不等式恒成立问题
关于不等式恒成立问题的几种求解方法
关于不等式恒成立问题的几种求解方法不等式恒成立问题,在高中数学中较为常见。
这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。
下面我们一起来探讨其中一些典型的问题一、一次函数型——利用单调性求解例1、若不等式对满足的所有实数m都成立,求x的取值范围。
若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。
这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。
能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。
分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。
解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立,设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有:此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。
给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于ⅰ),或ⅱ)可合并成同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;若改为:,构造函数,画出图象,得a<3利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围。
不等式恒成立问题
九招破解不等式恒成立问题绵阳东辰国际学校 冷世平不等式恒成立问题求解的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用构造函数法、变量分离法、数形结合法等解题方法求解.解题过程本身渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了重要的作用,因此也成为历年各地高考的一个热点内容.解决恒成立问题主要有以下几种方法,供各位同行参考.一、反客为主法此方法又称为改变主元法.有一些数学题,题中涉及到若干个量,其中有常量,也有变量,学生在解答时,由于思维定势,不太习惯把其中的常量暂视为变量,把其中的变量暂视为常量的做法,结果导致求解过程异常复杂甚至难以解出.其实,常量与变量是相对的,是辩证统一的关系,根据需要可以将它们的地位调换,即“反客为主”,改变主元,常常使许多难题巧妙获解.例1 对于满足2p ≤的所有实数p ,求使不等式212x px p x ++>+恒成立的x 的取值范围.【分析】在不等式中出现了两个字母:x 及p ,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将p 视作自变量,则上述问题即可转化为在[]2,2-内关于p 的一次函数大于0恒成立的问题.【解析】不等式即2(1)210x p x x -+-+>,设2()(1)21f p x p x x =-+-+,则()f p 在[]2,2-上恒大于0,故有(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎪⎨->⎪⎩,从而解得1x <-或3x >. 【点评】在不等式中出现了两个字母:x 及p ,而我们都习惯把x 看成是一个变量,p 作为常数.本题转换视角,可将p 视作自变量,则上述问题即可转化为在[]2,2-内关于p 的一次函数大于0恒成立的问题. 此类题本质上是利用了一次函数在闭区间上的图象是一条线段,故只需保证该线段两利用函数单调性解题是历年高考的重点和难点.如何攻克这个难点呢?一个词:去壳.利用函数单调性解不等式的关键就是:准确判断出函数单调性,成功去掉f 这层外壳,把关于因变量之间的不等关系转化为关于自变量之间的不等关系,然后解关于x 的简单不等式即可.例2 定义在R 上的函数()f x 既是奇函数,又是减函数,且当0,2πθ⎛⎫∈ ⎪⎝⎭时,有2(cos 2sin )(22)0f m f m θθ++-->恒成立,求实数m 的取值范围.【解析】由2(cos 2sin )(22)0f m f m θθ++-->得到2(cos 2sin )(22)f m f m θθ+>---,因为()f x 为奇函数,故有2(cos 2sin )(22)f m f m θθ+>+恒成立,又因为()f x 为R 减函数,从而有2cos 2sin 22m m θθ+<+对0,2πθ⎛⎫∈ ⎪⎝⎭恒成立,设sin ,(0,1)t t θ=∈,则22210t mt m -++>对于(0,1)t ∈恒成立,再设函数2()221g t t mt m =-++,对称轴为t m =.①当0t m =<时,函数()y g t =在(0,1)t ∈上单调递增,min ()(0)210g t g m ==+≥,即12m ≥-,又10,02m m <∴-≤<; ②当[]0,1t m =∈,即01m ≤≤时, 2min ()()210g t g t m m ==-++>,即2210,1212m m m --<∴-<<+,又[]0,1,01m m ∈∴≤≤;③当1t m =>时,函数()y g t =在(0,1)t ∈上单调递增,min()(1)122120g t g m m ==-++=>恒成立,1m ∴>.综上所述,实数m 的取值范围为12m ≥-. 【点评】此题属于含参数二次函数的轴动区间定的问题,对轴与区间的位置进行分类讨论.对于二次函数在R 上恒成立问题常采用判别式法,而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题.三、变量分离法若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解.例3 已知函数22(),[1,)x x a f x x x++=∈+∞,若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围.【分析】此题可经过等价转化为在区间[1,)+∞上220x x a ++>恒成立,再将转化后的不等式分离参数得()()g a h x >恒成立,再求得()h x 得最大值max ()h x ,由max ()()g a h x >可得实数a 的取值范围.【解析】在区间[1,)+∞上,()0f x >恒成立220x x a ⇔++>在区间[1,)+∞上恒成立,要使220x x a ++>恒成立,只需222(1)1a x x x >--=-++恒成立,由二次函数的性质可得2(1)13x -++≤,故只需3a >-,故所示实数a 的取值范围为3a >-.例3 已知二次函数2()(,0)f x ax x a R a =+∈≠,若[0,1]x ∈时,总有()1f x ≤,试求实数a 的取值范围.【解析】①当0x =时,有(0)01f =<恒成立;② 当0x ≠时,21ax x +≤,即2211ax x ax x ⎧+≤⎪⎨+≥-⎪⎩,分离参数可得221111()a x x a x x ⎧≤-⎪⎪⎨⎪≥-+⎪⎩,令1,(0,1]t x x =∈, (1,]t ∴∈+∞,即当(1,]t ∈+∞时恒有22,()a t t a t t ⎧≤-⎪⎨≥-+⎪⎩当(1,]t ∈+∞时,22min max ()0,[()]2t t t t -=-+=-, 即02a a ≤⎧⎨≥-⎩,又因为0a ≠,故实数a 的取值范围为[2,0)-. 【点评】将所求变量与其他变量分离开,通过研究式中另外一个变量的已知范围来确定所求变量的范围.若所求变量为a ,则根据()a f x >恒成立max ()a f x ⇔>; ()a f x <恒成立min ()a f x ⇔<.此题一般性解法是利用根的分布对211ax x -≤+≤进行讨论,其解题过程复杂性显而易见,而将参数从恒成立不等式中分离出来,可以避免较为复杂的讨论.例4 已知当x R ∈时,不等式cos254sin a x x +<-+a 的取值范围.【分析】在不等式中含有两个变量a 及x ,其中x 的范围已知,另一变量a 的范围即为所求,故可考虑将a 及x 分离.【解析】原不等式等价于4sin cos25x x a +<-,要使上式恒成立,5a-大于4sin cos2x x +的最大值,故上述问题转化成求()4sin cos2f x x x =+的最值问题.224sin cos22sin 4sin 12(sin 1)33,53x x x x x a +=-++=--+≤->,即2a >+,上式等价于22054054(2)a a a a ⎧-≥⎪-≥⎨⎪->-⎩或20540a a -<⎧⎨-≥⎩,解得485a ≤<. 【点评】注意到题目中出现了sin x 及cos2x ,而2cos212sin x x =-,故若把sin x 换元成t ,则可某些含参不等式恒成立问题,我们在解题过程中,可以把不等式进行合理的变形后,将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式,以达到求解的目的.例5 设[0,4]x ∈ax 恒成立,求a 的取值范围.【解析】设1(4)y x x =-,则2211(2)4(0x y y -+=≥),它表示的是以(2,0)为圆心,2为半径的上半圆(如图所示),设2y ax =,它的几何意义是一条经过原点,斜率为a 的直线,将两者图像画在同一坐标系下,根据不等式(4)x x ax -≥的几何意义,要使得半圆恒在直线l 的上方(包括相交),当且仅当0a ≤时才成立,所以a 的取值范围就是0a ≤.【点评】此题还可以利用变量分离法求解,略解如下:当0x =时,不等式显示恒成立;当(]0,4x ∈时,不等式(4)x x ax -≥恒成立等价于41a x -≥恒成立,令41y x =-,显然函数41y x =-在区间(]0,4上是单调递减函数,故min 4104y =-=,故a 的取值范围就是0a ≤. 例6 当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,求a 的取值范围. 【分析】若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解. 【解析】设212(1),log a y x y x =-=,则1y 的图象为如图所示的抛物线,要使对一切12(1,2),x y y ∈<恒成立,显然1a >,并且必须也只需当2x =时2y 的函数值大于等于1y 的函数值.故log 211a a >⎧⎨>⎩,从而可得12a <≤. 【点评】我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难 入微;数形结合百般好,隔离分家万事休”,作为一种数学思想方法,数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”.本题是数形结合思想中的“形”中觅“数”,“数”上构“形”的充分体现,由表达式结构特征,能让我们了解到用其几何意义去处理.五、构造向量法向量是数形结合的重要工具,对于形式、结构比较复杂的不等式恒成立问题,可以巧妙的构造向量,使数学问题增添新的活力且简单易解.例7 2252510x x x a +-+对于任意的x R ∈恒成立,求实数a 的取值范围.【分析】由题目的结构形式可联想到平面向量,于是令(,5),(55)m x n x ==-,由向量的模之间的关系5m n m n +≥+=,求得实数a 的取值范围.【解析】令2222525105(5)5,(,5),(55)u x x x x x m x n x =+-+=+-+==-,2222(5,25),5,(5)5,5,52510m n m x n x m n u x x x m n +=∴=+=-++=∴=++-+=+5m n ≥+=∴故实数a 的取值范围是5a ≤.【总结】本题还可以根据结构联想到两点间的距离公式,将不等式左边看作函数22222252510(0)(05)(5)(05)y x x x x x =++-+=-+-+-+-,所求问题转化为平面上一个动点(,0)A x 到两定点B C 的距离之和的最小值,易求出点B 关于原点对称的点'(0,B ,显然'5B C =即为所求,故实数a 的取值范围是5a ≤.六、构造函数法根据题目中所给的含参不等式的结构特征,构造适当的函数,并利用函数的性质来求参数的范围.例8 若函数()f x =R ,求实数a 的取值范围. 【分析】该题就转化为被开方数222(1)(1)01a x a x a -+-+≥+在R 上恒成立问题,并且注意对二次项系数的讨论.【解析】依题意,当x R ∈时,222(1)(1)01a x a x a -+-+≥+恒成立, ①当210a -=时,有21010a a ⎧-=⎨+≠⎩,解得1a =,此时222(1)(1)10,11a x a x a a -+-+=≥∴=+ ②当210a -≠时,222102(1)4(1)01a a a a ⎧->⎪⎨∆=---≤⎪+⎩,即有2211090a a a ⎧>⎨-+≤⎩,解得19a <≤; 综上所述,()f x 的定义域为R 时,实数a 的取值范围为[1,9].七、集合思想法集合是高中数学的理论基础,贯穿于整个高中数学的始终,其中所包含的子集思想和补集思想在高中数学解题中应用十分广泛,在不等式恒成立问题中巧妙利用这两种解题思想,能达到意想不到的效果.例9 已知52x a -<时,不等式254x -<恒成立,求实数a 的取值范围. 【分析】若记a x <-25的解集是2,54A x -<的解集是B ,则a x <-25成立时254x -<成立,则应有A B ⊆,根据子集的知识可求得a 的取值范围.【解析】由52x a -<,可得5522a x a -<<+,由254x -<,可得31x -<<-或13x <<.记55(,),(3,1)(1,3)22A a a B =-+=--⋃,则55,3122A B a a ⊆∴-≤-<+≤-或551322a a ≤-<+≤,从而解得102a <≤. 【点评】不等式在集合A 中恒成立等价于集合A 是不等式解集B 的子集,通过研究集合间的关系便可求出参数的取值范围.八、绝对值几何意义法在不等式中,常会遇到含有绝对值的不等式求解问题,处理这类问题的关键在于如何去掉绝对值符号,将问题转化为不含绝对值符号的常规问题来解决,这是解含绝对值不等式问题的一般解法,下面来探求这类问题的另一种解法-----利用实数绝对值的几何意义来求解.例10 x R ∈时,关于x 的不等式13x x a -++>恒成立,求实数a 的取值范围.【分析】由13x x a -++>恒成立,即13x x -++的最小值大于a ,再由绝对值得几何意义知13x x -++的最小值是4,故可求得a 的取值范围. 【解析】13x x a -++>恒成立,即13x x -++的最小值大于a ,又13x x -++表示数轴上点x 到两点1和3-的距离之和,当31x -≤≤时,这个距离和最小且等于4,故实数a 的取值范围是4a <.【点评】对于一些绝对值内为关于x 的一次式的不等式,我们常可以根据绝对值的基本性质,采用等价转化法或零点分段脱去绝对值符号,将问题转化为不含绝对值符号的常规问题来求解,另外也可以根据绝对值的几何意义用数形结合的方法直观、快速、准确地求解这类含有绝对值的不等式.九、三角代换法根据题目的特点,选取恰当的三角代换,能达到化难为易,化繁为简的目的,它是解不等式问题中常用的方法.例11 当(,)P m n 为圆22(1)1x y +-=上任意一点时,不等式0m n c ++≥恒成立,则c 的取值范围是( ).11A c -≤11c ≤≤.1C c ≤.1D c ≥【解析】设cos ,1sin x y θθ==+,则)104x y c c πθ+++++≥恒成立,即)14c πθ≥+-,设())14f πθθ=+-,只要max ()c f θ≥,故得1c . 【点评】三角代换的特点是将原来两个变元,x y 问题转化为关于一个变元θ的问题,通过换元达到减元的目的,在使用三角代换时,一定要注意新变量与原变量间的取值范围是否一致.此题还可以利用数形结合方法求解,略解如下:由0m n c ++≥,可以看作是点(,)P m n 在直线0x y c ++=的右侧,而点(,)P m n 在圆22(1)1x y +-=上,实质相当于是22(1)1x y +-=在直线的右侧并与它相离或相切,01011c c ++>⎧⎪∴∴≥≥.不等式恒成立的题型和解法还有很多,只要我们充分利用所给定的函数的特点和性质,具体问题具体分析,选择恰当、简便的方法,但不管用哪种方法,其核心思想还是等价转化,抓住了这点,才能“以不变应万变”,才能使问题获得顺利解决,只有这样才能真正提高学生分析问题和解决问题的能力,当然这需要我们在实际工作中不断的去领悟、体会和,这样自己的业务能力才能声速得以提高.[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!
开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
函数不等式恒成立问题6大题型
函数不等式恒成立问题6大题型新高考越来越注重对综合素质的考查,恒成立问题变式考查综合素质的很好途经,它经常以函数、方程、不等式和数列等知识为载体,渗透着还原、化归、分类讨论、数形结合、函数与方程等思想方法。
近几年的数学高考中频频出现恒成立问题、能问题,其形式逐渐多样化,但都与函数、导数知识密不可分,考查难度一般为中等或难题。
一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x2、∀∈x D ,()()max ≥⇔≥m f x m f x3、∃∈x D ,()()max ≤⇔≤m f x m f x4、∃∈x D ,()()min ≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;【题型1单变量不等式恒成立问题】【例1】(2020秋·吉林白城·高三校考阶段练习)设函数()21f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎢⎝⎦⎣⎭C .33,22⎛⎫-∞⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦【变式1-1】(2022秋·吉林·高三校考期末)已知()g x 为奇函数,()h x 为偶函数,且满足()()2xg x h x -+=,若对任意的[]1,1x ∈-都有不等式()()0mh x g x -≥成立,则实数m 的最小值为()A .13B .35C .1D .35-【变式1-2】(2022秋·陕西商洛·高三校联考阶段练习)已知一次函数()f x 满足()()2f f x x =+.(1)求()f x 的解析式;(2)若对任意的()0,x ∈+∞,()af x x >a 的取值范围.【变式1-3】(2022·全国·高三专题练习)已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求,a b 的值;(2)用定义证明()f x 在(,)-∞+∞上为减函数;(3)若对于任意R t ∈,不等式()()22220f t t f t k -+-<恒成立,求k 的范围.【题型2单变量不等式能成立问题】【例2】(2022秋·福建龙岩·高三上杭一中校考阶段练习)已知函数()f x 的定义域为B ,函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,若x B ∃∈,使得21a x x >-+成立,则实数a 的取值范围为()A .13,16⎛⎫-∞ ⎪⎝⎭B .130,16⎛⎫ ⎪⎝⎭C .13,16⎛⎫+∞⎪⎝⎭D .1313,1616⎛⎫-⎪⎝⎭【变式2-1】(2022秋·辽宁葫芦岛·高三校联考阶段练习)已知函数()3()23a a f x x -=-为幂函数.(1)求函数()2xf a +的值域;(2)若关于x 的不等式2()log ()f x f x a +<在[2,4]上有解,求a 的取值范围.【变式2-2】(2022·黑龙江大庆·大庆实验中学校考模拟预测)已知函数()1f x x x a =+--,1a >.(1)当a =2时,求不等式()1f x >的解集;(2)若()01,1x ∃∈-,使()20001f x x ax <-+-成立,求a 的取值范围.【变式2-3】(2021秋·江苏·高三校联考期中)已知函数()151x af x =-+为奇函数.(1)求实数a 的值;(2)若存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,求x 的取值范围.【变式2-4】(2022秋·重庆北碚·高三重庆市朝阳中学校考开学考试)已知函数4()2x xa g x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值;(2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【题型3任意-任意型不等式成立问题】【例3】(2022秋·上海徐汇·高三上海中学校考期中)已知函数()213,11log ,12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()1x g x x =+,若对任意的实数12,x x ,均有()()12f x g x ≤,则实数k 的取值范围是__.【变式3-1】(2022秋·安徽合肥·高三合肥市第十中学校联考阶段练习)已知函数()f x 满足22()()(0)f x f x x x x+-=+≠.(1)求()y f x =的解析式,并求()f x 在[3,1]--上的值域;(2)若对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,求实数k的取值范围.【变式3-2】(2022秋·全国·高三统考阶段练习)已知函数()1lg x f x xλ+=.(1)当2λ=时,解不等式()0f x >;(2)设0λ>,当1,22a ⎡⎤∈⎢⎥⎣⎦时,对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,求λ的取值范围.【变式3-3】(2022秋·上海浦东新·高三校考阶段练习)设()e xf x =,函数()g x 的图像和函数()f x 的图像关于y 轴对称.(1)若()()43f x g x =+,求x 的值.(2)令()()2f x h x x=,()22t x x x a =-++,若对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,求实数a 的取值范围.【题型4任意-存在性不等式成立问题】【例4】(2022秋·江苏常州·高三校联考阶段练习)已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,命题p :对任意[]10,3x ∈,都存在[]22,1x ∈--,使得()()12f x g x,则命题p 正确的一个充分不必要条件是()A .3mB .2mC .1mD .0m【变式4-1】(2022秋·天津宝坻·高三天津市宝坻区第一中学校考期末)已知函数2()x x af x x++=.(1)若()()1g x f x =-,判断()g x 的奇偶性并加以证明;(2)当12a =时,①用定义法证明函数()f x 在[1,)+∞上单调递增,再求函数()f x 在[1,)+∞上的最小值;②设()52h x kx k =+-,若对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤成立,求实数k 的取值范围.【变式4-2】(2022秋·广东广州·高三广东实验中学校考阶段练习)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =-(1)判断()f x 的奇偶性;(2)求函数()f x 在区间[]3,3-上的最大值;(3)若][()21,1,1,1,<22x a f x m am ∃∈-∀∈---⎡⎤⎣⎦恒成立,求实数m 的取值范围.【变式4-3】(2022秋·河北邢台·高三校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()()2log 21x f x kx =+-,()()g x f x x =+.(1)求k 的值;若函数()f x 的定义域为[]0,4,求()()22f x xh x +=的值域.(2)设()4ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.【题型5存在-存在性不等式成立问题】【例5】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)已知函数()1f x x x a =-+.(1)当0a =时,解不等式()()2122f x f x -++>;(2)若存在1x ,(]2,ln 2x ∈-∞,使得()()12e e3x x f f ->,求实数a 的取值范围.【变式5-1】(2022秋·江苏泰州·高一靖江高级中学校考期末)已知函数()()121,2121x x x f x g x ++==--(1)利用函数单调性的定义,判断并证明函数()f x 在区间()0,∞+上的单调性;(2)若存在实数()12,0,x x ∈+∞且12x x <,使得()f x 在区间[]12,x x 上的值域为()()21,m m g x g x ⎡⎤⎢⎥⎢⎥⎣⎦,求实数m 的取值范围.【变式5-2】(2022秋·江西抚州·高三江西省抚州市第一中学校考阶段练习)已知()214f x x x =-++(1)解不等式()23f x x +≤;(2)若存在实数x 1,x 2,使得()21222f x x x a <-++,求实数a 的取值范围.【变式5-3】(2022·全国·高三专题练习)已知函数()()2xx ax bf x x R e ++=∈的一个极值点是2x =.(1)求a 与b 的关系式,并求()f x 的单调区间;(2)设0a >,()22x g x a e -=,若存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,求实数a 的范围.【题型6任意-存在性等式成立问题】【例6】(2023·全国·高三对口高考)已知函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,()π2cos 13g x k x ⎛⎫=-- ⎪⎝⎭,若对任意π4π,33t ⎡⎤∈⎢⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,则实数k 的可能取值是().A .54B .74C .94D .114【变式6-1】(2022秋·北京·高三人大附中校考阶段练习)已知函数()24a x x x f =-+,()5g x ax a =+-,若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A .(],9-∞-B .[]9,3-C .[)3,+∞D .(][),93,-∞-+∞ 【变式6-2】(2022秋·北京·高三北师大实验中学校考期中)已知函数()()214x a f x x x+=≤≤,且()15f =.(1)求实数a 的值,并求函数()f x 的最大值和最小值;(2)函数()()122g x kx x =--≤≤,若对任意[]11,4x ∈,总存在[]02,2x ∈-,使得()()01g x f x =成立,求实数k 的取值范围.【变式6-3】(2022秋·上海长宁·高三上海市延安中学校考期中)已知2()327mx n f x x +=+,||1()3x m g x -⎛⎫= ⎪⎝⎭,其中,m n ∈R ,且函数()y f x =为奇函数;(1)若函数()y f x =的图像过点A (1,1),求实数m 和n 的值;(2)当3m =时,不等式()()()()f x g x af x g x +≥对任意[3,)x ∈+∞恒成立,求实数a 的取值范围;(3)设函数()()()393f x x h xg x x ⎧≥⎪=⎨<⎪⎩,若对任意1[3,)x ∈+∞,总存在唯一的2(,3)x ∈-∞使得()()12h x h x =成立,求实数m的取值范围;(建议用时:60分钟)1.(2022秋·北京西城·高三北京师大附中校考阶段练习)已知函数()253,121,1 2x x x f x x x x ⎧-+≤⎪⎪=⎨⎪+>⎪⎩设R a ∈,若关于x 的不等式()2x f x a ≥+恒成立,则a 的取值范围是()A .[]2,1-B .232,44⎡-⎢⎥⎣⎦C .32,14⎡⎤-⎢⎥⎣⎦D .[]1,2-2.(2022秋·黑龙江哈尔滨·高三哈尔滨市第六中学校校考期中)已知()f x ,()g x 分别为定义域为R 的偶函数和奇函数,且()()e xf xg x +=,若关于x 的不等式()()220f x ag x -≥在()0,ln 3上恒成立,则正实数a 的取值范围是()A .15,8⎡⎫+∞⎪⎢⎣⎭B .[)0,∞+C .15,8⎛⎤-∞ ⎝⎦D .150,8⎛⎤⎥⎝⎦3.(2022·全国·高三专题练习)设函数()()1xf x xe a x =--,其中1a <,若存在唯一整数0x ,使得()0f x a <,则a 的取值范围是().A .21,1e ⎡⎫-⎪⎢⎣⎭B .211,e e ⎡⎫-⎪⎢⎣⎭C .211,e e ⎡⎫⎪⎢⎣⎭D .21,1e ⎡⎫⎪⎢⎣⎭4.(2022·全国·高三专题练习)已知函数()2222,2log ,2x x x f x x x ⎧-+<=⎨>⎩,若∃0x ∈R ,使得()2054f x m m ≤-成立,则实数m 的取值范围为()A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .124⎡⎤-⎢⎥⎣⎦,D .113⎡⎤⎢⎥⎣⎦,5.(2022秋·江苏盐城·高三校考阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,对任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是()A .13,4⎛⎤-∞ ⎝⎦B .13,4⎛⎫+∞⎪⎝⎭C .130,4⎛⎫⎪⎝⎭D .(1,4)6.(2022秋·河南·高三安阳一中校联考阶段练习)已知函数()()22()26f x x x x ax b =-+++,且对任意的实数x ,()(4)f x f x =-恒成立,函数2()4mxg x x =+,若对[]11,3x ∀∈,[]21,3x ∃∈,使12()()g x f x =,则正实数m 的取值范围是()A .(][)0,1524,⋃+∞B .[]15,24C .[]16,25D .(][)0,1625,⋃+∞7.(2023秋·河南郑州·高三校联考期末)已知函数()()224,243f x x m x g x x x =++-=-+.(1)若3m =,求不等式()7f x >的解集;(2)若12R,R x x ∀∈∃∈,使得()()12f x g x ≥成立,求实数m 的取值范围.8.(2022秋·辽宁·高三大连二十四中校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()2()log 21x f x kx =+-,()()g x f x x =+.(1)若不等式()422(2)x xg a g -⋅+>-恒成立,求实数a 的取值范围;(2)设4()ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.9.(2022秋·湖南岳阳·高三校考阶段练习)已知函数()141log 1axf x x -=-的图象关于原点对称,其中a 为常数.(1)求a 的值;(2)当()1,x ∈+∞时,()()14log 1f x x m+-<恒成立,求实数m 的取值范围;(3)若关于x 的方程()()14log f x x k =+在[]2,3上有解,求实数k 的取值范围.参考答案【题型1单变量不等式恒成立问题】【例1】(2020秋·吉林白城·高三校考阶段练习)设函数()21f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎢⎝⎦⎣⎭C .33,22⎛⎡⎫-∞⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦【答案】C【解析】由对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414xf m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,得222222314(1)(1)14(1)(,))[2x m x x m x m ---≤--+-∈+∞恒成立,即22213241m m x x -≤--+在3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,令211()321x x x ϕ⎛⎫=--+ ⎪⎝⎭,因为3,2x ⎡⎫∈+∞⎪⎢⎣⎭,令120,3t x ⎛⎤=∈ ⎥⎝⎦,则2()321t t t ϕ=--+,所以2()321t t t ϕ=--+在20,3t ⎛⎤∈ ⎥⎝⎦单调递减,所以min 25()(33t ϕϕ==-,所以221543m m -≤-,化简得()2231(43)0m m +-≥,解得3m ≤3m ≥故选:C.【变式1-1】(2022秋·吉林·高三校考期末)已知()g x 为奇函数,()h x 为偶函数,且满足()()2xg x h x -+=,若对任意的[]1,1x ∈-都有不等式()()0mh x g x -≥成立,则实数m 的最小值为()A .13B .35C .1D .35-【答案】B【解析】 ()g x 为奇函数,()h x 为偶函数,且()()2xg x h x -+=①()()()()2x g x h x g x h x ∴-+-=-+=②①②两式联立可得()222x xg x -=-,()222x x h x -=+.由()()0mh x g x -≥,即2222022x x x xm ----≥+,得224121224141x x x x x x x m ----≥==-+++,∵41=+x t 在[]1,1x ∈-是增函数,且5,54t ⎡⎤∈⎢⎥⎣⎦,2y t=-在5,54t ⎡⎤∈⎢⎥⎣⎦上是单调递增,∴由复合函数的单调性可知2141x y =-+在[]1,1x ∈-为增函数,∴max 2231141415x⎛⎫-=-= ⎪++⎝⎭,∴35m ≥,即实数m 的最小值为35.故选:B.【变式1-2】(2022秋·陕西商洛·高三校联考阶段练习)已知一次函数()f x 满足()()2f f x x =+.(1)求()f x 的解析式;(2)若对任意的()0,x ∈+∞,()af x x >a 的取值范围.【答案】(1)()1f x x =+;(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】(1)设(),0f x kx b k =+≠,则()()()()22f f x f kx b k kx b b k x kb b x =+=++=++=+,所以212k kb b ⎧=⎨+=⎩解得11k b =⎧⎨=⎩所以()f x 的解析式为()1f x x =+.(2)由()0,x ∈+∞,()af x x >1x a x >+,11112x x x x=≤+x x =1x =时,1x x +取得最大值,所以12a >,即a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭.【变式1-3】(2022·全国·高三专题练习)已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求,a b 的值;(2)用定义证明()f x 在(,)-∞+∞上为减函数;(3)若对于任意R t ∈,不等式()()22220f t t f t k -+-<恒成立,求k 的范围.【答案】(1)1a =,1b =;(2)证明见解析.;(3)1,3⎛⎫-∞- ⎪⎝⎭【解析】(1)()f x 为R 上的奇函数,02(0)02b f a-∴==+,可得1b =又(1)(1)f f -=-,11121222a a----∴=-++,解之得1a =,经检验当1a =且1b =时,12()21xx f x -=+,满足1221()()2112x x x xf x f x -----===-++是奇函数,故1a =,1b =.(2)由(1)得122()12121x x xf x -==-+++,任取实数12,x x ,且12x x <,则()()()()()211212122222221212121x x x x x x f x f x --=-=++++,12x x < ,可得1222x x <,且()()1221210x x ++>,故()()()211222202121x x x x ->++,()()120f x f x ∴->,即()()12f x f x >,所以函数()f x 在(,)-∞+∞上为减函数;(3)根据(1)(2)知,函数()f x 是奇函数且在(,)-∞+∞上为减函数.∴不等式()()22220f t t f t k -+-<恒成立,即()()()222222f t t f t k f t k -<--=-+恒成立,也就是:2222t t t k ->-+对任意的R t ∈都成立,即232k t t <-对任意的R t ∈都成立,221132333t t t ⎛⎫-=-- ⎪⎝⎭ ,当13t =时232t t -取得最小值为13-,13k ∴<-,即k 的范围是1,3⎛⎫-∞- ⎪⎝⎭.【题型2单变量不等式能成立问题】【例2】(2022秋·福建龙岩·高三上杭一中校考阶段练习)已知函数()f x 的定义域为B ,函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,若x B ∃∈,使得21a x x >-+成立,则实数a 的取值范围为()A .13,16⎛⎫-∞ ⎪⎝⎭B .130,16⎛⎫⎪⎝⎭C .13,16⎛⎫+∞⎪⎝⎭D .1313,1616⎛⎫-⎪⎝⎭【答案】C【解析】∵()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,∴114x ≤≤,12134x -≤-≤,则12,4B ⎡⎤=-⎢⎥⎣⎦.令()21g x x x =-+,x B ∃∈,使得21a x x >-+成立,即a 大于()g x 在12,4⎡⎤-⎢⎣⎦上的最小值.∵213()24g x x ⎛⎫=-+ ⎪⎝⎭,∴()g x 在12,4⎡⎤-⎢⎣⎦上的最小值为113416g ⎛⎫= ⎪⎝⎭,∴实数a 的取值范围是13,16⎛⎫+∞ ⎪⎝⎭.故选:C .【变式2-1】(2022秋·辽宁葫芦岛·高三校联考阶段练习)已知函数()3()23a a f x x -=-为幂函数.(1)求函数()2xf a +的值域;(2)若关于x 的不等式2()log ()f x f x a +<在[2,4]上有解,求a 的取值范围.【答案】(1)10,2⎛⎫⎪⎝⎭;(2)7,4⎛⎫-+∞ ⎪⎝⎭【解析】(1)由题意可得231a -=,解得2a =,则1()f x x =,所以()1222xx f a +=+,因为x ∈R ,则222x +>,故函数()2xf a +的值域为10,2⎛⎫ ⎪⎝⎭.(2)方法一:因为1()f x x=在[]2,4上单调递减,所以1()f x x =在[]2,4上的值域为11,42⎡⎤⎢⎥⎣⎦.令()f x t =,2()log g t t t =+,则()g t 在11,42⎡⎤⎢⎥⎣⎦上单调递增,所以()g t 的最小值为1172444g ⎛⎫=-=- ⎪⎝⎭,所以74a >-,即a 的取值范围为7,4⎛⎫-+∞ ⎪⎝⎭.方法二:因为1()f x x =,所以2()log ()f x f x a +<即21log x a x-<.令函数21()log g x x x=-,则()g x 在[]2,4上单调递减,所以()g x 的最小值为17(4)244g =-=-,所以74a >-,即a 的取值范围为7,4⎛⎫-+∞ ⎪⎝⎭.【变式2-2】(2022·黑龙江大庆·大庆实验中学校考模拟预测)已知函数()1f x x x a =+--,1a >.(1)当a =2时,求不等式()1f x >的解集;(2)若()01,1x ∃∈-,使()20001f x x ax <-+-成立,求a 的取值范围.【答案】(1){}1x x >;;(2)()2,+∞.【解析】(1)当a =2时,()12f x x x =+--,当2x ≥时,()3f x =,()1f x >恒成立,解得2x ≥;当12x -<<时,()21f x x =-,由()1f x >,得1x >,解得12x <<;当1x ≤-时,()3f x =-,()1f x >无解,综上所述,()1f x >的解集为{}1x x >;(2)当1a >,()1,1x ∈-时,()121f x x a x x a =+-+=-+.由()21f x x ax <-+-得2211x a x ax -+<-+-,即()2122x a x x +>++.当()1,1x ∈-时,()10,2x +∈,所以2221x x a x++>+.若()1,1x ∃∈-使()21f x x ax <-+-成立,则只需2min221x x a x ⎛⎫++> ⎪+⎝⎭,而222111(1)2111x x x x x x x++=++≥+⋅+++(当且仅当x =0时等号成立),所以a 的取值范围为()2,+∞.【变式2-3】(2021秋·江苏·高三校联考期中)已知函数()151x af x =-+为奇函数.(1)求实数a 的值;(2)若存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,求x 的取值范围.【答案】(1)2a =;(2)[]22-,【解析】(1)函数的定义域为R ,由题意可得()00f =,即01051a-=+,解得2a =,所以2()151x f x =-+,()()()222511120515151x x x xf x f x -+--+-=-==++++,即()f x 为奇函数,所以2a =.(2)由(1)可知2()151x f x =-+, 存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,∴存在m ∈[-1,1],使得不等式()22(2)20f x x f mx mx ++-+-≤成立,设()()g x f x x =+,定义域为R ,()f x 为奇函数,()()f x f x ∴=--,而()()()()g x f x x f x x g x -=--=--=-,所以()g x 为奇函数,∴存在m ∈[-1,1],()()22g x g mx ≤--成立,即存在m ∈[-1,1],()()22g x g mx ≤-成立,又因为2()151xf x =-+在R 上单调递增,所以()()g x f x x =+在定义域R 上单调递增,所以22x mx ≤-,∴存在m ∈[-1,1],使得220mx x +-≤,看成关于m 的一次函数,当0x >时,220x x -+-≤,解得02x <≤;当0x =时,20-≤不等式成立;当0x <时,则220x x +-≤,解得20x -≤<,综上所述,x 的取值范围为[]22-,【变式2-4】(2022秋·重庆北碚·高三重庆市朝阳中学校考开学考试)已知函数4()2x xa g x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值;(2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【答案】(1)11,2a b ==-;(2)910110m -<<.【解析】(1)因为函数4()2x x ag x -=是奇函数,所以(0)0g =得1a =,则41()2x x g x -=,经检验()g x 是奇函数.又()()lg 101xf x bx =++是偶函数,所以(1)(1)f f -=得12b =-,则()1()lg 1012xf x x =+-,经检验()f x 是偶函数,∴112a b ==-,.(2)()()lg 101x h x =+,lg(109)(lg(109))lg[101lg(1010)m h m m +⎤+=+=+⎦,则由已知得,存在(]0,1x ∈,使不等式lg(1010)()m g x >+成立,因为411()222x x x x g x -==-,易知()g x 单调递增,∴max 3()(1)2g x g ==,∴323lg(1010)lg101g10102m +<==∴101010m +<所以101m -,又109010100m m +>⎧⎨+>⎩,解得910m >-,所以910110m -<<.【题型3任意-任意型不等式成立问题】【例3】(2022秋·上海徐汇·高三上海中学校考期中)已知函数()213,11log ,12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()1x g x x =+,若对任意的实数12,x x ,均有()()12f x g x ≤,则实数k 的取值范围是__.【答案】3,4⎛⎤-∞- ⎥⎝⎦【解析】由于对任意的12,R x x ∈,均有()()12f x g x ≤,因此max min ()()f x g x ≤,当0x >时,1()1g x x x =+,而12x x+≥,当且仅当=1x 时,等号成立,因此()()110,0012g x g x x<=≤=+,当0x <时,21()11x g x x x x==++,1120x x x x ⎛⎫+=---≤-< ⎪⎝⎭,当且仅当=1x -时,等号成立,此时,11()12g x x x =≥-+,所以,min 1()2g x =-.对()f x ,由已知,()2f x xx k =-++在1x ≤上最大值为1124f k⎛⎫=+ ⎪⎝⎭;()131log 2f x x =-+在1x >时单调递减,所以有()12f x <-满足.所以要使()()max min f xg x ≤成立,只需满足1142k +≤-所以34k ≤-,则实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.【变式3-1】(2022秋·安徽合肥·高三合肥市第十中学校联考阶段练习)已知函数()f x 满足22()()(0)f x f x x x x+-=+≠.(1)求()y f x =的解析式,并求()f x 在[3,1]--上的值域;(2)若对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,求实数k的取值范围.【答案】(1)2()(0)f x x x x =+≠,()f x 在[3,1]--上的值域为11,23⎡--⎢⎣;(2)(],2-∞.【解析】(1)函数()f x 的定义域为{}0x x ≠,因为22()()f x f x x x+-=+①,所以22()()f x f x x x-+=--②,联立①②解得2()(0)f x x x x=+≠22222(2((2)2))1f x x x x x x x '=--+-==,当3,2x ⎡∈-⎣时,()0f x '>,()f x 为增函数;当(2,1x ⎤∈-⎦时,()0f x '<,()f x 为减函数,因为11(3),(2)22,(1)33f f f -=--=--=-,所以11(),223f x ⎡∈--⎢⎣,即()f x 在[3,1]--上的值域为11,223⎡--⎢⎣.(2)对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,不妨设1224x x <<<,可得函数()()2kk g x f x x x x+=+=+在区间()2,4上单调递增,则()2210k g x x +'=-≥对任意的()2,4x ∈恒成立,即22k x +≤,当()2,4x ∈时,2416x <<,故24k +≤,解得2k ≤.因此,实数k 的取值范围是(],2-∞.【变式3-2】(2022秋·全国·高三统考阶段练习)已知函数()1lg x f x xλ+=.(1)当2λ=时,解不等式()0f x >;(2)设0λ>,当1,22a ⎡⎤∈⎢⎥⎣⎦时,对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,求λ的取值范围.【答案】(1)()(),10,x ∈-∞-+∞ ;(2)2,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)当2λ=时,()21lgx f x x+=由21lg0x x+>,得2121110x x x x ++>⇒->,即10x x+>,等价于()10x x +>,解得()(),10,x ∈-∞-+∞ ;(2)因为对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,所以对任意1x ,[]2,1x a a ∈+,都有()()max min lg 2f x f x ≤-,设()f x 的定义域为I ,又当1x ,2x I ∈且12x x <时,有121211x x x x λλ++>,即121211lg lg x x x x λλ++>,即()()12f x f x >,所以()f x 在I 上单调递减.因此函数()f x 在区间[],1a a +上的最大值与最小值分别为()f a ,()1f a +.由()11()1lg lg lg 21a a f a f a a a λλλ+++⎛⎫⎛⎫-+=-≤⎪ ⎪+⎝⎭⎝⎭,化简得()2110a a λλ++-≥,上式对任意1,22a ⎡⎤∈⎢⎥⎣⎦成立.因为0λ>,2(1)40λλ∆=++>令()()211h a a a λλ=++-,对称轴为102a λλ+=-<,所以函数()()211h a a a λλ=++-在区间1,22a ⎡⎤∈⎢⎥⎣⎦上单调递增,所以,()min h a =131242h λ⎛⎫=- ⎪⎝⎭,由31042λ-≥,得23λ≥.故λ的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.【变式3-3】(2022秋·上海浦东新·高三校考阶段练习)设()e xf x =,函数()g x 的图像和函数()f x 的图像关于y 轴对称.(1)若()()43f x g x =+,求x 的值.(2)令()()2f x h x x=,()22t x x x a =-++,若对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,求实数a 的取值范围.【答案】(1)ln 4x =;(2),12e⎛⎤-∞- ⎥⎝⎦【解析】(1)由题意得:()e xg x -=,则e e 43x x -=+,即2e e 340x x --=,解得:e 4x =或1-(舍去),所以ln 4x =;(2)()e 2x h x x=,()22t x x x a =-++,对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,则只需()e 2xh x x=在()0,+∞上的最小值大于等于()t x 在()0,+∞上的最大值,()()2e 12x x h x x-'=,当1x >时,()0h x '>,当01x <<时,()0h x '<,所以()e 2xh x x =在()1,+∞上单调递增,在()0,1上单调递减,故()e 2xh x x =在=1x 处取得最小值,()()min 1e 2h x h ==,()()22211t x x x a x a =-++=--++,()0,x ∈+∞,当=1x 时,()t x 取得最大值,()()max 11t x t a ==+,所以e 12a ≥+,故12e a ≤-.求实数a 的取值范围,12e⎛⎤-∞- ⎥⎝⎦.【题型4任意-存在性不等式成立问题】【例4】(2022秋·江苏常州·高三校联考阶段练习)已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,命题p :对任意[]10,3x ∈,都存在[]22,1x ∈--,使得()()12f x g x,则命题p 正确的一个充分不必要条件是()A .3mB .2mC .1mD .0m【答案】A【解析】p 为真,()f x 在[]0,3单调递增,()min ()00f x f ==,()g x 在[]2,1--单调递减,()min ()12g x g m =-=-,02m ∴≥-,2m ∴≥.又“3m ≥”是“2m ≥”的一个充分不必要条件.故选:A .【变式4-1】(2022秋·天津宝坻·高三天津市宝坻区第一中学校考期末)已知函数2()x x a f x x++=.(1)若()()1g x f x =-,判断()g x 的奇偶性并加以证明;(2)当12a =时,①用定义法证明函数()f x 在[1,)+∞上单调递增,再求函数()f x 在[1,)+∞上的最小值;②设()52h x kx k =+-,若对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤成立,求实数k 的取值范围.【答案】(1)见解析;(2)见解析【解析】(1)由已知2()x x a f x x++=,()()()()1=00ag x f x x x x=-+∈-∞+∞ ,,,,()()a a g x x x g x x x ⎛⎫-=--=-+=- ⎪⎝⎭故()g x 为奇函数.(2)①当12a =时,()112f x x x=++,[)12,1,x x ∀∈+∞,且12x x <()()()()()211212121212121211111=1222x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=-+--+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为[)12,1,x x ∞∈+,所以()120x x -<,121102x x ⎛⎫-> ⎝⎭,所以()()120f x f x -<即()()12f x f x <,故函数()f x 在[1,)+∞为单调递增,函数()f x 在[1,)+∞上的最小值为()15111=22f =++②由①知,1[1,2]x ∈,所以()1513,24f x ⎡⎤∈⎢⎥⎣⎦,当0k =时,()25h x =,()()12f x h x ≤成立,符合题意.当0k >时,22()52h x kx k =+-在2[0,1]x ∈为单调递增,[]2()52,5h x k k ∈--对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤故()()12max max f x h x ≤,即1354k ≤-,解得704k <≤当0k <时,22()52h x kx k =+-在2[0,1]x ∈为单调递减,[]2()552h x k k ∈--,同理:()()12max max f x h x ≤,即13524k ≤-,解得0k <综上可知:k 的取值范围为74⎛⎤-∞ ⎥⎝⎦,.【变式4-2】(2022秋·广东广州·高三广东实验中学校考阶段练习)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =-(1)判断()f x 的奇偶性;(2)求函数()f x 在区间[]3,3-上的最大值;(3)若][()21,1,1,1,<22x a f x m am ∃∈-∀∈---⎡⎤⎣⎦恒成立,求实数m 的取值范围.【答案】(1)奇函数,理由见解析;(2)最大值为(3)6f -=;(3)2m <-或2m >.【解析】(1)令==0x y ,则(0)2(0)f f =,可得(0)=0f ,令y x =-,则(0)()()0f f x f x =+-=,可得()()f x f x -=-,又()f x 定义域为R ,故()f x 为奇函数.(2)令12=+>=x x y x x ,则1212()=()+()f x f x f x x -,且120x x ->,因为0x >时,()0f x <,所以1212()()=()<0f x f x f x x --,故12()()f x f x <,即()f x 在定义域上单调递减,所以()f x 在[]3,3-上的最大值为(3)=(12)=(1)+(2)=3(1)=3(1)=6f f f f f f -------.(3)由(2),()f x 在[]1,1-上min ()=(1)=2f x f -,2[1,1],[1,1],()<22x a f x m am ∃∈-∀∈---恒成立,即2[1,1],22>2a m am ∀∈----恒成立,所以2[1,1],()=2>0a g a m ma ∀∈--恒成立,显然0m =时不成立,则2>0(1)=2>0m g m m -⎧⎨⎩,可得2m >;2<0(1)=+2>0m g m m -⎧⎨⎩,可得2m <-;综上,2m <-或2m >.【变式4-3】(2022秋·河北邢台·高三校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()()2log 21x f x kx =+-,()()g x f x x =+.(1)求k 的值;若函数()f x 的定义域为[]0,4,求()()22f x xh x +=的值域.(2)设()4ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.【答案】(1)12k =;()h x 值域为[]2,17;(2)3e 1,2⎡⎫++∞⎪⎢⎣⎭【解析】(1)()()()()22212log log 21log 222102xx x x f x f x kx kx kx k x -+--=+-++=+=-= ,210∴-=k ,解得:12k =,()()21log 212xf x x ∴=+-;若()f x 定义域为[]0,4,则由024x ≤≤得:02x ≤≤,即()2f x 的定义域为[]0,2;()()222log 21x f x x +=+ ,()()22221f x x x h x +∴==+,∴当[]0,2x ∈时,[]2212,17x +∈,()h x ∴值域为[]2,17.(2)由(1)得:()()21log 212xg x x =++;21x y =+ 在R 上单调递增,()2log 21xy ∴=+在R 上单调递增,又12y x =在R 上单调递增,()g x ∴在R 上单调递增;当[]0,3x ∈时,()()min 01g x g ==;对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,∴存在22e,e x ⎡⎤∈⎣⎦,4ln 211x x x mx +-+≤,即32ln m x x ≥+,3ln y x x =+ 在2,e e ⎡⎤⎣⎦上单调递增,()33min ln e 1x x ∴+=+,32e 1m ∴≥+,解得:3e 12m +≥,即实数m 的取值范围为3e 1,2⎡⎫++∞⎪⎢⎣⎭.【题型5存在-存在性不等式成立问题】【例5】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)已知函数()1f x x x a =-+.(1)当0a =时,解不等式()()2122f x f x -++>;(2)若存在1x ,(]2,ln 2x ∈-∞,使得()()12e e3x xf f ->,求实数a 的取值范围.【答案】(1)1,3⎛⎫-+∞ ⎪⎝⎭;(2)()1,23,2⎛⎫-∞⋃+∞⎪⎝⎭【解析】(1)当0a =时,()1f x x x =+,记()22,0,0x x g x x x x x ⎧-<==⎨≥⎩,则()()g x g x -=-,故()g x 为奇函数,且()g x 在R 上单调递增,不等式()()2122f x f x -++>化为()()211212g x g x -++++>,即()()2120g x g x -++>,进一步化为()()212g x g x ->-+,即()()212g x g x ->--,从而由()g x 在R 上单调递增,得212x x ->--,解得13x >-,故不等式的解集为1,3⎛⎫-+∞ ⎪⎝⎭.(2)设11e xt =,22e x t =,则问题转化为存在(]12,0,2t t ∈,使得()()123f t f t ->,又注意到0t >时,()11f t t t a =-+>,且()01f =,可知问题等价于存在(]0,2t ∈,()4f t >,即3t t a ->在(]0,2t ∈上有解.即3t a t ->在(]0,2t ∈上有解,于是3a t t ->或3a t t-<-在(]0,2t ∈上有解,进而3a t t >+或3a t t<-在(]0,2t ∈上有解,由函数()3g t t t =+在(3上单调递减,在3,2⎡⎤⎣⎦上单调递增,()3h t t t=-在(]0,2上单调递增,可知()min 323g t g==()()max 122h t h ==,故a 的取值范围是()1,23,2⎛⎫-∞⋃+∞ ⎪⎝⎭.【变式5-1】(2022秋·江苏泰州·高一靖江高级中学校考期末)已知函数()()121,2121x x x f x g x ++==--(1)利用函数单调性的定义,判断并证明函数()f x 在区间()0,∞+上的单调性;(2)若存在实数()12,0,x x ∈+∞且12x x <,使得()f x 在区间[]12,x x 上的值域为()()21,m m g x g x ⎡⎤⎢⎥⎢⎥⎣⎦,求实数m 的取值范围.【答案】(1)()f x 在区间()0,∞+上是减函数,详见解析;;(2)()9,+∞.【解析】(1)由题可得()21212121x x x f x +==+--,()f x 在区间()0,∞+上是减函数,任取()12,0,x x ∈+∞,且12x x <,则21221x x >>,则()()()()()22111212222221121212121x x x x x x f x f x -⎛⎫⎛⎫-=+-+= ⎪ ⎪----⎝⎭⎝⎭,由题设知21121120,20,220x x x x--->>>,故()()()()()21121222202121x x x x f x f x --=>--,所以()()12f x f x >,所以()f x 在区间()0,∞+上是减函数;(2)由(1)知()f x 在区间()0,∞+上是减函数,所以当120x x <<时,()f x 在区间[]12,x x 上单调递减,所以函数()f x 在区间[]12,x x 上的值域为()()2121212121,,2121x x x x f x f x ⎡⎤++⎡⎤=⎢⎥⎣⎦--⎣⎦,所以2221111121212121 2121x x x x x x m m ++⎧+=⎪⎪--⎨+⎪=⎪--⎩,所以1212121x x x m ++=--在()0,∞+上有两解,所以()()()22121210x x xm ⋅-+--=在()0,∞+上有两解,令21x t =-,则210x t =->,则关于t 的方程()()2120t t mt ++-=在()0,∞+上有两解,即()22520t m t +-+=在()0,∞+上有2解,所以220504Δ(5)160m m >⎧⎪-⎪>⎨⎪=-->⎪⎩,解得9m >,所以m 的取值范围为()9,+∞.【变式5-2】(2022秋·江西抚州·高三江西省抚州市第一中学校考阶段练习)已知()214f x x x =-++(1)解不等式()23f x x +≤;(2)若存在实数x 1,x 2,使得()21222f x x x a <-++,求实数a 的取值范围.【答案】(1)[)1,+∞;(2)()4,+∞【解析】(1)依题意,21423x x x -+++≤,不等式化为以下3个不等式组:①42(1)(4)23x x x x <-⎧⎨---+≤+⎩即423x x <-⎧⎪⎨≥-⎪⎩,无解,②412(1)(4)23x x x x-≤<⎧⎨--++≤+⎩即411x x -≤<⎧⎨≥⎩,无解,12(1)(4)23x x x x ≥⎧⎨-++≤+⎩,即13223x x x ≥⎧⎨+≤+⎩,解得1x ≥,所以不等式()23f x x +≤的解集为[)1,+∞.(2)因为()()()3246(41)321x x f x x x x x ⎧--<-⎪=-+-≤<⎨⎪+≥⎩所以当1x =时,()f x 取得最小值5()()222111=-++=--+++≤g x x x a x a a ,()max 1g x a =+若存在实数1x ,2x ,使得()21222f x x x a <-++,则()min max ()f x g x <即51a <+,所以4a >即实数a 的取值范围是()4,+∞.【变式5-3】(2022·全国·高三专题练习)已知函数()()2xx ax bf x x R e ++=∈的一个极值点是2x =.(1)求a 与b 的关系式,并求()f x 的单调区间;(2)设0a >,()22x g x a e -=,若存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,求实数a 的范围.【答案】(1)0a b +=,单调区间见解析;(2)0<<3a 【解析】(1)可求得()()22xx a x a b f x e -+-+-'=,()f x 的一个极值点是2x =,()()242220a a bf e-+-+-'∴==,解得0a b +=,()()()()2222xxx a x a x a x f x e e -+-+-+-'∴=,当2a =-时,()0f x '≤,()f x 单调递减,此时函数没有极值点,不符合题意,当2a <-时,令()0f x ¢>,解得2x a <<-,令()0f x '<,解得2x <或x a >-,当2a >-时,令()0f x ¢>,解得2a x -<<,令()0f x '<,解得x a <-或2x >,综上,当2a <-时,()f x 的单调递增区间为()2,a -,单调递减区间为(),2∞-,(),a -+∞;当2a >-时,()f x 的单调递增区间为(),2a -,单调递减区间为(),a -∞-,()2,∞+;(2)()2xx ax a f x e +-=,由(1)可知,0a >时,()f x 在()0,2单调递增,在()2,3单调递减,()()2max 42af x f e +∴==,()00f a =-< ,()39230a f e +=>,()min f x a ∴=-,()22x g x a e-= 在[]0,3单调递增,()()22min 0ag x g e∴==,()()2max 3g x g a e ==,存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,即存在1x ,[]20,3x ∈,使得()()()2122222g x f x g x e e -<<+成立,2222222240a a e e aa e e e a ⎧-<+⎪⎪+⎪∴-<⎨⎪>⎪⎪⎩,解得0<<3a .【题型6任意-存在性等式成立问题】【例6】(2023·全国·高三对口高考)已知函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,()π2cos 13g x k x ⎛⎫=-- ⎪⎝⎭,若对任意π4π,33t ⎡⎤∈⎢⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,则实数k 的可能取值是().A .54B .74C .94D .114【答案】B【解析】当π4π,33x ⎡⎤∈⎢⎣⎦,有π1π5π3266x ≤+≤,故11πsin 1226x ⎛⎫≤+≤ ⎪⎝⎭,所以1π12sin 226x ⎛⎫≤+≤ ⎪⎝⎭,故()f x 的值域为[]1,2.当π2π,63x ⎛⎫∈ ⎪⎝⎭,有πππ633x -<-<,故1πcos 123x ⎛⎫<-≤ ⎪⎝⎭,所以π12cos 23x ⎛⎫<-≤ ⎪⎝⎭,当0k >时,()g x 的值域为(1,21]k k --,因为任意π4π,33t ⎡⎤∈⎢⎥⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,故[]1,2(1,21]k k ⊆--,故011212k k k >⎧⎪-<⎨⎪-≥⎩,即322k ≤<.当0k <,同理有[1,2][21,1)k k ⊆--,故012211k k k <⎧⎪->⎨⎪-≥⎩,此不等式组无解.综上,322k ≤<.四个选项中,只有37224≤<.故选:B.。
微专题不等式恒成立问题常见类型及解法
恒成立问题常见类型及解法恒成立问题在解题过程中大致可分为以下几种类型:(1)一次函数型;(2)二次函数型;(3)变量分离型;(4)利用函数的性质求解;(5)直接根据函数的图象求解;(6)反证法求解。
一、一次函数型给定一次函数()==+y f x kx b (k ≠0),若()=y f x 在[m,n]内恒有()f x >0,则根据函数的图象(线段)可得①0()0>⎧⎨>⎩k f m 或②0()0<⎧⎨>⎩k f n ,也可合并成f (m)0f (n)0>⎧⎨>⎩,同理,若在[,]m n 内恒有()0<f x ,则有f (m)0f (n)0<⎧⎨<⎩.典例1.若不等式2x -1>()21-m x 对一切[]2,2∈-m 都成立,求实数x 的取值范围。
【解析】令f (m)=(21-x )m -2x +1,则上述问题即可转化为关于m 的一次函数=y ()f m 在区间[-2,2]内函数值小于0恒成立的问题。
考察区间端点,只要(2)(2)-⎧⎨⎩<0,<0f x f 即x的取值范围是(12,12). 二、二次函数型若二次函数2(0,)=++≠∈y ax bx ca x R 的函数值大于(或小于)0恒成立,则有a 00>⎧⎨∆<⎩(或00a ì<ïïíïD <ïî),若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及二次函数的图象求解。
典例2关于x 的方程9x +(4+a )3x +4=0恒有解,求a 的取值范围。
【解析】方法1(利用韦达定理)设3x=t,则t>0.那么原方程有解即方程t 2+(4+a )t+4=0有正根。
1212Δ0(4)040≥⎧⎪∴+=-+>⎨⎪=>⎩g x x a x x ,即2(4a)160a 4⎧+-≥⎨<-⎩,a 0a 8a 4≥≤-⎧∴⎨<-⎩或,解得a ≤-8.方法2(利用根与系数的分布知识)即要求t 2+(4+a )t+4=0有正根。
不等式恒成立问题的大全
不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
本文就结合实例谈谈这类问题的一般求解策略。
一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,数a 的取值围。
解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。
所以实数a 的取值围为),31()1,(+∞--∞ 。
若二次不等式中x 的取值围有限制,则可利用根的分布解决问题。
例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,数m 的取值围。
解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
综上可得实数m 的取值围为)1,3[-。
二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔1.已知两个函数2()816f x x x k =+-,32()254g x x x x =++,其中k 为实数.(1)若对任意的[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值围; (2)若对任意的[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值围. (3)若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,求k 的取值围.【分析及解】 (1) 令k x x x x f x g x F +--=-=1232)()()(23, 问题转化为0)(≥x F 在 []3,3-∈x 上恒成立,即0)(min ≥x F 即可 ∵)2(61266)(22'--=--=x x x x x F , 由0)('=x F , 得2=x 或 1-=x .∵(3)45(3)9(1)7(2)20F k F k F k F k -=-=--=+=-,,,, ∴45)(min -=k x F , 由045≥-k , 解得 45≥k .(2)由题意可知当[]33,-∈x 时,都有min max )()(x g x f ≤. 由01616)('=+=x x f 得1-=x .∵k f k f --=--=-8)1(24)3(,, k f -=120)3(, ∴120)(max +-=k x f . 由04106)(2'=++=x x x g 得321-=-=x x 或, ∵21)3(-=-g , 111)3(=g , 1)1(-=-g , 2728)32(-=-g ,∴21)(min -=x g .则21120-≤-k , 解得141≥k .(3) 若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,等价于()f x 的值域是()g x 的值域的子集,由(2)可知, 2()816f x x x k =+-在[]3,3-的值域为[]8,120k k ---+,32()254g x x x x =++在[]3,3-的值域为[]21,111-,于是,[][]8,12021,111k k ---+⊆-,即满足 821,120111.k k --≥-⎧⎨-+≤⎩解得913k ≤≤2.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,数a 的取值围。
不等式恒成立问题
不等式恒成立问题【教学目标】(1)理解恒成立问题的充要条件,掌握解决此类问题的基本方法;(2)培养分析、解决问题的能力,体验函数思想、分类讨论的思想、数形结合与转化思想; (3)通过问题的探究,体验成功的喜悦【教学重点】理解解决恒成立问题的实质,有效掌握恒成立问题的基本技能 【教学难点】利用转化思想,通过函数性质和图像化归至最值问题来处理恒成立问题 【学情分析】经过一轮复习,学生较系统的复习了高中数学所有的基本知识点,对恒成立问题在不同的知识点都有所涉及,但缺乏系统的归纳整理,本节的重点即在学生已有的方法基础上,对高中数学解决此类问题进行梳理、归纳、整合、引申,形成方法的体系,并能对一些结论和规律适当拓展,扩大学生的知识面,达到训练的目的。
【教学设计】一.基础回顾,提炼方法【问题一】: 分析下列问题的区别,求相应参数的取值范围 (1)R x ∈∀,不等式0322≥-+-m x x 恒成立,求m 的取值范围 (2)不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的取值范围 (3) []2,1∈∀x ,不等式032≥+-mx x 恒成立,求m 的取值范围(4) []1,1-∈∀m ,不等式032≥+-m mx x 恒成立,求x 的取值范围【归纳总结一】对于二次不等式),0(0)(2R x a c bx ax x f ∈≠>++=有:0<a 且0<∆(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a(3)二次不等式02>++c bx ax 的解集是0,0≤∆<⇔a φ (4)二次不等式02<++c bx ax 的解集是0,0≤∆>⇔a φ【归纳总结二】二次项系数分类【归纳总结三】解决不等式恒利问题的基本方法 (1)判别式法(二次不等式专用) (2)函数性质0)(≥x f 在[]b a ,恒成立0)(min ≥⇔x f 0)(≤x f 在[]b a ,恒成立0)(max ≤⇔x f(3)分离系数法)(,x f a M x ≥∈∀M x x f a ∈≥⇔....)(max )(,x f a M x ≤∈∀M x x f a ∈≤⇔....)(min(4)数形结合法 (5)变换主元法 二. 反馈练习,小试牛刀(1)不等式0422≥++ax ax 对一切R x ∈的值恒成立,求a 的取值范围(2)对⎥⎦⎤ ⎝⎛∈∀21,0x ,x a xlog 4<恒成立,求a 的取值范围A .⎪⎪⎭⎫⎝⎛1,22 B .⎪⎪⎭⎫⎝⎛22,0 C .()2,1D .()2,2(3)已知函数x ax x f ln )(-=,若1)(>x f 在()+∞,1上恒成立,求a 的取值范围 (4)若函数kxex x f ⋅=)()0(≠k 在区间()1,1-内为单调递增函数,求k 的取值范围三.归纳总结,积累经验1. 解决恒成立问题的基本方法有哪些?2. 本节学习体现了那些基本数学思想?(1)化归转化思想 (2)数形结合思想 (3)分类讨论思想专题——不等式恒成立问题学习要求:理解解决恒成立问题的实质,有效掌握恒成立问题的基本技能【问题一】: 分析下列问题的区别,求相应参数的取值范围 (1)R x ∈∀,不等式0322≥-+-m x x 恒成立,求m 的取值范围. (2)不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的取值范围. (3) []2,1∈∀x ,不等式032≥+-mx x 恒成立,求m 的取值范围.(4) []1,1-∈∀m ,不等式032≥+-m mx x 恒成立,求x 的取值范围.【问题二】选择恰当的方法解决下列问题,积累解题经验(1)不等式0422≥++ax ax 对一切R x ∈的值恒成立,求a 的取值范围.(2)对⎥⎦⎤ ⎝⎛∈∀21,0x ,x a xlog 4<恒成立,求a 的取值范围.A .⎪⎪⎭⎫ ⎝⎛1,22 B .⎪⎪⎭⎫ ⎝⎛22,0 C .()2,1 D .()2,2(3)已知函数x ax x f ln )(-=,若1)(>x f 在()+∞,1上恒成立,求a 的取值范围. (4)若函数kxe x xf ⋅=)()0(≠k 在区间()1,1-内为单调递增函数,求k 的取值范围.。
不等式恒成立问题解题方法汇总(含答案)
不等式恒成立问题解题方法汇总(含答案)不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.例7.若不等式对于恒成立,求的取值范围.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.例10.关于的不等式在上恒成立,求实数的取值范围.答案部分1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为解:(I)(过程略).(II)(过程略)函数的单调减区间为,函数的单调增区间为.(III)由(II)可知,函数在处取得极小值,此极小值也是最小值.要使()恒成立,只需,解得或.所以的取值范围为.评注:最值法是我们这里最常用的方法.恒成立;恒成立.2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.解:(I)(过程略)函数的单调增区间为,的单调减区间为(II)不等式等价于不等式,由于,知;设,则.由(I)知,,即;于是,,即在区间上为减函数.故在上的最小值为.所以的最大值为.评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.解:在同一平面直角坐标系内作出函数与函数在上的图象(如右),从图象中容易知道:当且时,函数的图象恒在函数上方,不合题意;当且时,欲使函数的图象恒在函数下方或部分点重合,就必须满足,即.故所求的的取值范围为.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.解:设,,则原问题转化为恒成立的问题.故应该有,解得或.所以实数的取值范围是.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I)递推式可以化归为,,所以数列是等比数列,可以求得对于任意,.(II)假设对于任意有,取就有解得;下面只要证明当时,就有对任意有由通项公式得当()时,当()时,,可见总有.故的取值范围是评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.解:(i)当时,显然<0成立,此时,(ii)当时,由<0,可得<<,令则>0,∴是单调递增,可知<0,∴是单调递减,可知此时的范围是(—1,3)综合i、ii得:的范围是(—1,3).例7.若不等式对于恒成立,求的取值范围.解:(只考虑与本案有关的一种方法)解:对进行分段讨论,当时,不等式恒成立,所以,此时;当时,不等式就化为,此时的最小值为,所以;当时,不等式就化为,此时的最大值为,所以;由于对上面的三个范围要求同时满足,则所求的的范围应该是上三个的范围的交集即区间说明:这里对变量进行分段来处理,那么所求的对三段的要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.解:设,则,有.这样,,则,函数在为减函数.因此;而(当且仅当时取等号),又,所以的取值范围是.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.解:当时,不等式化为,显然对一切实数恒成立;当时,要使不等式一切实数恒成立,须有,解得.综上可知,所求的实数的取值范围是.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于的不等式在上恒成立,求实数的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵,∴不等式可以化为;下面只要求在时的最小值即可,分段处理如下.当时,,,再令,,它的根为;所以在区间上有,递增,在区间上有,递减,则就有在的最大值是,这样就有,即在区间是递减.同理可以证明在区间是递增;所以,在时的最小值为,即.技巧解:由于,所以,,两个等号成立都是在时;从而有(时取等号),即.评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
不等式的恒成立、能成立、恰成立问题
不等式的恒成立、能成立、恰成立问题1.恒成立问题:恒成立问题的基本类型类型1:对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m , 令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x 。
类型2:设)0()(2≠++=a c bx ax x f ],[βα∈x(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f ],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 例2:若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围. 12m >- 类型3:设)0()(2≠++=a c bx ax x f ,R x ∈(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
不等式 恒成立问题
由题意得,对于 恒成立 对于 恒成立,令 ,设 ,则 ,
, , k的取值范围是k> .
解:令 , 所以原不等式可化为: ,
要使上式在 上恒成立,只须求出 在 上的最小值即可。
注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。
四、变换主元法
处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量实行“换位”思考,往往会使问题降次、简化。
例4.对任意 ,不等式 恒成立,求 的取值范围。
1) 函数 图象恒在函数 图象上方;
2) 函数 图象恒在函数 图象下上方。
例5:已知 ,求实数a的取值范围。
解析:由 ,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由 得到a分别等于2和0.5,并作出函数 的图象,所以,要想使函数 在区间 中恒成立,只须 在区间 对应的图象在 在区间 对应图象的上面即可。当 才能保证,而 才能够,所以 。
3.设 ,当 时, 恒成立,求实数 的取值范围。
解:设 ,则当 时, 恒成立
当 时, 显然成立;
当 时,如图, 恒成立的充要条件为:
解得 。
综上可得实数 的取值范围为 。
4:在 ABC中,已知 恒成立,求实数m的范围。
解析:由
, , 恒成立, ,即 恒成立,
5、若不等式 对满足 的所有 都成立,求 的取值范围。
解:设 ,对满足 的 , 恒成立,
解得:
6、若不等式 在 内恒成立,求实数 的取值范围。
解:由题意知: 在 内恒成立,
在同一坐标系内,分别作出函数 和
观察两函数图象,当 时,若 函数 的图象显然在函数 图象的下方,所以不成立;
不等式有解与恒成立问题
不等式恒成立与能成立问题学号 姓名不等式恒成立指不等式对指定其间上的任意值都成立;不等式能成立指不等式在指定其间上至少有一个解(或称有解)。
下面从三个例子针对这两类问题的解决策略作比较说明。
例1.(1)若不等式()350x a -+<在[]1,1x ∈-内恒成立,求实数a 的取值范围。
(2).若不等式()350x a -+<在[]1,1x ∈-内能成立,求实数a 的取值范围。
例2.(1)若不等式22310x x m ++-≥在[]0,1x ∈内恒成立,求实数m的取值范围. (2)若不等式22310x x m ++-≥在[]0,1x ∈有解,求实数m的取值范围.例3.(1)若不等式245462x x a x -+≤+-在[]3,5x ∈内恒成立,求实数a的取值范围. (2)若不等式245462x x a x -+≤+-在[]3,5x ∈内有解,求实数a的取值范围。
总结:1.不等式恒成立与能成立(有解)解法策略比较:2.恒成立的参数范围是有解的参数范围的子集。
3. 不等式恒成立与能成立(有解)问题都是转化为最值解决。
作业:1.已知关于x 的不等式2350x a +-<。
(1)若此不等式对[]1,5x ∈上恒成立,求实数a的取值范围。
(2)若此不等式对[]1,5x ∈上能成立,求实数a的取值范围。
2.已知关于x 的不等式20x a +>。
(1)若此不等式对[]1,2x ∈上恒成立,求实数a的取值范围。
(2)若此不等式对[]1,2x ∈上能成立,求实数a的取值范围。
3. 已知关于x 的不等式2+2310x x a -+>。
(1)若此不等式对[]0,1x ∈上恒成立,求实数a的取值范围。
(2)若此不等式在[]0,1x ∈上有解,求实数a的取值范围。
4. 若不等式4213a x x +≤+-在[]0,1x ∈内有解,求实数a的取值范围。
不等式恒成立问题3种基本方法
不等式恒成立问题3种基本方法不等式恒成立问题是指在数学中有特定条件下,当不等式满足某些条件时,就能证明不等式恒成立。
一般来说,要证明不等式恒成立,都是采用一定的技巧和方法,其中,最常用的三种方法包括把不等式化简为等式、归纳法或组合法以及图解法。
1.不等式化简为等式最常用的一种方法是将不等式化简为等式,这种方法最为直观,也是最容易的方法,也就是利用数学语言,利用数学公式将不等式化为等式,然后利用数学推论让等式恒成立。
例1:y+2除以3大于9,则y大于17令y+2=3x得3x除以3大于9化简得 x大于9代入y+2=3x,y大于17所以y+2除以3大于9时,y大于17。
2.纳法或组合法归纳法或组合法是比较常用的一种方法,也称为反演法。
特别是在分析比较复杂的不等式时,往往可以借助这种方法。
归纳法或组合法的步骤是:1首先分析不等式的全部特性,然后根据不等式的特性进行分析,把这些特性分为若干步,每步解决一个特殊问题;2)然后利用反演法,逐步推出最后的结论。
例 2:y>8,则9-y<1第一步: y>8明 y>8成立的第二步:y>8带入y-8>0,即可推出y-8的值大于0第三步:y-8>0带入9-y<1,即可推出9-y的值小于1第四步:以上四步推出,若y>8,则9-y<13.解法图解法是把问题的定义,公式,结果等用图示表示出来,从而把问题用图形化的方式来分析。
例 3:|x-2|≤3,则-1≤x≤5由于|x-2|≤3,即x-2≤3 x-2≥-3,因此可以把上述问题用图形化的方式来分析,即x-2=3时表示x-2≤3,x-2=-3时表示x-2≥-3,两条线在x=5和x=-1的位置相交,由此可以推出-1≤x≤5。
通过以上三种方法可以解决许多不等式恒成立的问题,它们各有优缺点,需要在实际操作中根据不等式本身的特点来选择最合适的方法,以达到最好的解决效果。
但是,无论如何,从本质上来讲,学习和掌握数学,尤其是求解不等式恒成立问题,关键在于不断积累知识,勤加练习,加强技巧。
求解不等式恒成立问题的三种途径
考点透视不等式恒成立问题的常见命题形式有:(1)证明某个不等式恒成立;(2)根据恒成立的不等式求参数的取值范围.求解不等式恒成立问题的常用思路有:构造函数、分离参数、数形结合等.对于不同的不等式,往往需采用不同的途径进行求解.下面结合实例来进行探究.一、构造函数在求解不等式恒成立问题时,我们可先将不等式左右两边的式子移项、变形;然后将不等式构造成函数式,将问题转化为函数最值问题,通过研究函数的单调性,求得函数的最值,来证明不等式恒成立.在求函数的最值时,可根据函数单调性的定义,或导函数与函数单调性之间的关系来判断函数的单调性;也可以利用简单基本函数的单调性来求得函数的最大、最小值,建立使不等式恒成立的式子,即可解题.例1.求证:当x >-1时,1-1x +1≤ln ()x +1≤x 恒成立.证明:设f ()x =ln ()x +1-x ,求导可得f ′()x =1x +1-1=-x x +1,因为当-1<x <0时,f ′()x >0,当x >0时,f ′()x <0,所以函数f ()x 在()-1,0上单调递增,在()0,+∞上单调递减,即f ()x ≤f ()0=0,故f ()x =ln ()x +1-x ≤0,即ln ()x +1≤x .令g ()x =ln ()x +1+1x +1-1,则g ′()x =1x +1-1()x +12=x ()x +12,因为当-1<x <0时,g ′()x <0,当x >0时,g ′()x >0,所以函数g ()x 在()-1,0上单调递减,在()0,+∞上单调递增,可知g ()x ≥g ()0=0,故ln ()x +1+1x +1-1≥0,ln ()x +1≥1-1x +1,综上可知,当x >-1时,不等式1-1x +1≤ln ()x +1≤x 恒成立.要证明目标不等式恒成立,需分两步进行,先证明ln ()x +1≤x ,再证明ln ()x +1≥1-1x +1.在证明这两个不等式时,都需要先将不等式左右两边的式子作差、移项,构造出新函数f ()x =ln ()x +1-x 、g ()x =ln ()x +1+1x +1-1;然后对函数求导,分析导函数与0之间的大小关系,判断出函数的单调性,进而求得函数的极值,从而得出f ()x min =0、g ()x max =0,即可证明f ()x ≤0、g ()x ≥0.例2.设函数f ()x =e x ln x +2e x -1x,曲线y =f ()x 在点()1,f ()1处的切线方程为y =e ()x -1+2,证明:不等式f ()x >1恒成立.证明:由f ()x >1可得x ln x >xe -x -2e,令g ()x =x ln x ,可得g ′()x =ln x +1,∵当x ∈æèöø0,1e 时,g ′()x <0;当x ∈æèöø1e ,+∞时,g ′()x >0,∴函数g ()x 在æèöø0,1e 上单调递减,在æèöø1e ,+∞上单调递增,∴g ()x ≥g æèöø1e =-1e ,令h ()x =xe -x -2e,则h ′()x =e -x ()1-x ,∵当x ∈()0,1时,h ′()x >0;当x ∈()1,+∞时,h ′()x <0,∴函数h ()x 在()0,1上单调递增,在()1,+∞上单调递减,∴h ()x ≤h ()1=-1e,∴当x >0时,g ()x >h ()x ,即不等式f ()x >1成立.由于不等式x ln x >xe -x -2e左右两侧的式子分别含有对数式、指数式,于是分别令g ()x =x ln x 、h ()x =xe -x -2e,那么只要证明g ()x min >h ()x max ,即可证明不等式恒成立.利用导数法求出函数g ()x 、h ()x 在定义域内的最值,即可证明不等式成立.在构造函数时,要注意观察不等式的结构特点,将其进行合理的变形,以便构造出合适的函数模型,从而顺利证明不等式.二、分离参数对于含参不等式恒成立问题,我们通常要采用分离参数法,将不等式中的参数、变量分离,即使不等式一侧的式子中含有参数、另一侧的式子中含有变量,得到形如a ≥f ()x 、a ≤f ()x 的不等式.探讨函数f ()x 在定义域内的最值与参数a 的大小关系,即可求得问赵瑛琦37考点透视题的答案.例3.已知函数f ()x =ln 2()1+x -x 21+x.(1)求函数f ()x 的单调区间;(2)若对于任意n ∈N ∗,不等式æèöø1+1n n +a≤e 恒成立,求参数a 的最大值.解:(1)函数f ()x 的单调递增区间为()-1,0,单调递减区间为()0,+∞;(过程略)(2)不等式æèöø1+1n n +a≤e 等价于()n +a ln æèöø1+1n ≤1,因为1+1n ≥1,所以a ≤1ln æèöø1+1n -n,设g ()x =1ln ()1+x -1x ,x ∈(]0,1,则g ′()x =-1()1+x ln 2()1+x +1x 2=()1+x ln 2()1+x -x 2x 2()1+x ln 2()1+x ,由(1)可得ln 2()1+x -x 21+x≤0,即()1+x ln 2()1+x -x 2≤0,故当x ∈(]0,1时,g ′()x ≤0,函数g ()x 单调递减,即g ()x 在(]0,1上的最小值为g ()1=1ln 2-1,故a 的最大值为1ln 2-1.由于参数a 为指数,所以考虑对不等式左右两边的式子取对数,以将参数分离,得到a ≤1ln æèöø1+1n -n .只要求得1ln æèöø1+1n -n的最小值,即可求得a 的最大值.于是构造函数g ()x =1ln ()1+x -1x ,利用导数法求得函数的最小值,即可解题.在分离参数时,可通过移项、取对数、取倒数等方式,使参数与变量分离.例4.已知函数f ()x =-x ln x +a ()x +1,若f ()x ≤2a 在[)2,+∞上恒成立,求实数a 的取值范围.解:当x ≥2时,由f ()x ≤2a 可得a ≤x ln xx -1,令g ()x =x ln x x -1,x ≥2,∴g ′()x =ln x -x +1()x -12,令h ()x =ln x -x +1,x ≥2,∴h ′()x =1x-1,∵当x ≥2时,h ′()x <0,函数h ()x 单调递减,∴h ()x ≤h ()2=ln 2+1>0,∴g ′()x >0,函数g ()x 在[)2,+∞上单调递增,∴g ()x ≥g ()2=2ln 2,∴a ≤g ()x min =g ()2=2ln 2,∴实数a 的取值范围为(]-∞,2ln 2.先将不等式变形,使参数a 单独在不等式的左边,得到不等式a ≤x ln xx -1;然后在定义域[)2,+∞内求不含参函数式的最小值,即可求得参数a 的取值范围.三、数形结合有时不等式中的代数式可用几何图形表示出来,如y =kx 表示的是一条直线;y =a x 、y =x a 表示的是两条曲线;x 2+y 2=1表示的是一个圆,此时就可以采用数形结合法,根据代数式的几何意义画出图形,通过分析图形中曲线、直线之间的位置关系,研究图形的性质,来证明不等式成立.例5.若不等式e x ≥kx 对任意x 恒成立,则实数k 的取值范围为_____.解:设过原点的直线与y =e x相切于点()x 0,ex 0,∵y ′=e x,∴由几何导数的意义可知切线的斜率为k =e x,∴切线的方程为y -e x 0=e x 0()x -x 0,∵切线经过点()0,0,可得x 0=1,∴切线的斜率k =e .由图可知,要使等式e x ≥kx 恒成立,需使y =e x的图象始终在直线y =kx 的上方,∴0≤k ≤e .根据不等式两侧式子的几何意义画出图形,即可将不等式问题看作函数y =e x 和直线y =kx 的位置关系问题.结合图形讨论函数y =e x 和直线y =kx 的位置关系,并根据导函数的几何意义求得切线的方程,即可得到关于参数的新不等式.运用数形结合法解题,需密切关注直线、曲线之间的临界情形,如相切、相交的情形,从而确定参数的临界值.可见,解答不等式恒成立问题,需注意以下几点:(1)仔细观察不等式的结构特点,并将其进行合理的变形,如作差、移项、分离参数;(2)合理构造函数模型,将问题转化为函数最值问题,以便利用导数法、函数的单调性求得最值;(3)灵活运用数形结合思想,以直观、便捷的方式来解题.(作者单位:江苏省泗洪姜堰高级中学)38。
不等式恒成立问题
不等式恒成立问题常见类型:在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题。
是历年高考的一个热点。
类型一. 二次不等式在R 上恒成立若二次函数2f(x)=ax +bx+c(a 0)≠在R 上大于0恒成立,则有0a >且0∆<;同理()0f x <在R 上大于0恒成立,则有0a <且0∆<。
其本质是确保()f x 的图像均在x 轴上方(或下方)。
例1. 若函数y =定义域为R ,求m 的取值范围。
解: y =R ,即2680mx mx m +++≥在R 上恒成立。
1 0m =时,80≥恒成立0m ∴=成立20m ≠时,由()()2036483210m m m m m >⎧⎪⎨∆=-+=-≤⎪⎩,得01m <≤ 综上,m 的取值范围为01m ≤≤.(最高次系数含参数时,先考虑系数为0的情况)类型二:转化为最值问题()f x a >对于一切x I ∈恒成立⇔min ()f x a >⇔min (())0f x a -> ()f x a <对于一切x I ∈恒成立⇔max ()f x a <⇔max (())0f x a -<例2:函数3()3f x x x a =-+,若()2f x ≤对于[0,2]x ∈恒成立,求a 的取值范围.(参数只在常数项位置)解: 2()333(1)(1)f x x x x '=-=+-由()0,[0,2]f x x '=∈得1x =(1)2,(0),(2)2f a f a f a =-+==+,max ()(2)2f x f a ==+要使()2f x ≤对于任意[0,2]x ∈恒成立,只需max ()2f x ≤即22a +≤, 解得0a ≤故a 的取值范围为0a ≤. (类型:练习1 5 6 7)类型三.分离参变量通过恒等变形将参数与变量分别置于不等号的两边,转化为类型二:已知不等式f(x,a)0≥(或0≤)对于任意(,)x m n ∈恒成立,求a 的取值范围。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。
不等式恒成立问题
不等式恒成立问题方法一:利用二次函数的判别式对于函数c bx ax x f ++=2)(,当R x ∈时,(1)0)(>x f 在R x ∈上恒成立0>⇔a 且0<∆;(2)0)(<x f 在R x ∈上恒成立0<⇔a 且0<∆;(注意0=a 的情况另外讨论) 例1、若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的取值范围。
方法二:分离参数法(1)max )()()(()(x f a g a x f a g >⇔>为参数)恒成立;(2)min )()()(()(x f a g a x f a g <⇔<为参数)恒成立;例2、函数),1[,2)(2+∞∈++=x xa x x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。
例3、已知函数24)(x x ax x f --=,]4,0(∈x 时0)(<x f 恒成立,求实数a 的取值范围。
方法三:含参法(1)min )(x )(x f m m x f ≤⇔≥都成立对任意;(2)max )(x )(x f m m x f ≥⇔≤都成立对任意;例4、当)2,1(∈x 时,不等式042<++mx x 恒成立,则m 的取值范围是 ;例5、设,22)(2+-=mx x x f 当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围;例6、已知函数,1)(2-+=mx x x f 若对任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ;强调:主元的确定问题例7、对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围。
例8、若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的取值范围。
不等式恒成立、能成立、恰成立问题专题(17例题+15练习题+答案与解析)
不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处理方法1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A(2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。
例2、已知(),22x ax x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围;例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4、已知函数)0(ln)(44>-+=xcbxxaxxf在1=x处取得极值3c--,其中a、b为常数.(1)试确定a、b的值;(2)讨论函数)(xf的单调区间;(3)若对任意0>x,不等式22)(cxf-≥恒成立,求c的取值范围。
2、主参换位法例5、若不等式a10x-<对[]1,2x∈恒成立,求实数a的取值范围例6、若对于任意1a≤,不等式2(4)420x a x a+-+->恒成立,求实数x的取值范围例7、已知函数323()(1)132af x x x a x=-+++,其中a为实数.若不等式2()1f x x x a'--+>对任意(0)a∈+∞,都成立,求实数x的取值范围.3、分离参数法(1)将参数与变量分离,即化为()()g f xλ≥(或()()g f xλ≤)恒成立的形式;(2)求()f x在x D∈上的最大(或最小)值;(3)解不等式()max()g f xλ≥(或()()ming f xλ≤),得λ的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
, ea1 1 ea1 1
ea1 1,
g x g x
0
减
最小值
增
由以上, g x 在 , ea1 1 上是减函数,而在 ea1 1, 上是
增函数,注意到 g 0 0 ,
(1) 若 x ea1 1 0 ,即 a 1 ,由 g x 的单调性可知,在 x 0 时,
gmin x g 0 0 , (2)若 x ea1 1 0 ,即 a 1,由 g x 的单调性可知,
a 0恒成立的问题,又由 a是a 的一次函数,问题就容易解决了.
只需
1 0 1 0
即
3x2
3x
2
x x
2 8
0, 0.
解得
2 3
x
1
故
x
2 3
,1
时,对满足
1
a
1的一切
a
的值,都有
g
x
0
数学123
引例
18.已知函数f(x)=x2 a(x0,aR). x
若f(x)在区间[2,+)是增函数,求 实数a的取值范围。
高三一轮复习专题课
数学123
高三数学复习中的恒成立问题,涉及到函数的性 质、图象,渗透着换元、化归、数形结合、函数等 思想方法,有利于考查学生的综合解题能力,因 此备受命题者的青睐,也成为历年高考的一个热 点。
06年 全国 陕西 湖北 湖南 江西 北京 广东 全国
高考 卷ⅰ 卷
卷
卷
卷
卷
卷
卷ⅱ
07年 全国 陕西 福建 辽宁 江西 上海 安徽 天津
数学123
解 法1
f
'
x
2x
a x2
要 使 fx 在 区 间 2 , 是 增 函 数 ,
只 需 当 x 2 时 , f'x 0 恒 成 立
即 2xx a 20, 则 a2x3恒 成 立 。
故 当 a 1 6 时 , fx 在 区 间 2 , 恒 成 立 。
数学123
解设 法x 2 x21 x1xx 2x1 2 2 x, 1x2fxx 11 x2fx a2 x 1 2 x a 1 x 2 2 x a 2 要 使 f x 在 区 间 2 , 单 增 , 只 需 f x 1 f x 2 0
当x0时,a00恒成立,aR
当x 0时,a1
当x 0时,a1
a1,1 数学123
分类讨论
变式思考
(06江西)对一切实数,不等式
x2 a| x| 1≥0恒成立,则实数 a
的取值范围是( C )
A、(-∞,-2] B、[-2,2] C、[-2,+∞) D、[0,+∞)
解法1
间接法(验证法);
数学123
【分析及解】由题意 g x 3x2 ax 3a 5。则 g x 3x2 ax 3a 5<0 在 1 a 1上恒成立。
数学123
由题意 g x 3x2 ax 3a 5。由于参数 a 的范围的存在,改为以 a 为变
量的函数,即
令 a 3 xa 3x2 5, 1 a 1 ,
则对 1 a 1,恒有 gx 0 ,即a 0 ,从而转化为对 1 a 1,
ⅱ.若f(x)≤a(x∈D) 恒成立 f(x)max(x∈D)≤a;
数学123
变式思考
(2006 年,四川卷)
已知函数 f x x3 3ax 1, g x f ' x ax 5 ,其中 f ' x 是
的导函数
对满足 1 a 1的一切 a 的值,都有 g x 0 ,求实数 x 的取
值范围;
gmin x g 0 0 .此时, g x 0 不恒成立.
由以上, 实数 a 的取值范围是 a 1 .
数学123
题后反思
类似恒成立问题或是证明形如f(x)>g(x)不等式 模式性非常强。 第一步:构造函数h(x)=f(x)-g(x)。 第二步:求导研究h(x)单调性极值。 第三步:利用不等式性质求解或证明。Fra bibliotek解法2
当 x= 0 时 , 易 知 不 等 式 恒 成 立 。 当x 0时,原式可化为 a x (x1) 即a -( x 1 )
x 易得a-( x 1)2
x
a -2
数学123
题后反思
1.与恒成立有关的客观题优先考虑验证法。 2.如果作图较易,也可用数形结合。 3.分离变量法解题依据:
ⅰ.若f(x)≥a(x∈D) 恒成立 f(x)min(x∈D)≥a;
数学123
【分析及解】构造函数 g x f (x) ax (x 1)ln(x 1) ax.
于是问题转化为:对所有的 x 0, g x 0 恒成立 对所有的
x 0, gmin x 0 成立.下面求 g x 的最小值.
g x ln x 1 1 a. 令 g x 0 得 x ea1 1.
数学123
变式思考
当x∈(1,2)时,函数f(x)=(x-1)2--logax函数值恒为负值,
求a的取值范围。
分析:题意即不等式(x-1)2<logax恒成立,左边为二次函数,图象 是抛物线,右边为常见的对数函数的图象,故可以通过图象求解。
解:设y1=(x-1)2,y2=logax,则y1的图象为右图所示的抛物线,
高考 卷ⅰ 卷
卷
卷
卷
卷
卷
卷
浙江 重庆 山东 四川
卷
卷
卷
卷
数学123
引例
• 7.若对任意R,不等式 x ax恒成立,则实数a的
取值范围是( B ) (07安徽卷)
A. a<-1
B. | a≤| 1
C. a| <| 1 D.a≥1
方法1验证法
数学123
引例
方法2
y= x
y
y=ax
O
x
数形结合
方法3 a x x 恒 成 立 , 分 三 种 情 况
即 x 1 x 2 x 1 x 2 a 0 恒 成 立 a x 1 x 2 x 1 x 2 恒 成 立 , 即 a x 1 x 2 x 1 x 2 m i n
由 x 2 x 1 2 得 x 1 x 2x 1 x 2 1 6
故a 16
数学123
题后反思
1.转化思想:告诉我们函数单调性、奇偶性条 件相当于告诉我们恒成立条件。 2.由二次函数与反比例函数(指数函数,自然 对数)复合成的复合函数一般可用导数法研究 性质。 3 .利用导数法求单调区间与体现单调性的区别
ⅰ.求单调区间,只需解f(x)>0或f(x)<0. ⅱ.给出在某区间上的单调性求变量范围,则需解f(x) ≥0或f(x) ≤ 0.
数学123
变式思考
(2006 年,全国卷Ⅱ,理) 设函数 f (x) (x 1) ln(x 1).若对所有的 x 0, 都有 f (x) ax 成立,求实数 a 的取值范围。