x,y) = fX (x)×fY (y) , × 补充: 补充: 连续随机变量 X、Y 相互独立,当且仅当: 、 相互独立,当且仅当: 联合密度函数能够分解成: 对所有实数 x、y ,联合密度函数能够分解成: 、 f(x,y) = g (x)×h (y) 的形式 。 , × 并且,边缘密度函数可以直接写出: 并且,边缘密度函数可以直接写出: fX (x) = C1 g (x) ,fY (y) = C2 h (y) 这里C 是常数因子。 这里 1、 C1 是常数因子。
3
例3.4.2(续) 从 1,2,3,4 中随机地取一个数 X , 续 , , , 再从 1,· · ·,X 中随机地取一个数 Y,判断 X、Y , , , 、 是否独立? 是否独立? 联合分布律以及边缘分布律是: 解. 联合分布律以及边缘分布律是: X\Y 1 2 3 4 p· j 1 1/4 1/8 1/12 1/16 25/48 2 3 0 0 1/8 0 1/12 1/12 1/16 1/16 13/48 7/48 4 0 0 0 1/16 3/48 pi · 1/4 1/4 1/4 1/4 1
0
+∞
−2x−3y
dy = 2e
−2x
ϕX (x) = 0
−2x
2e , 所以, 所以, ϕX (x) = 0, 3e−3y , 同理可得 ϕY ( y) = 0,
(x ≥ 0) (x < 0) ( y ≥ 0) ( y < 0)
12

2e , x ≥ 0 ϕX (x) = , 0 , x < 0

§3.4相互独立的随机变量

§3.4相互独立的随机变量
故有b 1
9
可以验证此时有
p ij p ip j i 1 ,2 ;j 1 ,2 ,3
因 此 , 取 a=2,b1时 X 与 Y 相 互 独 立 .
99
7
例3 设X和Y相互独立,其边缘分布律如下 表,试求(X,Y)的联合分布律和P(X+Y=1)及 P(X+Y≠0).
X -2 -1 0 1/2 pi. 1/4 1/3 1/12 1/3
Y
-1/2 1
3
p.j
1/2 1/4 1/4
8
解:因X和Y相互独立,
应 有 p i j p i p j i 1 ,2 ,3 ,4 ;j 1 ,2 ,3
故(X,Y)的联合分布律为
Y
-1/2
1
3
X
-2
1/8
1/16
1/16
-1
1/6
1/12
1/12
0
1/24
1/48
1/48
1/2
1/6
1/12
1
由二维随机变量 ( X, Y ) 相互独立的定义 可知,二维随机变量 ( X, Y ) 相互独立的 充要条件是:对任意的x,y,有
F (x ,y ) F X (x )F Y (y )
它表明,两个随机变量相互独立时,它们 的联合分布函数等于两个边缘分布函数的乘 积.
2
若(X,Y)是连续型随机变量,则上述独立性的 定义等价于:若对任意的 x, y, 有
1 x2y2
f(x,y)2e 2
x,y
P {X2Y21} f(x,y)dxdy x2y21

1
x2 y2
e 2 dxdy
2 x2 y2 1
17

3.4 随机变量的独立性

3.4 随机变量的独立性
则称X与Y 相互独立 . 它表明,两个随机变量相互独立时,它们的联合分布函数等于 两个边缘分布函数的乘积 .
第2页
3.4 随机变量独立性
可以证明如下结论: (1)若 (X,Y)是连续型r.v ,则上述独立性的定义等价于:
对任意的 x, y, 有
f ( x , y ) f X ( x ) fY ( y )
第6页
3.4 随机变量独立性
例3.4.1
1.
P( X P( X P( X P( X
X ,Y 具有分布律右图,则:
1, Y 0) 1 6 P( X 1) P(Y 0) 2, Y 0) 1 6 P( X 2) P(Y 0) 1, Y 1) 2 6 P( X 1) P(Y 1) 2, Y 1) 2 6 P( X 2) P(Y 1)
p ij p i p j
离散型随机变量的联合分布列等于其边缘分布列的乘积
P { X x i | Y y j } p i , , P { Y y j | X x i } p j
任一变量的条件分布列等于其边缘分布列
要判断 X 和 Y 不独立,只需找到 X, Y 的一对取值(xi,yj),使得 P{X xi , Y y j } P{X xi }P{Y y j }.
P( X1 x1i1 )
i2 ,i3 ,in

P( X1 x1i1 , X 2 x2i2 ,, X n xnin )
P( X1 x1i1 , X 2 x2i2 )
f X1 ( x1 )


i3 ,i4 ,in

P( X1 x1i1 , X 2 x2i2 ,, X n xnin )

3.4多维随机变量的独立性

3.4多维随机变量的独立性

P ( X xi , Y y j ) P ( X xi ) P (Y y j )
则称X和Y相互独立.
例1
Y 0 2/9 0 1/9 1/3 1 1/9 2/9 0 1/ 3 2 0 1/9 2/9 1/3
X
0 1 2
p
X i
pi
1/3 1/3 1/3
p j
例2
Y
若X,Y具有联合分布率
xe ( x y ) , x 0, y 0 f (x, y) f X ( x) fY ( y) f ( x, y ) 故X,Y 独立 0 , 其它
问X和Y是否独立?
解:f X ( x )
0


xe
( x y )
dy xe x , x>0
y
fY ( y) xe
3. 若 (X,Y)是连续型r.v ,则上述独立性的 定义等价于: 对任意的 x, y, 有
f ( x, y) f X ( x) fY ( y)
几乎处处成立,则称X,Y相互独立 .
这里“几乎处处 成立”的含义是: 在平面上除去面 积为0的集合外, 处处成立.
例3
设(X,Y)的概率密度为
一切x, y, 均有
15 45 60
y

x
xy
x
=1/2
1 dy ]dx 1800
40
10
0
15
45
x
1 [60 30 2(10 30 30 30 / 2)] 1800
解二:P(| X-Y| 5) 1 dxdy 1800 | x y | 5
y
60
40

概率论与数理统计3-4

概率论与数理统计3-4
1 当 0 x y , 0 y 20 200 f ( x, y ) 0 其他
20
O
20
x
图 3-12
求 (1)给定 Y=y 条件下, X 的条件概率密度; (2)给定 Y=10 条件下, X≤5 的概率; (3)如果 Y=20 件呢?
解: (1)
fY ( y )
f X |Y ( x | y ) f ( x, y ) fY ( y ) ;
同理,当 fX (x) >0 时,
fY |X ( y | x ) f ( x, y ) f X ( x) .
第3章 连续型随机变量
3.4.1 连续性随机变量的条件分布密度与独立性
定义 3.8 设(X, 是连续性随机变量,f ( x , y ) ,f X ( x ) , Y)
f X ( z y ) f Y ( y ) dy ,
卷积公式
f X ( x ) f Y ( z x ) dx .
第3章 连续型随机变量
3.4.2二个连续型随机变量和分布
例 3.16 设 X 和 Y 独立, 有共同的概率密度
1 当 0 x 1 f ( x) 0 其他
z
2
1
f ( x , y ) dxdy . D={ (x, y): z y f ( x , y ) dx dy .
z f ( u y , y ) du dy
x+y ≤z },


+
+


第3章 连续型随机变量
3.4.2二个连续型随机变量和分布
1 / f ( x, y ) 0 当x y 1

随机变量的独立性

随机变量的独立性

f (x, y)
fX
(
x)
fY
(
y)
1 4
e
x 2
y
0
x 0, y 0 其他
P( X 2Y )
dx
1
e
x
2
y
dy
0
x/2 4
1 x x e 2 e 4 dx
1 e
3x 4
dx
2
02
02
3
两个随机变量函数的分布
• 随机变量函数的分布:
• 已知随机变量X的分布,如何求随机变量 Y=g(X)的分布
Fmax (z) (F (z))n Fmin (z) 1 [1 F (z)]n
例:设X与Y 独立,均服从U (0, 1), 分别求M max( X ,Y ), N min( X ,Y )的概率密度。
0, x 0
解:X、Y的分布函数F ( x)
x,
0
x
1
1, x 1
0, x 0
例:设X与Y 独立,且 X, Y 等可能地取值 0和1. (1)求 U = max(X, Y) 的分布列. (2)求V = X+Y的分布列.
解: X 0 1 p 1/2 1/2
Y0 1 P 1/2 1/2
(1) U = max(X, Y) 的取值为: 0, 1
P(U=0) = P(X=0, Y=0) = P(X=0)P(Y=0) =1/4
Fmin (z) P( N z) 1 P( N z) 1 P( X z,Y z) 1 P( X z)P(Y z)
即 Fmin (z) 1 (1 FX (z))(1 FY (z))
推广:
设X1, X2 ,, Xn是n个相互独立的随机变量,它们的分布函数分别

第2节 条件分布与独立性

第2节 条件分布与独立性

解 (1)若( X , Y ) ~ N (0,0,1,1, ), 则
X |Y ( x | y) ~ N ( y,1 2 );
Y | X ( y | x) ~ N ( x,1 ).
2
推广
(2) 设( X ,Y ) ~ N ( 1 , 2 , , , ), 则
.
对于任意给定 xi , 如果 P{ X xi } 0, 则在X xi的
性质:pi| j 0,
p
i
i| j
1;
p j|i 0,
p
j
j|i
1.
问题 : 联合分布、边缘分布和条件分布有什么关系?
联合分布、边缘分布和条件分布的关系 X Y
y1 p11 p21 pi 1
y2 p12 p22 pi 2
2. 连续型变量独立的定义
设两个连续型随机变量 X 和 Y 的联合密度和边缘 密度分别为 f ( x, y )和 f X ( x )与fY ( y ). 则
严格地说 , 连续型随机变量X与Y 相互独立是指 f ( x, y ) f X ( x ) fY ( y ) 在整个平面上几乎处处(即面积为0的区域除外)成立.
3. 一般型随机变量的条件分布 设 X 是一随机变量, A 是一随机事件, 则由如下条件 概率确定的函数
F ( x A) P X x A , x 称为在A 发生条件下 X的条件分布函数 .
二、随机变量的独立性
随机变量独立的直观含义
随机变量 X 和 Y 相互独立的直观含义是指它 们之间在概率上相互毫无影响, 也就是说 , 任何一 个的取值都不会影响到另一个取值的分布.
pi 1
yj p1 j p2 i pij

高等数学3.4 随机变量的独立性与条件分布

高等数学3.4 随机变量的独立性与条件分布

2 3/15 3/15
0 1
(2) 由( X , Y ) 的联合分布律知 X 的边缘分布为 X P 0 1/15 1 10/15
由条件分布定义可知
P Y = 0 X = 0 = P Y = 1 X = 0 = P Y = 2 X = 0 =
P X = 0 , Y = 0 P X = 0 P X = 0 , Y = 1 P X = 0 P X = 0 , Y = 2 P X = 0
Y P
1 1/2
2 1/9 +α
3 1/18 +β
若X 与 Y 相互独立, 则有 1 = P X = 1, Y = 2 = P X= 1 9 1 1 = ( + ) 3 9 1 = P X = 1, Y= 3 = P X =1 18 1 1 = ( + ) 3 18
Y P = 2
dt
=
同理
x R
fY ( y ) =
( y 2 )2 exp , 2 2 2 2 2 1
y R
若 = 0 , 则对于任意实数 x 与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 因此 X 与 Y 是相互独立的 . 反之, 若 X 与Y 相互独立, 则对于任意实数 x与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 若取 x = 1 , y = 2 , 则有
1 2
2
2 2 ( x ) ( x ) 2 2 1 1 + 2 2 1 1
y 2 ( x 1 ) x 1 1 = 2 2 1 2 1 2(1 ) 2
2
所以( X , Y )关于X的边缘密度为

3.4 二维随机变量的独立性

3.4 二维随机变量的独立性

对离散性和连续性随机变量,也可利用其分布律 与概率密度来判定独立性.
(1) 若(X,Y)是离散型随机变量,则 X与Y相互独立的充要条件是:对(X,Y)的所有可能
取值 ( xi , yj ) ,有
P{ X xi ,Y y j } P{ X xi } P{Y y j }
(2) 若(X,Y)是连续型随机变量,则 X与Y相互独立的充要条件是:
3.4 二维随机变量的独立性
回顾:事件A与B独立性 P(AB)=P(A)P(B)
定义3.4.1 设二维随机变量(X,Y),若对任意的x, y 有
P{X x,Y y} P{X x} P{Y y},

F ( x, y) FX ( x) FY ( y),
则称随机变量X与Y是相互独立的.
解一
P{|X-Y|≤5}= P{-5≤X-Y≤5}
1 45 x5
[
dy]dx
15 x5 1800
1 6
1 45 60
P{X<Y}= [
dy]dx
15 x 1800
1 2
解二 P{|X-Y|≤5}
1

dxdy
|XY|5 1800
被积函数为常数, 1
直接求面积

作业 习题册: 3.3节:P24: 3; 3.4节:P25: 2,3,6
,15
30

x

45,
fY ( y)


1 ,0 60

y

60
0, 其它
0, 其它
由于X与Y相互独立,故
f ( x, y) 18100,15 x 45, 0 y 60, 0, 其它

随机变量的独立性

随机变量的独立性

在区域 G 中 f x, y fX x fY y
故 X ,Y不相互独立.
例5、
V U
0
1
0 1/3 1/3 2/3
1 0 1/3
1/3
1/3 2/3
U、V不相互独立。
例4 .设(X,Y)服从N(μ1,σ12;μ2,σ22;ρ ),
求边缘密度。
f (x, y)
1
exp{ 1 (( x 1 )2 2 x 1 y 2 ( y 2 )2 )}
有 P{X = xi,Y= yj}= P{X= xi}·P{Y= yi}
(X,Y)的联合分布律可用下列形式的联合分布表表示:
Y X
y1
x1
p11
x2
p21


y2 … yj
p12 … p 1j
p22 … p 2j


yj+1 … p 1j+1 … p 2j+1 …

xi
pi1
pi2 … pij
pij+1 …
例题1 (167 NO1)
设随机变量
X i~
1 1/4
0 1/2
1
1/4
且满足P{X1 X 2 0} 1, 则P{X1=X2 }=(

i 1, 2
(A)0;(B)1/4 (C) 1/2 (D) 1
例题 2 (P167 2)设两个随机变量X,Y 独立同分布, P{X=-1}=P{Y=-1)}=1/2 , P(X=1)=P(Y=1)=1/2,则下列各式中成立的是( )
依次类推可得
Y X
1
2
3
1 1/6 1/9 1/18
2 2/6 2/9 2/18

3.2条件分布与随机变量的独立性(课件)

3.2条件分布与随机变量的独立性(课件)
F ( x, y ) FX ( x )
P Y y 且 X x F y X x P Y y X x P X x
F ( x, y ) FX ( x ) F y X x FY ( y)F x Y y


独立性: 事件A与 B 独立
2 x, 0 x 1 f X ( x) 其它 0,

1
x
y x f ( x, y ) f 当 x 0 或 x 1 时, Y X y x 不存在. f X ( x)
1, f ( x, y) 0,
0 x 1, x y x yx
其它

求条件密度函数.
0dy 0, x 0 解 2 x, 0 x 1 2 x , 0 x 1 f X ( x ) f ( x , y )d y 0, 其它 0dy 0, x 1 0 x 1 时, y yx f X ( x) f ( x , y )d y


0dy 1 dy 0dy 2x x x
x
x

f ( x, y ) fY X y x f X ( x)
x
x 1
x x
y x
例 设X和Y的联合密度函数为 0 x 1, x y x yx 1, f ( x, y) y求条件密度函数. 0, 其它 yx 解
X Y
例 设随机变量 X 与 Y 独立, 下表列出二维随机向量 ( X , Y ) 的联合分布律 及边缘分布律 的部分数值,
将其余数值 填入空白处.
X
Y
y1
1 24 1 8 1 6

3-3,4条件分布及变量的独立性

3-3,4条件分布及变量的独立性

O

8

12 x
因此负责人和他的秘书到达办公室的时间相差
不超过5分钟的概率为 1 . 48
二、二维随机变量的推广
1.分布函数
n 维随机变量 ( X1, X2 ,, Xn ) 的分布函数
F ( x1, x2 ,, xn ) P{ X1 x1, X2 x2 ,, Xn xn }, 其中 x1, x2 ,, xn 为任意实数.
Y 的条件概率密度为
fY
X
(
y
x)
1
1
x
,
0,
0 x y 1, 其它.
因此 X 和 Y 的联合概率密度为
f ( x, y) fY X ( y x) fX ( x)
1
1
x
,
0,
0 x y 1, 其它.
故得 Y 的边缘概率密度
fY ( y)
f (x, y)d x
y1 0 1
d x
x
ln(1
y),0
y
1,
0,
其它.
三、小结
1. 设 ( X ,Y ) 是二维离散型随机变量, pij ( i, j 1,2,) 为其联合分布律,在给定Y y j 条件下随机变量 X 的条件分布律为
P{ X
xi Y
yj}
P{X xi ,Y P{Y y j }
yj}
pij , p• j
一、离散型随机变量的条件分布
问题
考 虑 一 大 群 人, 从 其 中 随 机 挑 选 一 个 人, 分 别 用 X 和 Y 记此人的体重和身高,则X 和 Y 都是随 机 变 量, 他 们 都 有 自 己 的 分 布.
现在如果限制 Y 为1.7m , 求在这个 限制下求 X 的分布.

随机变量的独立性和条件概率分布

随机变量的独立性和条件概率分布

随机变量的独立性和条件概率分布是概率论中的重要概念,在很多领域都有广泛的应用。

独立性的概念是指两个或多个事件之间的关系,而条件概率分布则是指随机变量在给定一些条件下的概率分布。

首先来看独立性。

在数学上,独立性通常指的是两个随机变量之间的关系。

如果两个随机变量X和Y是独立的,那么它们可以分别考虑,而且它们之间的任何影响都不会相互影响。

具体来说,如果两个随机变量X和Y是独立的,那么它们的联合概率分布可以拆分成它们各自的概率分布的乘积。

即,P(X=x, Y=y) = P(X=x) * P(Y=y)。

举个例子,假设我们有两个骰子,我们把它们连续掷两次。

我们可以定义随机变量X为第一次掷出的点数,随机变量Y为第二次掷出的点数。

如果我们假设这两个骰子是六面的,并且它们是公平的,那么每个点数出现的概率都是1/6。

因此,我们可以计算出X和Y的概率分布,分别为P(X=1)=P(X=2)=P(X=3)=P(X=4)=P(X=5)=P(X=6)=1/6和P(Y=1)=P(Y=2)=P(Y=3)=P(Y=4)=P(Y=5)=P(Y=6)=1/6。

现在,假设我们想知道掷出的两个点数是相等的这个事件的概率。

我们可以用独立性来计算。

因为X和Y是独立的,所以P(X=x, Y=y) =P(X=x) * P(Y=y),因此,P(X=Y) = ΣP(X=x, Y=x) = ΣP(X=x) *P(Y=x) = 1/6 * 1/6 + 1/6 * 1/6 +...+1/6 * 1/6 = 1/6。

接下来看条件概率分布。

条件概率分布是指,在给定一些条件下,随机变量的概率分布。

具体来说,如果我们知道了一些关于随机变量的信息,那么我们可以通过条件概率分布来计算在这些信息下随机变量的取值的概率。

条件概率分布通常用P(X|Y)表示,表示给定Y的条件下,X的概率分布。

它可以通过原始的概率分布计算得到。

具体来说,如果我们知道了Y的取值,那么我们可以将联合概率分布进行归一化,得到在Y取值的条件下,X取值的概率分布。

《概率学》3.4二维随机变量的条件分布

《概率学》3.4二维随机变量的条件分布

第4节 多维随机变量的条件分布
第三章 多维随机变量及其分布
例2 已知(X,Y )服从圆域 x2 + y2 r2 上的均匀分布,求
fY X ( y x).
当 – r < x < r 时,
fY X ( y
x)
f (x, y) fX (x)
2
1 ,
r2 x2
0,
r2 x2 y 其他
r2 x2
f
(x,
y)
1 / 0,
x,
0 x 1,0 y x;
其他.
1 5
山东农业大学公共数学系概率统计课程组 版权所有
第4节 多维随机变量的条件分布
第三章 多维随机变量及其分布
练习对于随机向量(X,Y)已知
fY
X (y
x)
2y
1
x
2
,
0,
x y 1
4x(1 x2 ),
fX (x)
其他
0,
求Y在X=0和X在Y=1条件下的条件概率分布.
X
Y
1
2
3 P(X=xi)
0
0.1
0.2
0.3 0.6
1
0.1
0.2
0.1 0.4
解 再计算 (X, Y)关于Y的边缘概率分布
由公式
P{Y xi
X
yj}
pi j p j
i 1, 2,
得在Y=1条件下X的条件概率分布为:
X|Y=1 0
1
pi| j
1
2
求P{X+Y≥1},
P{Y<0.5},
P Y
2 3
X
1 2
0 x 1 其他

概率与数理统计3.4 相互独立的随机变量

概率与数理统计3.4 相互独立的随机变量

26
12
23
1
则有 P{X 0,Y 1} 1 6 P{X 0}P{Y 1},
P{X 0,Y 2} 1 6 P{X 0}P{Y 2},
P{X 1,Y 1} 2 6 P{X 1}P{Y 1},
P{X 1,Y 2} 2 6 P{X 1}P{Y 2},
xe y
d
y,
xex , x 0,
0, x 0.
x0 x 0.

fY ( y)
f (x, y)d x



y 0
xe y d x,
y0
0,
y 0.
12 y2e y , y 0,
0,
y 0.
由于在 0 x y 上, f ( x, y) f X ( x) fY ( y), 故 X 与Y 不独立.
第四节 相互独立的随机变量
一、随机变量的相互独立性 二、二维随机变量的推广 三、小结
一、相互独立的随机变量
1.定义
设F ( x, y)及FX ( x), FY ( y)分别是二维随机变 量( X ,Y )的分布函数及边缘分布函数. 若对于所有
x, y有
P{X x,Y y} P{X x}P{Y y},
(2) 设连续型随机变量( X ,Y )的联合概率密度为 f ( x, y),边缘概率密度分别为f X ( x), fY ( y),则有
X 和 Y 相互独立 f ( x, y) fX ( x) fY ( y).
(3)X 和 Y 相互独立, 则 f ( X ) 和 g(Y )也相互独立.
例1 对于随机变量 X和Y,由
exp

3.4二维随机变量的独立性

3.4二维随机变量的独立性

f ( x , y ) f X ( x ) fY ( y )
则称X与Y相互独立。
证明:若 ( X ,Y ) ~ N ( μ1 , μ2 , σ12 , σ 22 , ρ) 则
X与Y相互独立
0
f ( x, y ) f X ( x ) fY ( y )
2 y μ2 x μ1 y μ2 2 ρ σ2 σ1 σ2
将其余数值 填入空白处.
X
Y
y1
1 24 1 8 1 6
y2
1 8 3 8 1 2
y3
1 12 1 4 1 3
P X xi pi
1 4 3 4 1
x1 x2
P Y y j p j


二、二维连续型随机变量的独立性 定义3.4.2 设(X,Y)为二维连续型随机变量, 如果对任意的实数 x 和 y 都有
X
Y
y1
p11 p21 pi 1
y2 ...
p12 ... p22 ... pi 2 ...
yj
p1 j p2 j pij
x1 x2 xi Y
... X ... p1
... ...
p 2 pi
p1
p2 pபைடு நூலகம் j
例 设随机变量 X 与 Y 独立, 下表列出二维随机变量 ( X , Y ) 的联合分布律 及边缘分布律 的部分数值,
证明:X与Y相互独立
f ( x, y ) f X ( x ) fY ( y )
1 2πσ1σ 2 1 ρ
2
e
1 2(1 ρ2 )


x μ1 σ1
2

1 2πσ1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1y2,
0,
于是,当-1 ≤ y ≤ 1时,
1 y 1, 其它.
fX Y (x|
y)
f (x, y) fY (y)
2019/8/23
1



2
π
π, 1 y2
1 y2 x
1 y2 ,

0,
其它.
11
目录
上页
下页
返回

fXY(x|
y) 2
1 1y2
e1 2[(x 121)2(y 2 22)2]
2
目录
上页
下页
返回

f(x,y)
1
e 2 (1 1 2) (x 1 2 1)2 2(x 1 1)(y 22) (y 2 2 2)2
2 π 1 2 12
y y),

0,
0 y 1 其它.
2019/8/23
13
目录
上页
下页
返回
同理

fX (x) f (x, y)dy


x 6dy 6(x x2),
x2

0,
0 x 1 其它.
于是,当0<y<1时的条件密度函数为:
fX/Y(x/y)ff(Yx(,yy))
当y<-1或y>1时,由于f(x,y)=0.故

fY(y)f(x,y)dx0

当-1 ≤ y ≤ 1时, fY(y) f(x,y)dx
1 y2 1 dx 2 1 y 2
π 1 y2
π
2019/8/23
10
目录
上页
下页
返回
因此
2 fY (y) π
且对任意实数 y ,极限
l i m 0 P Y y |x X x l i m 0 P x P x X X x x , Y y
存在,则称此极限为条件{X=x}的条件下Y的条件分布函
,
1y2x 1y2,

0,
其 它 .
2019/8/23
12
目录
上页
下页
返回
例:已知(X, Y)的概率密度为
6, x2yx,0x1,
f(x,y) 0,
其 它 .
求(X,Y)的条件密度函数.
解: fY (y) f (x, y)dx


y
y
6dx 6(
相互独立.
2019/8/23
返回主目录
1
目录
上页
下页
返回
3.4 随机变量的独立性与条件分布 连续型随机变量的独立性
设 X,Y 是二维随机变量,其联合分布函数为 F x, y ,又随机变量X 的分布函数为FX x, 随机变量Y的分布函数为FY y.如果对于任意
的x, y,有
F x, y FX x FY y
则称X,Y 是相互独立的随机变量.
2019/8/23
返回主目录
2
目录
上页
下页
返回
连续型随机变量的独立性
设 X , Y 是 二 维 连 续 型 随 机 变 量 , 其 联 合 密 度 函 数 为 fx , y , 又 随 机 变 量 X 的 边 缘 密 度 函 数 为 f X x , 随机变量Y的边
同理条件{Y=y}的条件下X的条件概率密度为
2019/8/23
f (x, y) fXY(x| y) fY(y)
9
目录
上页
下页
返回
例:已知(X, Y)的概率密度为
f
(x,
y)

1 π
,
0,
求 fX Y (x | y) .
x2 y2 1, 其它.
解:由

fY(y) f(x,y)d.x 可得:
故当ρ=0时,fX(x)fY(y)f(x,y)即X 和Y相互独立。
反之,当X 和Y相互独立时,对所有的x和y,有
fX(x)fY(y)f(x,y)
特别地,令 x1,y2
得到
1
1
2π12 12 2π12
从而ρ=0。
2019/8/23
7
目录
上页
下页
返回
连续型随机变量的条件分布
定义:对任意给定的正数 ,若 Px X x 0 ,
xe(xy), x0,y0,
f(x,y)
0,
其 它 .
问X 和Y 是否独立?
解: 当x≤0时, 由于f(x,y)=0.故 fX (x) 0
当x>0时,
fX(x)

f(x,y)dy

因此
2019/8/23
xe(xy)dy xe x 0
xex, x0,
X与Y相互独立的充要条件是ρ=0.
证明:
XN (1 ,1 2 ), YN (2 , 2 2 )

fX(x)
1
(x1)2
e 212 ,x
2π1
fY(y)
1 e(y2 2 2 2)2,y 2π 2

2019/8/23
1
fX(x)fY(y)2π16
3.4 随机变量的独立性与条件分布
独立性的引入
由 于 F x , y P X x , Y y
以 F X x P X 及 x , F Y y P Y y
可知,随机X变与量 Y相互独立,实际: 上是 对于任意x, 的y,随机事件
Xx 与 Yy
fX(x)
0,
x 0.
4
目录
上页
下页
返回
同理
ey, y 0,
fY
(y)


0,
y 0.
从而 fX(x)fY(y)f(x,y)即X 和Y相互独立。
2019/8/23
5
目录
上页
下页
返回
例:如果二维变量 (X ,Y ) N (1 ,2 ,1 2 ,2 2 ,),试证:
数。记为 FY|X ( y | x)
由于 FY|X ( y | x) l im 0 P Y y |x X x
PxXx,Yy
lim
0
PxXx
2019/8/23
8
目录
上页
下页
返回
lim 0
y
x x
f (x, y)dxdy
x

x fX (x)dx
y
f (x, y)dy

fX (x)
y f (x, y) dy
f X (x)

f (x, y) fX (x)
为条件{X=x}的条件下Y的条件概率密度。记为:
fY|X (y|
x)
f (x, y) fX (x)
缘密度函fY数 y, 为 如果对于几乎所有x, 的 y 有,
fx , y fX x fY y
则称X,Y 是相互独立的随机变. 量
特别地f, x, y上 的式 所对 有 x, 连 y必 续
须成立.
2019/8/23
3
返回主目录
目录
上页
下页
返回
例:已知随机变量 X 和Y 的联合概率密度为

1, yy 0,
yx y, 其它.
2019/8/23
14
目录
上页
下页
返回
内容小结
2019/8/
相关文档
最新文档