复变函数论 第四章 复级数

合集下载

复变函数第四章解析函数的幂级数表示法知识点总结

复变函数第四章解析函数的幂级数表示法知识点总结

第四章解析函数的幂级数表示法§1.复级数的基本性质1.(定理)复级数收敛的充要条件:实部虚部分别收敛。

2.(定理)复级数收敛的充要条件(用定义):对任给的>0,存在正整数N(),当n>N且p为任何正整数时,注1:收敛级数通项必趋近于零;注2:收敛级数各项必有界;注3:级数省略有限个项不改变敛散性。

3.(定理)收敛4.(定理)(1)绝对收敛的复级数可任意重排,不改变收敛性,不改变和;(2)两个绝对收敛的复级数可按对角线方法得出乘积(柯西积)级数,也绝对收敛于。

5.一致收敛的定义:对任给的>0以及给定的,存在正整数N=N(,z),当n>N 时,有式中6.不一致收敛的定义7.(定理柯西一致收敛准则):级数收敛的充要条件是:任给>0,存在正整数N=N(),使当n>N时,对一切,均有8.(定理’不一致收敛准则):9.(优级数准则):如果有正数列,使对一切,有|)|≤,且正项级数收敛复级数在集E上绝对收敛且一致收敛。

10.优级数定义:称为的优级数。

11.(定理)级数各项在点集E上连续,且一致收敛于f(z),则和函数也在E上连续。

12.(定理积分求和符号可交换)级数的各项在曲线C上连续,且一致收敛于f(z),则沿C可逐项积分13.内闭一致收敛:有界闭集上一致收敛14.(定理)在圆K:|z-a|<R内闭一致收敛的充要条件:对任意正整数,只要<R,级数在闭圆上一致收敛。

15.(定理魏尔斯特拉斯定理):设(1)函数在区域D内解析;(2)在D内内闭一致收敛于函数f(z):则:(1)f(z)在D内解析;(2)(3)在D内内闭一致收敛于§2.幂级数1.(定理阿贝尔定理):幂级数在某点(≠a)收敛它必在圆K:|z-a|<|-a|(以a为圆心,圆周通过的圆)内绝对收敛且内闭一致收敛。

2.(推论):幂级数在某点(≠a)发散在以a为圆心,圆周通过的圆周外发散。

第四章复变函数级数

第四章复变函数级数

第四章复变函数级数第四章复变函数级数(42)⼀、内容摘要1.复数列的极限:设有复数列{}n z ,若存在复数z ,对于任意的0>ε,总有数N >0,使数列序数N n >时总有ε<-z z n ,则称复数z 为数列{}n z 的极限,或者说数列{}n z 收敛于z ,记作:lim n n z z →∞= 由于n n n iv u z +=, iv u z +=, 当lim n n z z →∞=式成⽴时, 等价于lim ,n n u u →∞=lim n n v v→∞=1nn z ∞=∑收敛的充要条件是1nn u ∞=∑和1nn v ∞=∑都收敛。

2.复数级数(定义):设有复数项级数 +++=∑∞=k k n z z z z 211若其前n 项和n n z z z S ++=21构成的数列{}n S 收敛,则称级数1n k z ∞=∑收敛,⽽数列{}n S 的极限S 叫做级数1n k z ∞=∑的和.否则称级数1n k z ∞=∑发散。

由于∑∑==+=n k kn v i uS 11,所以11lim lim limnk n k n n n k n k u u S S u iv v v →∞=→∞→∞=?=??==+=??∑∑;绝对收敛:若⼀个级数的模级数∑∞=1k k z 收敛,则称级数∑∞=1k k z 是绝对收敛;若收敛级数的模级数不收敛,则称条件收敛。

3.设复变函数)(z f k ( ,2,1,0=k )区域G 内都有定义, 则定义复变函数项级数:∑∞=++++=010)()()()(k k k z f z f z f z f ,其中前n 项和:∑==nk k n z f S 0)(。

若对于G 内某点0z ,极限lim n n s S →∞=存在,则称复变函数项级数在点0z 收敛,s 叫做级数的和.若级数在区域G 内处处收敛,其和必是⼀个复函数:∑∞==)()(k k z f z s .则()s z )称为级数0()k k f z ∞当n N >时,1|()|n pk k n f z ε+=+<∑(p 为任意正整数)则称级数0()n n f z ∞=∑在B 内(或曲线L 上)⼀致收敛。

高等数学课件-复变函数与积分变换 第四章 级数

高等数学课件-复变函数与积分变换 第四章 级数

称为级数的部分和。
在收敛域D内
lim
n
Sn
(
z)
S
(
z
),
S ( z) 为级数的和函数。
二、幂级数
若 fn (z) Cn zn 或 fn (z) Cn (z z0 )n 时,
幂级数为
Cn zn 或
Cn (z z0 )n
n0
n0
定理4.7
Ab el 定理如果级数
Cn zn
n0
z z 在
z0
sin
z
k 0
(1)k z2k1
2k 1!
R
• 例5 将 cos z 在 z 0处展开成幂级数。
sin z 解: 将
两边对z求导
cos z
(1)k (2k 1)z2k
k 0
2k 1!
(1)k z2k
k 0
2k !
例6 arctan z 在 z 0 处展开成幂级数。
解:
arctan
z
b
二、复数项级数
定义4.2
z 设
为一复数列,表达式
n
zn z1 z2 zn
n1 为复数项级数,其前n项之和
Sn z1 z2 zn
为级数的部分和。 称级数收敛,

lim
n
Sn
S,
S称为级数的和,
记为
S zn

{Sn} 不收敛,则称级数是发散的
n1
n
n
n
Sn k an i bn 有
收敛,那么对满足
0
| z || z0 | 的z,
级数必绝对收敛。
如果在
z z 级数发散,那么对满足 0

《复变函数论》第四章

《复变函数论》第四章

第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。

按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。

设0z 是一个复常数。

如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。

如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。

令0z a ib =+,其中a 和b 是实数。

由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。

注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。

注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。

定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。

定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。

复变函数PPT第四章

复变函数PPT第四章
——代入法
1 例2 求 f ( z ) 2 在 z 0 点邻域内的 Taylor级数. (1 z )
解:z1 1 是 f ( z ) 的惟一奇点,且 z1 0 1, 故收敛半径 R 1.
利用逐项积分得
(n 1)z dz
n 0 n 0 n 0
z

z
0
( n 1) z dz z
n n 0

n 1
z . 1 z
所以
1 z n (n 1)z 1 z (1 z )2 n 0

z 1 .
n0

的收敛范围与和函数.
解 级数的部分和为
sn 1 z z 2 z n1 1 lim sn z 1 n 1 z
z 1
lim z 0
n n
1 zn , ( z 1) 1 z z n 收敛, 级数
n 0
级数
z n 发散.

所以收敛半径 R 1,
即原级数在圆 z 1内收敛, 在圆外发散, zn 1 在圆周 z 1上,级数 3 3 n 1 n n 1 n 收敛的 p 级数 ( p 3 1). 所以原级数在收敛圆上是处处收敛的.
(cos in) z n (2)
n 0

1 n 解 因为 cn cos in (e e n ), 所以收敛半径为 2 en en cn 1 1 e 2 n lim n1 R lim . n 1 lim 2 n 1 n e n c n e e e e n1
(7)(1 z ) 1 z

( 1)

复变函数论第4章

复变函数论第4章

n1
n
当z 2时,
原级数成为
n1
1, n
调和级数,发散.
说明:在收敛圆周上既有级数的收敛点, 也有 级数的发散点.
首页
上页
返回
下页
结束


例3 求幂级数 (cosin)zn的收敛半径:
n0

因为
cn
cos in

cosh n
1 (en 2
en ),
所以
lim cn1 n cn
n1 n
解 (1) 因为 lim cn1 lim ( n )3 1,
n cn
n n 1

1
lim n
n
cn
lim n n
n3
lim 1 1. n n n3
首页
上页
返回
下页
结束

所以收敛半径 R 1, 即原级数在圆 z 1内收敛, 在圆外发散,


补充求:等比级数
ar n1 的敛散性。
n1
解:等比级数的部分和为:
Sn

n
ar k 1
k 1

a ar n1 r 1 r

a(1 r n ) 1 r
已利用等比数列求和公式:
Sn

a1 anq 1 q
当公比|r|<1时,lim n
Sn

lim
n
a(1 rn ) 1 r
n0
n0



f (z) g(z) anzn bnzn (an bn )zn ,
n0
n0
n0
R min( r1, r2 )

复变函数第4章

复变函数第4章

《复变函数》(第四版) 第4章
第19页
[证]

cn
z0n收
敛,

lim
n
cn
z0n
0,
n0
则存在M使对所有的n有 | cnz0n | M
如果
|
z
||
z0
|,

|z| | z0 |
q
1,

n
|
cnzn
||
cn z0n
|
z z0
Mq n
2024/4/4
《复变函数》(第四版) 第4章
第20页
n
|
i )n 2
5 (cos
2
i sin )n
2 5
n
cos(n
)
i
sin(
n
)
|n |
n1
n1
2 n
5
收敛.
(公比 |q | < 1)
∴ 原级数绝对收敛.
2024/4/4
《复变函数》(第四版) 第4章
第12页
解: 3)
|n |
(1 i)n ( 2 )n cos in
( 2)n ( 2 )n cos in
1 2
| z |2
2024/4/4
《复变函数》(第四版) 第4章
第35页
当 1 | z |2 1, 即| z | 2时, 原级数绝对收敛. 2
当 1 | z |2 1, 即| z | 2时, 原级数发散. 2
故 原级数收敛半径 R 2.
注: 求形如 n z2n 或 n z2n1 (n 0 )
1 chn
en
2 en
2 en

第4章-复变函数项级数04-洛朗级数

第4章-复变函数项级数04-洛朗级数
积分求系数一般情况下比较复杂. 2. 间接展开法
利用洛朗级数展开式的唯一性及双边幂级数在收敛圆环 域内可以逐项求导和逐项积分的性质。
f (z) cn (z z0 )n R2 z z0 R1 n
解:1)直接展开法 解析,故积分为0;
1
1
z
n0
zn,
z 1
1
1
z
n0
zn,
的收敛区域为
可以证明:双边幂级数在收敛环域内的和函数是解析函数, 可以逐项求导、逐项积分
Re
当 R e 时,
Re
2 解析函数的洛朗展开定理
f (z) cn (z z0 )n R2 z z0 R1 n
f (z) cn (z z0 )n R2 z z0 R1 n
f (z) cn (z z0 )n R2 z z0 R1 n
说明:
(1)洛朗级数是双边幂级数,泰勒级数只有正幂项; (2)洛朗级数是泰勒级数的推广,泰勒级数是洛朗级数 的特殊情况; (3)系数公式不同,洛朗系数不能利用高阶导数公式.
3 求解析函数洛朗展开式的方法
R2 z z0 R1
第四章 复变函数项级数
第四讲 洛朗级数
主要内容
1. 双边幂级数 2. 解析函数的洛朗展开定理 3. 求解析函数洛朗展开式的方法
1 双边幂级数
1
1
z
1
z
z2
z3
zn
,
n0
zn ,
z 1
双边幂级数
既含有正幂项又含有负幂项的级数
无首项, 不能用部分和来定义收敛和发散.
结论: 双边幂级数 圆环域
z 1
1
1全是负幂项,有无穷多项)
1
1
z

复变函数(余家荣)4

复变函数(余家荣)4

n 1
n1
命题 设 zn an ibn ,则级数 zn 绝对收敛当且仅当实级数 an和 bn都绝
n 1
n1
n1
对收敛.
命题 设级数 zn 和 zn 绝对收敛,且和分别为 及 ,则级数
n 1
n 1
绝对收敛于 .
2.复级数与复函数序列
定义 设 fn (z)(n 1,2, ) 定义在集合E上,则
使得lim n
zn
z0 , 则在 |
z
z0
|
R内
f
( z)
0.
定理 设
(1) f (z) 在区域 D内解析,
(2) 存在 f (z) 的零点构成的序列{zn},{zn}收敛于z0 D.
则在 D内 f (z) 0.
• • • • • • z


z0•
D
推论 如果 f (z) 和 g(z) 在区域 D内解析, 集合{z : z D, f (z) g(z)} 在区域 D内有一个极限点,则在 D内 f (z) g(z).
数 fn (z)在 c 上一致收敛于(z) 或 f (z), 则 n1

问题: 设 fn (z)(n 1,2, )在区域 D上解析, 函数列{ fn (z)}或函数项级
数 fn (z)在 D 上一致收敛于(z)或 f (z), 那么(z)或 f (z)在 D上解析吗? n1
定理 设 fn (z) (n 1,2, )在区域 D上解析. 如果函数列{ fn (z)}或函数
例 1. 由于
所以z 0是 sin z 的可去奇点. z
由于
所以z
0是
sin z2
z
的1阶极点.
2. 由于
1

[复变函数与积分变换][课件][第4章][级数]

[复变函数与积分变换][课件][第4章][级数]



∑f
n =1
+∞
n
( z ) = f1 ( z ) + f 2 ( z ) + f 3 ( z ) +
+ f n ( z) +
为复
= f1 ( z ) + f 2 ( z ) +
+ f n ( z) = ∑ f k ( z) .
k =1
n
sn ( z0 ) 若 z 0 ∈ D ,极限 nlim → +∞
敛点;
= s ( z0 )
存在,称
∑f
n =1
+∞
n
( z ) 在 z0 处收敛,和
∑f
n =1
+∞
n
( z0 ) = s ( z0 ) , z0 为收
若 z 0 ∈ D , {sn ( z 0 )} 发散,称
∑f
n =1
+∞
n
( z ) 在 z 0 处发散, z 0 为发散点.
D1 收敛域
D2 发散域
∑αn = s
n =1
+∞
Δ
收敛; 若 {s n }
∑α
n =1
+∞
n
收敛

∑a
n =1
+∞
n

∑b
n =1
+∞
n
均收敛.
⎛ n ⎞ ⎛ n ⎞ 证: s n = ∑ α k = ⎜ ∑ ak ⎟ + i ⎜ ∑ bk ⎟ . k =1 ⎝ k =1 ⎠ ⎝ k =1 ⎠
此定理将复级数的审敛问题转化为实级数的审敛问题. 级数收敛之必要条件:

复变函数_级数

复变函数_级数

三.复变函数项级数概念
1.定义:设
{
f
n
(
z)}(
n
1,2,...)为D内的复变函数序列,则称
fn (z) f1(z) f2 (z ... fn (z) ......
n1
为D内复变函数项级数.
2.前n项和: Sn (z) f1(z) f2 (z) ... fn (z)
3.级敛数. S收(z0敛)就:若是ln其im和Sn,(即z0 )
若在点 发散,则圆外任一点z处也发散. 3.注:级数在圆周上须另行判断
三.收敛半径:
1.定义:
若存在一个正数R,使得幂级数 Cn (z1 z0)n
n1
在|Z-Z0|<R内处处收敛,而|Z-Z0|>R时处处发散,
则称 Cn (z1 z0 )n 的收敛半径为R. n0
注:幂级数在|Z-Z0|=R处,可能收敛,也可能发散.
(1)复数项无穷级数:设 {zn}(n 1,2,...) 为一复数序列,
表达式
zn z1 z2 ... zn ...
k 1
(2)级数收敛(发散):
部分和序列 sn z1 z2 ... zn , (n 1,2,3,...) 有极限
lim
n
sn
s
则称级数是收敛的,S为级数的和,否则
2.复数序列极限定义:
设{zn}(n 1,2,...) 为一复数序列,其中zn xn iyn又
设 z0 x0 iy0 为一确定的复数. 0,N ,使当
n>N时,总有| zn z0 | 成立,则称{zn}收敛于复数 z0 ,
或称{zn}以 z0 为极限,记作
lim
n
zn
z0 , 或zn

复变函数第四版(第四章)

复变函数第四版(第四章)

1 n 1) a n 1 e ; n
i

2) a n n cos in
}
[解] 1) 因
1 n 1 a n 1 e 1 cos i sin n n n n 1 1 an 1 cos , bn 1 sin . n n n n lim an 1, lim bn 0
第4章
级数
§4.1 复数项级数 §4.2 幂级数 §4.3 泰勒级数 §4.4 洛朗级数
}
n
n
n
任意给定e>0, 相应地能找到一个正数N(e), 使|an-
a|<e在n>N时成立 则a称为复数列{an}当n时的 §4.1 ,复数项级数
极限, 记作
lim a n a
n
此时也称复数列{an}收敛于a.
(-1) n n n 1

(8i ) 8 , 由正项级数的比值审敛法知 n! n!
故原级数收敛 . 但因 n n
}
§4.2 幂级数
1. 幂级数的概念 设{fn(z)}(n=1,2,...)为一复变函数 序列,其中各项在区域D内有定义.表达式
f
n 1

n
( z ) f1 ( z ) f 2 ( z ) f n ( z ) (4.2.1)
z
n
在圆 |
1

内收敛.
}
再证当
| z |
| z |
1

时, 级数

n0
cn z n
发散. 假设在
n0
圆 收敛. 在圆外再取一点 z1, 使|z1|<|z0|, 那么根据阿

复变函数论 第四章 复级数

复变函数论 第四章 复级数

第四章 复级数§1.级数的基本性质教学目的与要求: 了解复数项级数收敛、发散及绝对收敛一致收敛等概念,掌握解析函数项级数的性质.重点: 解析函数项级数.难点:一致收敛的函数项级数;解析函数项级数. 课时:2学时1.复数项级数定义4.1 复数项级数就是121nn n zz z z ∞==++⋅⋅⋅++⋅⋅⋅∑ (4.1)其中n z (1,2,)n =为复数定义4.2 对于复数项级数(4.1),设 n σ=121nnn k zz z z ==++⋅⋅⋅+∑ (4.2)若lim n n σ→∞存在,则称级数(4.1)收敛,否则为发散.据此定义,我们立即推出:若级数(4.1)收敛,则1lim lim()0n n n n n z σσ-→∞→∞=-= (4.3)其次,由复数的性质易于推得 定理4.1 设111n nn n n n z ai b ∞∞∞====+∑∑∑ (4.4)其中,n n a b (1,2,)n =均为实数,则级数(4.3)收敛的充要条件为基数1n n a ∞=∑与1n n b ∞=∑均收敛,复数项级数具有与实数项级数完全相同的性质,不再一一给出.定理4.2(柯西收敛准则)级数(4.1)收敛的充要条件是0,N ε∀>∃,使n N >及P N ∀∈,均有11Pn kn n P k zz z ε+++==++<∑定义4.3 若级数1nn z∞=∑收敛,则称级数1nn z∞=∑为绝对收敛.由关系式1kk a∞=∑及1111kk k k k k k k k bz a b ∞∞∞∞∞=====≤=≤+∑∑∑∑及定理4.1即可推得.定理4.3 级数(4.1)绝对收敛的充要条件为:级数1kk a+∞=∑及1kk b+∞=∑绝对收敛.再由定理4.2可知:绝对收敛级数必为.收敛级数. 例1.对于级数1nn a+∞=∑当1a <时,由于111121n knn k a aa aσ+∞=-==+++=-∑,而当1a <时,1lim 0n n a+→∞=,于是1lim 1n n aσ→∞=- 因此级数1nn a ∞=∑(1)a <收敛且有111n n a a∞==-∑, 显然,当1a <时,级数1nn a∞=∑亦为绝对收敛的级数.2.复函数项级数定义4.4设函数()(1,2,)n f z n =⋅⋅⋅在复平面点集E 上有定义,则称级数11()()()nn n fz f z f z ∞==+⋅⋅⋅++⋅⋅⋅∑ (4.5)为定义在E 上的复函数项级数.定义4.5 设函数()f z 在E 上有定义,如果z E ∀∈,级数(4.5)均收敛于()f z ,则称级数(4.5)收敛于()f z ,或者说级数(4.5)和函数()f z 记作1()()nn fz f z ∞==∑ (4.6)定义4.6 如果0,()N N εε∀>∃=,使得当n N >时,对任一z E ∈,均有1()()nkk fz f z ε=-<∑则称级数(4.5)在E 一致收敛于()f z .与定理4.2类似地我们有定理4.4 级数(4.5)在E 上一致收敛的充要条件是:0,()N N εε∀>∃=,使当n N >时,对任一z E ∈及P N ∀∈均有1()()n n P f z f z ε++++<由此我们即得一种常用的一致收敛的判别法:定理4.5 (魏尔斯特拉斯M -判别法) 设()(1,2,)n f z n =⋅⋅⋅在点集E 上有定义12n a a a ++++为一收敛正项级数,若在E 上成立()(1,2,)n n f z a n <=⋅⋅⋅则级数(4.5)在E 上一致收敛于()f z ,则()f z 在E 上一致收敛.与实数项级数一样,不难证明以下定理:定理4.6 设()(1,2,)n f z n =⋅⋅⋅在复平面点集E 上连续,级数(4.5)在E 上一致收敛于()f z ,则()f z 在E 上连续.定理4.7 设()n f z (1,2,)n =⋅⋅⋅在简单曲线C 上连续,级数(4.5)在C 上一致收敛于()f z ,则1()()n n CCn f z dz f z dz ∞==∑⎰⎰.对于复函数项级数的逐项求导问题,我们考虑解析函数项级数,首先,引入一个新概念.定义4.7 设函数()n f z (1,2,)n =⋅⋅⋅在区域D 内解析,如果级数(4.5)在D 内任一有界闭区域上一致收敛于函数()f z ,则称级数(4.5)在D 内闭一致收敛于()f z .由此,我们有下列重要的魏尔斯特拉斯定理.定理4.8 设函数()(1,2,)n f z n =⋅⋅⋅在区域D 内解析,级数1()nn fz ∞=∑在D 内中闭一致收敛于函数()f z ,则()f z 在D 内解析,且在D 内成立()()1()()k k n n fz f z ∞==∑ (1,2,)k =⋅⋅⋅证明: 0z D ∀∈,取0r >,使得0(,)U z r D ⊂.在U 内任作一条简单闭曲线C ,根据定理4.7及柯西定理推得1()()0n CCn f z dz f z dz +∞===∑⎰⎰.因而由莫勒拉定理知()f z 在U 内解析,再由0z D ∈的任意性即得()f z 在D 内解析.其次,设U 的边界r C D ⊂,由已知条件得1()nn fz +∞=∑在r C 上一致收敛于()f z ,从而110()()k n f z z z +∞+=-∑在r C 上一致收敛于1()()k f z z z +-,根据定理4.7,我们有 10!()2()r k C k f z dz i z z π+-⎰=110()!2()r n k C n f z k dz i z z π+∞+=-∑⎰ 即 ()()001()()k k n n fz f z +∞==∑ (1,2,)k =⋅⋅⋅ 于是定理结论成立.作业:第178页 1.§2幂级数教学目的与要求: 了解幂级数收敛圆的概念,掌握简单的幂级数收敛半径的求法.掌握幂级数在收敛圆内一些基本性质及幂级数在收敛圆周上的性质.重点: 幂级数收敛半径的求法; 幂级数在收敛圆内一些基本性质. 难点:幂级数在收敛圆周上的性质. 课时:2学时 定义4.8 形如()000100()()()k n n n n n fz a z z a a z a z z +∞==-=++⋅⋅⋅+-+⋅⋅⋅∑ (4.7)的级数称为幂级数,其中z 是复变量, (1,2,)n a n =⋅⋅⋅是复常数. 特别地,当00z =时,级数(4.7)就变为010nn n n n a za a z a z +∞==++⋅⋅⋅++⋅⋅⋅∑ (4.8)幂级数在复变函数论中有着特殊重要意义,它不仅是研究解析函数的工具,而且在实际计算中应用也比较方便.我们首先研究级数(4.8)的收敛性.显然,当00z =时,级数(4.8)总是收敛的. 当00z ≠时,则有定理4.9 如果幂级数(4.8)在1(0)z ≠收敛,则对任意满足1z z <的z ,级数(4.8)绝对收敛.若级数(4.8)在2z 发散,则对任意满足2z z >的z ,级数(4.8)发散.证明:级数(4.8)在1z 收敛.∴1lim 0nn n a z →∞=从而0M ∃>,使得1nn a z M ≤ (0,1,2,)n =⋅⋅⋅其次,级数(4.8)可写成11()nn n n z a zz +∞=⋅∑,因此111n n n n n n z z a z a z M z z =≤⋅1(1)nz k z =< 由于级数nn Mk+∞=∑收敛,故级数(4.8)绝对收敛.根据上述结论用反证法即可推得定理第二部分成立,于是定理得证.由此,我们可知存在实数R ,(0)R <<+∞,使得级数(4.8)当z R <时绝对收敛,当z R >时发散.R 称为级数(4.8)的收敛半径, z R <称为收敛圆,当R =+∞时,我们说(4.8)的收敛半径是+∞,收敛圆为复平面.当0R =时,我们说(4.8)的收敛半径是0,收敛圆只有一点0z =,以下说幂级数有收敛圆均指收敛半径大于0的情况.通常,幂级数(4.8)的收敛半径可用以下公式求得:定理4.10 (柯西Cauchy -阿达玛Hadamard 公式).若以下条件之一成立.(1)1limn n na l a +→∞= (4.9)(2)n l = (4.10)则当0l <<+∞时, (4.2)的收敛半径1R l=,当R =+∞,l =+∞时, 0R =.下面我们证明幂级数的和函数在其收敛圆内解析.定理4.11 设幂级数(4.8)的收敛圆为:V z R <.则它的和函数.01()nn f z a a z a z =++⋅⋅⋅++⋅⋅⋅ (4.11)在V 内解析,且()1()!(1)!(1,2,)n n n f z n a n a z n +=+++⋅⋅⋅=⋅⋅⋅ (4.12)证明:事实上,对0r R ∀<<,则在z r =上n nn n a z a r ≤由定理4.9知级数(4.8)在z r =上绝对收敛,从而根据M -判别法知(4.8)在z r ≤上一致收敛,故(4.8)在z r <中内闭一致收敛,在z r <内, (4.2)的和函数()f z 解析且(4.12)成立,由0r R <<的任意性即知定理成立.但幂级数在其收敛圆上可能收敛,也可能发散. 例2 级数2111n z z z z=+++⋅⋅⋅++⋅⋅⋅- 的收敛半径为1 由于在收敛圆1z =上,此级数一般不趋于0,因而在1z =上级数处处发散,但其和函数却除1z =处处解析.例3 级数11(1)n n z n n ++∞=+∑的收敛半径为1在收敛圆1z =上, 11(1)(1)n z n n n n +=++而级数11(1)n n n +∞=+∑收敛,故此技术在收敛圆上也处处收敛.作业: 第178页 2 (1) (3) 3 (2)§3解析函数的泰勒Taylor 展式教学目的与要求: 了解泰勒定理; 掌握初等解析函数的展开式,并能利用它们将一些简单的解析函数展开为幂级数.重点: 泰勒定理,初等函数的泰勒展开式. 难点:泰勒定理证明. 课时:2学时一.定理4.12(泰勒Taylor 展式)设函数()f z 在圆0:U z z R -<内解析,则在U 内()00000()()()()()()1!!n n f z f z f z f z z z z z n '=+-+⋅⋅⋅+-+⋅⋅⋅ (4.13)证明: 1z U ∀∈,以1z 为心作一圆C U ⊂,且使1z C ∈,(如图4.1)U图4.1则由柯西公式111()()2C f f z d i z ξξπξ=-⎰ (4.14)而当C ξ∈时,101z z q z ξ-=<-,因此有101011()z z z z ξξ=----01100000()11()1n n n z z z z z z z ξξξ+∞+=-=⋅=-----∑ (4.15) 由于(4.15)右端级数当C ξ∈时是一致收敛的,把(4.15)代入(4.14)后逐项积分得10100()()()n n f z a a z z a z z =+-+⋅⋅⋅+-+⋅⋅⋅ (4.16)其中 ()010()1()2()!n n n C f z f a d i z n ξξπξ+==-⎰(1,2,)n =⋅⋅⋅ (4.17) 由1z 为U 内任意一点知定理成立.结合定理4.11与4.12我们就可推出:推论4.2 幂级数是它的和函数()f z 在收敛圆内的泰勒展式.即()000()(),!n n f z a f z a n == (1,2,)n =⋅⋅⋅推论4.3 函数()f z 在一点0z 解析的充要条件是: ()f z 在0z 的某一邻域内有泰勒展式(4.13).与实变数的情形相同,我们不难求得某些初等函数的泰勒展式. 二. 求泰勒展式的方法1.求Taylor 系数n C =()()!n f a n如求ze 在z=0的展开式0C =0e =1 1C ='0()1!z z e = =11!,1!n C n =,∴z e =1+z+22!z +33!z+=0!nn z n ∞=∑ ()z <∞2.利用级数的运算。

复变函数-第4章

复变函数-第4章
lim f n ( z ) = f ( z ),
n →∞ ∞ 则称函数序列{ f n ( z )}n =1 在G上逐点收敛到函数 f(z), f(z)称为 ∞
{ f n ( z )}∞=1 在G上的极限函数. 相应地, 若级数 ∑ f j ( z ) 的部分 n

和函数序列在G上逐点收敛到 f(z), 则称级数 ∑ f j ( z ) 收敛于

n =1
求导运算和无穷和运算可交换

返回泰勒级数
定理 (实函数项级数逐项求导) 设实级数 ∑ f n ( x) 的各项在 区间[a, b]上都有连续的导数,

n =1

∑f
n =1

n
( x) 在[a, b]上逐点收敛且
n =1
⎞ ∞ d f n′( x) 在[a, b]上一致收敛, 则 d ⎛ ∞ f n ( x). ⎜ ∑ f n ( x) ⎟ = ∑ dx ⎝ n =1 ⎠ n =1 dx
∑c
j =0

j
绝对收敛. 正项级数
非绝对收敛的收敛级数称为条件收敛. 由比较判别法可知, 绝对收敛
收敛
绝对收敛级数的两个重要性质:
(1) 一个绝对收敛的复级数的各项可以任意重排次序, 亦绝对收敛, 且和不变. (2) 两个绝对收敛的复级数

∑c
j =0

j
= S , ∑ c′j = S ′ 按对角线

(3i ) j 由比式判别法知 ∑ 收敛. j! j =0
注意: 若 lim j →∞
j →∞
c j +1 cj
= L = 1, 或 lim j | c j | = L = 1,

复变函数论第4章第1节50590

复变函数论第4章第1节50590
2、 NhomakorabeaE上一致收敛
在E上收敛

3、欲证 fn(z) 在E上一致收敛,需对 n1
0, 解不等式:
放掉z
| Sn(z)
f (z)|

z
Qn
,
求出N。
其中lim n
Qn

0

例如 zn在| z | r (r 1)上一致收敛。这是因为 n0
Sn(z) 1+z z2

n

0,则级数

发散。
n
n1

从而

收敛
n
n1

lim
n

n

0
例如lim 1 0,但 1发散.
n n
n1 n
例如 (1+5i )n发散。 n1 2
lim
n
|

n
|=
lim
n
(|
1+5i 2
)n
|=
lim(
n
26 )n 0 2

lim


n1
61 )n收敛,即级数 8
(5+6i)n 绝对收敛。 8n
n0

定理 4.3 复级数 αn (4.1) 收敛的一个充分条件为:
n1

级数 | n | 收敛 . (绝对收敛的级数本身也收敛)
n1


即级数 | n
|
收敛


收敛
n
n1
n1
注意 由于 n 的各项都是非负的实数, 所以可
n1
n1


an a, bn b

复变函数第四章

复变函数第四章

使级数对一 切Mzn∈收E敛,有,则|f复n(z函)|≤数M项n (级n=数1,2,…fn)(,z而)在且点正集项E上
n1
绝对收敛且一致收敛.
n1
这样的正项级数
M
称为函数项级数
n
fn
(z)
的优级数.
n 1
n1
定理4.6 设级数 fn(z)的各项在点集E上连续,并
ቤተ መጻሕፍቲ ባይዱ
且一致收敛于f(z)n,则1 和函数 f (z) fn(z)也在E
上连续.
n1
定理4.7 设级数 fn(z)的各项在曲线C上连续,并 n1
且在C上一致收敛于f(z),则沿C可以逐项积分:
C f (z)dz C fn(z)dz n1
定义4.5 设函数fn(z)(n=1,2,…)定义于区域D内,若 级数(4.2)在D内任一有界闭集上一致收敛,则称此 级数在D内内闭一致收敛.
由定理4.7得 c f (z)dz c fn (z)dz 0 n1
于是,由摩勒拉定理知,f(z)在 K 内解析,即
在 z0 D 解析。由于 z0 D 的任意性,
故f(z)在区域 D 内解析。
(2)设z0的某邻域U的边界圆K也在D内,对于z K ,
n1
(z
fn(z) 一致收敛于
f(z),对于E上的每一点z,级数(4.2)均收敛于f(z),则称
f(z)为级数(4.2)的和函数,记为: f (z) fn(z) n1
定义4.4 对于级数(4.2),如果在点集E上有一个函数
f(z),使对任给的ε>0,存在正整数N=N(ε),当n>N时,对
一致切收的 敛于z∈f(Ez均),有记|作f(z:)-sn(z)|<fεn ,则zz称E 级f z数 (4.,2)在E上其一

复变函数05(吉大)

复变函数05(吉大)

根据实正项级数的比较判别法, 可知级数




xn 和 yn 收 敛. 从 而 xn 与 yn
n1
n1
n1
n1

收敛, 进一步可知级数 zn收敛.
n1
9
绝对收敛与条件收敛


若级数 zn 收 敛 则 称 级 数 zn绝对收
n1
n1
敛. 非绝对收敛的收敛级数称为条件收敛.
关于定理我们作如下两点说明
(1) 若f(z)在z0解析, 则f(z)在z0的泰勒级数 的收敛半径R等于从z0到f(z)的距离z0最近
的一个奇点 之间的距离, 即R =| z0 |.
(2) 由本定理与和函数的性质有, 函数在一
点解析的充要条件是它在该点邻域内可以
展成幂级数. 29
利用泰勒级数展开的唯一性, 我们可以用
利用反证法根据上述结论可得定理另一部
分的证明. 利用阿贝尔定理, 可以确定幂级
数的收敛范围.
16
幂级数的收敛半径
对于幂级数 cnzn来说, 它的收敛情况可 以分为下述三n0种:
①在原点收敛,除原点外发散. (R=0) ②在全平面上处处绝对收敛. (R=+ ) ③除上述两种极端情形之外, 由阿贝尔定
比较简便的方法将一个函数展开为泰勒
级数即幂级数. 展开的方法有两种. 一种
是由泰勒展开式,直接通过计算系数
cn
f (n)(z0 ) n!
把f(z)在z0展开为幂级数,称为直接法; 另一种是利用幂级数的运算与性质, 以唯
一性为依据把函数展开成幂级数, 称为间
接法. 30
例 求函数f(z) = ez在z = 0的泰勒展开式

第四章 复变函数

第四章 复变函数


n 1

in 1 n n 1 n
例 4.2 判别下列级数的收敛性
n i in 1 i 1 n ; 2 ; 3 2 2 n 1 n n 1 n n 1 n
解:
3
n 1

in 1 2 2 n n 1 n
z2 1 在 1内,即 z 2 2内, 右端级数绝对收敛, 其和为 2 z
z 2 2时, 级数发散
1 n 例4.5 把函数 表成形如级数 Cn z 2 的幂级数 z n 1
1 2 n 1 g z g z g z 1 g z
n
n
z z0 当 z z 0 z1 z 0 时, 1, z1 z 0
z z0 级数 M z1 z 0 n 1


n
收敛。
C n z z 0 n 收敛
n 1

C n z z 0 n 绝对收敛
n 1

例4.4 求级数
n 1

z 1n 的收敛半径
n
解:
Cn 1 n lim lim 1, R 1 n C n n 1 n
收敛圆 z 1 1
当 z 0 时, 原级数成为 1
n 1 n
1 , 为交错级数, 是收敛的 n
1 当 z 2 时, 原级数成为 , 为调和级数, 是发散的 n 1 n
§4.2复变函数项级数
§4.2.1 复变函数项级数
设 f n z n 1,2, 为区域 D 内的函数,则称
f z f z f z f z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 复级数§1.级数的基本性质教学目的与要求:了解复数项级数收敛、发散及绝对收敛一致收敛等概念,掌握解析函数项级数的性质.重点: 解析函数项级数.难点:一致收敛的函数项级数;解析函数项级数.课时:2学时1.复数项级数定义4.1 复数项级数就是其中为复数定义4.2 对于复数项级数,设若存在,则称级数收敛,否则为发散.据此定义,我们立即推出:若级数收敛,则其次,由复数的性质易于推得定理4.1 设其中均为实数,则级数收敛的充要条件为基数与均收敛,复数项级数具有与实数项级数完全相同的性质,不再一一给出.定理4.2(柯西收敛准则)级数收敛的充要条件是,使及,均有定义4.3 若级数收敛,则称级数为绝对收敛.由关系式及及定理4.1即可推得.定理4.3 级数绝对收敛的充要条件为:级数及绝对收敛.再由定理4.2可知:绝对收敛级数必为.收敛级数.例1.对于级数当时,由于,而当时,,于是因此级数收敛且有,显然,当时,级数亦为绝对收敛的级数.2.复函数项级数定义4.4设函数在复平面点集上有定义,则称级数为定义在上的复函数项级数.定义4.5 设函数在上有定义,如果,级数均收敛于,则称级数收敛于,或者说级数和函数记作定义4.6 如果,使得当时,对任一,均有则称级数在一致收敛于.与定理4.2类似地我们有定理4.4 级数在上一致收敛的充要条件是:,使当时,对任一及均有由此我们即得一种常用的一致收敛的判别法:定理4.5 魏尔斯特拉斯-判别法设在点集上有定义为一收敛正项级数,若在上成立则级数在上一致收敛于,则在上一致收敛.与实数项级数一样,不难证明以下定理:定理4.6 设在复平面点集上连续,级数在上一致收敛于,则在上连续.定理4.7 设在简单曲线上连续,级数在上一致收敛于,则.对于复函数项级数的逐项求导问题,我们考虑解析函数项级数,首先,引入一个新概念.定义4.7 设函数在区域内解析,如果级数在内任一有界闭区域上一致收敛于函数,则称级数在内闭一致收敛于.由此,我们有下列重要的魏尔斯特拉斯定理.定理设函数在区域内解析,级数在内中闭一致收敛于函数,则在内解析,且在内成立证明: ,取,使得.在内任作一条简单闭曲线,根据定理及柯西定理推得.因而由莫勒拉定理知在内解析,再由的任意性即得在内解析.其次,设的边界,由已知条件得在上一致收敛于,从而在上一致收敛于,根据定理,我们有即于是定理结论成立.作业:第178页 1.§2幂级数教学目的与要求:了解幂级数收敛圆的概念,掌握简单的幂级数收敛半径的求法.掌握幂级数在收敛圆内一些基本性质及幂级数在收敛圆周上的性质.重点: 幂级数收敛半径的求法; 幂级数在收敛圆内一些基本性质.难点:幂级数在收敛圆周上的性质.课时:2学时定义形如的级数称为幂级数,其中是复变量, 是复常数.特别地,当时,级数就变为幂级数在复变函数论中有着特殊重要意义,它不仅是研究解析函数的工具,而且在实际计算中应用也比较方便.我们首先研究级数的收敛性.显然,当时,级数总是收敛的.当时,则有定理如果幂级数在收敛,则对任意满足的,级数绝对收敛.若级数在发散,则对任意满足的,级数发散.证明: 级数在收敛.从而,使得其次,级数可写成,因此由于级数收敛,故级数绝对收敛.根据上述结论用反证法即可推得定理第二部分成立,于是定理得证.由此,我们可知存在实数,,使得级数当时绝对收敛,当时发散.称为级数的收敛半径, 称为收敛圆,当时,我们说的收敛半径是,收敛圆为复平面.当时,我们说的收敛半径是,收敛圆只有一点,以下说幂级数有收敛圆均指收敛半径大于的情况.通常,幂级数的收敛半径可用以下公式求得:定理 (柯西阿达玛公式).若以下条件之一成立.则当时, 的收敛半径,当,时, .下面我们证明幂级数的和函数在其收敛圆内解析.定理设幂级数的收敛圆为.则它的和函数.在内解析,且证明:事实上,对,则在上由定理知级数在上绝对收敛,从而根据判别法知在上一致收敛,故在中内闭一致收敛,在内, 的和函数解析且成立,由的任意性即知定理成立.但幂级数在其收敛圆上可能收敛,也可能发散.例级数的收敛半径为由于在收敛圆上,此级数一般不趋于,因而在上级数处处发散,但其和函数却除处处解析.例级数的收敛半径为在收敛圆上, 而级数收敛,故此技术在收敛圆上也处处收敛.作业: 第178页 2 (1) (3) 3 (2)§3解析函数的泰勒展式教学目的与要求:了解泰勒定理; 掌握初等解析函数的展开式,并能利用它们将一些简单的解析函数展开为幂级数.重点: 泰勒定理,初等函数的泰勒展开式.难点:泰勒定理证明.课时:2学时一.定理(泰勒展式)设函数在圆内解析,则在内证明: ,以为心作一圆,且使,(如图)则由柯西公式而当时, ,因此有由于右端级数当时是一致收敛的,把代入后逐项积分得其中由为内任意一点知定理成立.结合定理与我们就可推出:推论幂级数是它的和函数在收敛圆内的泰勒展式.即推论函数在一点解析的充要条件是: 在的某一邻域内有泰勒展式.与实变数的情形相同,我们不难求得某些初等函数的泰勒展式.二.求泰勒展式的方法1.求Taylor系数=如求在z=0的展开式==1 == ,,=1+z+++=2.利用级数的运算。

如如在展开=3.逐项微分法如:逐项积分法。

如:求在的展开式。

(主支)(其中取K=0分支,即分支)又一般地=ln(1+z)+5.级数代入级数法如作业: 第178页 5(1) (3) 7(1) (3)§4.解析函数的零点及唯一性教学目的与要求:理解解析函数零点的孤立性; 理解唯一性定理;掌握最大模原理.重点:解析函数零点的孤立性;唯一性定理;最大模原理难点:解析函数零点的孤立性; 理解唯一性定理;课时:2学时定义设函数在的邻域内解析且,则称为的零点.如果在内的泰勒展式为:则可能有下列两种情形:,此时在内不全为,则存在正整数,使得且对一切均有,此时我们说为的阶零点,时称为的单零点,时称为的重零点.设为解析函数的一个阶零点,则在的某个邻域内其中在内解析.由,,使得当时, 于是,此即说明存在的一个邻域使得在此邻域内为的唯一零点.根据上述讨论,我们有:定理设函数在解析且,则或者在的一个邻域内恒等于,或者存在的一个邻域,在其中是的唯一零点.定理的后一个性质称为解析函数零点的孤立性.关于解析函数的唯一性问题,我们先证明下述引理:引理设在区域内解析,如果在中的一个圆内恒等于,则在内恒等于.证明:设在内一个以为心的圆,内,对于的任意一点,用在内的曲线连接及,设取,并在上依次取.使.且它的任意相邻两点间距离小于,再作每一点的邻域图4.2显然时,.由于在内恒等于,而,因而,于是在内的泰勒展式的系数亦全为,从而在内恒等于,一般地,若已证明在内恒等于,就可推得,由为内外任意一点即知引理成立.结合引理及定理就可得到关于零点的一个重要结果:定理设为区域内不恒等于的解析函数,则对于的每一零点均存在一个邻域,使得为在内唯一零点……此定理是定理的推广.于是,解析函数的唯一性定理可叙述如下:定理设函数及在区域内解析,为内互不相同的点,且.如果,则在内, .证明:若在内,亦即在内.由已知条件可得,其次,由于.因而在连续,于是为在此邻域中的唯一零点,与定理产生矛盾,于是定理结论成立.在数学分析中我们知道,对于一般有导数或偏导数的一元或多元函数,已知它在定义域内某一部分的函数值还完全不能断定它在其它部分的函数值.而从定理知道,对于解析函数来讲,只须知道它在区域内一个极限点在内的点到上的函数值就可完全确定它在内的所有函数值,这是解析函数不同于实变数可微函数的一个重要特性.例5 在复平面上解析,在实轴上等于的函数只能是.证明:设函数在复平面上解析且在实轴上等于,则在复平面上解析的函数在实轴上恒等于,因而由定理知在复平面上,即.例6 是否现在解析的函数满足下列条件:其中解: 由于及根据定理知是在解析并满足的唯一函数,但此数不满足,因而在不存在满足条件的解析函数…由条件,由定理知是在解析并满足条件的唯一函数.定理4.16(最大模原理).设在区域D内解析,则在D内任何点都不能达到最大值,除非在D内恒等于常数。

证明:若用M表在D内的最小上界,则必0<M<,假定在D内有一点,函数的模在达到它的最大值,即=M.应用平均值定理于以为中心,并且连同它的周界,一起全含于区域D内的一个圆,就得到=由此推出由于,而=M,从上式可看出: 有.事实上,如果对于某一个值,有。

那么根据的连续性,不等式在某个充分小的区间内成立。

同时在这个区间之外总是再由(4.15)得M=<M 矛盾.因此,在以点为中心的每一个充分小的圆周上=M.即在点的足够小的领域K内(K及其周界全含于D内)有(2).由第二章习题(一)6(3),必在K内为一常数(3).由唯一性定理,必在D内为一常数.推论设(1) 在有界区域D内解析,在闭域=D+上连续;(2) M则除为常数的情形外, <M .作业: 第179-180页 8 , 9, 11(1) (3), 13。

相关文档
最新文档