先进制造技术(英文版第三版)唐一平,第四章翻译
先进制造技术(英文)
先进制造技术(英文)课程编码:202299 课程英文译名:Advanced Manufacturing Technology 课程类别:学科基础选修课开课对象:机械工程机自动化专业开课学期:5学分:2学分;总学时:32学时;理论课学时:32学时;实践学时:学时;上机学时: 0 学时先修课程:大学英语教材:先进制造技术(英文版),唐一平,机械工业出版社,2004年2月第1版第2次印刷,(ISBN 7-111-10803-5)参考书:【1】21st Century Manufacturing, Paul Kenneth Wright, 清华大学出版社,2002【2】先进制造技术专业英语阅读,屈利刚,化学工业出版社,2006一、课程的性质、目的和任务先进制造技术(AMT)是一门动态的、以传统的机械制造技术为基础,融合包括计算机、信息、自动控制、材料、能源、环保、管理科学等学科成果的,新技术与现代系统管理交叉的新兴课程,并且随着新科技、新理念的不断出现而不断更新、充实和发展。
先进制造技术是机械类本科学生掌握和了解现代制造技术发展情况和技术前沿的基础选修课程,既是基础英语教学的后续英语教学课程,也是一门双语教学的学科基础课程。
通过本课程学习,使学生尽快熟悉机械专业的技术词汇,广泛阅读专业文献,全面了解先进制造技术的最新发展动态,更新制造技术理念。
本课程的任务是:1.了解目前制造业中先进的制造技术和制造工艺;2.了解国内外先进制造技术的发展趋势;3.了解先进制造技术的应用情况和场合;4.初步掌握使用英语进行专业交流能力。
二、课程的基本要求在熟悉机械专业的技术词汇的基础上,培养学生具有查寻最新的技术资料和广泛阅读本专业领域最新文献及使用英语进行专业交流等能力。
三、教学内容及学时分配四、习题及课外教学要求1)结合本科生导师的研究内容,利用因特网查阅相关的文献资料2)选择一个主题,参加课堂上模拟的“21世纪制造业前沿国际论坛”,使用英语进行专业交流,并作为课程考核一部分。
先进制造技术(英文版第三版)唐一平,第二章翻译
先进制造技术(英文版第三版)唐一平,第二章翻译P21计算机网络是一个热门的话题,这些天,各大报纸,流行杂志,专业杂志,甚至广播和电视都在谈论“性”和“国家信息基础设施,信息高速公路”。
让我们想象一下,一个国际信息高速公路可能看起来像:来自世界各地的?用户将能够连接到网络。
会有大学,政府机构和高速接入,全球商业设施。
?网络将使用标准的通信协议。
通信协议是建立一系列的法规数据交换的一致性(处理器和终端之间提供访问),不管什么品牌的电脑使用,无论是操作系统,无论计算机的尺寸。
?用户在这样的全球网络将能够交换电子邮件另一个消息传递的瞬间,在几秒或几分钟否则。
网络可以让不只是一对一的通信,但也将提供工具,让相隔距离个人组和时间进行讨论。
?网络将提供一个简单的,用户登录的标准方法世界各地的计算机上。
个人将利用这不仅从他们的家中或办公室,但也会利用网络在旅行的时候,他们可以回家。
?导航工具将很容易为个人巡航网络,看大学,商家提供的信息,图书馆,基础,和个人。
?指数)Q工具允许用户去浏览大型数据库,快速定位感兴趣的文档。
?用户将能够检索和播放电影,声音,和多媒体文件。
P22?网络将支持实时通信:人们可以互相交谈在线(打字,或者,使用合适的设备,通过音频链接),甚至会利用网络游戏的实时虚拟现实游戏。
?最后,网络将是一个双向的公路。
用户并不认为自己是消费者;相反,工具会使人成为一个信息提供者相对容易。
个人可以发布简历,他们写了论文,他们的家庭照片,他们的作品。
互联网是一个真正的,功能,全球数据网络。
所以,互联网可以被描述为一个“网络。
最快,最有能力的网络世界不会很有用的如果没有有价值的信息,为人们检索。
互联网不仅是人对人的电子邮箱中;它也是一个知识库^各种信息,“发布”信息的全球供应商。
中有一些信息是如何在网络中交换:许多大学都建立校园信息系统,或cwises,作为一种在一个地方,巩固校园信息和计算服务。
最cwises是通过互联网访问。
先进制造技术的新发展中英文翻译、外文翻译、外文文献翻译
外文原文:The new advanced manufacturing technology developmentAbstract : This paper has presented the problems facing today's manufacturing technology, advanced manufacturing discussed in the forefront of science, and a vision for the future development of advanced manufacturing technology.Keyword:Advanced manufacturing technologies; Frontier science; Applications prospectsModern manufacturing is an important pillar of the national economy and overall national strength and its GDP accounted for a general national GDP 20%~55%. In the composition of a country's business productivity, manufacturing technology around 60% of the general role. Experts believe that the various countries in the world economic competition, mainly manufacturing technology competition. Their competitiveness in the production of the final product market share. With the rapid economic and technological development and customer needs and the changing market environment, this competition is becoming increasingly fierce, and that Governments attach great importance to the advanced manufacturing technology research.1 .Current manufacturing science to solve problemsManufacturing science to solve the current problems focused on the following aspects :(1) Manufacturing systems is a complex systems, and manufacturing systems to meet both agility, rapid response and rapid reorganization of the capacity to learn from the information science, life science and social science interdisciplinary research, and explore new manufacturing system architecture, manufacturing models and manufacturing systems effective operational mechanism. Manufacturing systems optimized organizational structure and good performance is manufacturing systemmodelling, simulation and optimization of the main objectives. Manufacturing system architecture not only to create new enterprises both agility and responsiveness to the needs and the ability to reorganize significance, but also for the soft production equipment manufacturing enterprises bottom reorganization and dynamic capacity to set higher demands. Biological manufacturing outlook increasingly being introduced to the system to meet new demands manufacturing systems.(2) The rapid rise in support of manufacturing, geometric knowledge sharing has become a modern manufacturing constraints, product development and manufacturing technologies of the key issues. For example, in computer-aided design and manufacturing (CAD/CAM) integration, coordinates measurements (CMM) and robotics fields, in 3D real space (3-Real Space), there are a lot of geometric algorithm design and analysis, especially the geometric said, geometric calculation and geometric reasoning; In measurement and robot path planning and parts search spaces (such as Localization), the existence of space C- interspace (configuration space Configuration Space) geometric calculation and geometric reasoning; Objects in operation (rescue, paying and assembly, etc.) means paying more description and robot planning, campaign planning and assembly operations planning is needed in the types of space (Screw Space) geometric reasoning. Manufacturing process of physical and geometric mechanics phenomenon of scientific research to create a geometric calculation and geometric reasoning, and other aspects of the research topic, the theory pending further breakthrough, the new one door disciplines -- computer geometric are being increasingly broad and in-depth study.(3) In the modern manufacturing process, information not only manufacturing industries have become dominated the decisive factor, but also the most active ones. Manufacturing information systems to improve throughput of modern manufacturing has become a focus of scientific development. The manufacturing information system organization and structure required to create information access, integration and integration show three-dimensional in nature, measuring the multidimensional nature of the information, and information organizations nature. Information structure models in the manufacturing, manufacturing information consistency constraint, andthe dissemination of data processing and the manufacture of enormous knowledge base management, and other areas, there is a need to further breakthroughs.(4) The calculation of the wisdom of artificial intelligence tools and methods in the manufacture of a wide range of applications for manufacturing smart development. Category based on the calculation of biological evolution algorithms smart tools, including activation issues optimize GPS technology portfolio by growing concern is in the manufacture of the complete portfolio optimization problems combined speed and precision of GPS issues both in size constraints. Manufacturing wisdom manifested in the following aspects : wisdom activation, wisdom design, intelligent processing, robotics, intelligent control, intelligent process planning, smart diagnostic, and other aspects. These innovative products are the key theoretical issues, but also by creating a door for a science skills in the important basic issues. The focus in these issues, we can form the basis of product innovation research system.2. Modern mechanical engineering at the frontiers of scienceCross-integration between the different science will produce new scientific gathering, economic development and social progress of science and technology created new demands and expectations, thus creating a frontier science. Frontier science is settled and unsettled issues between the scientific community. Frontier science, with a clear domain, and dynamic character of the area. Works frontier science from the general basic science is an important characteristic of the actual works, it covers the key emerging science and technology issues. Ultrasonic electrical, ultra-high-speed machines, green design and manufacturing, and other fields, and has done a lot of research work, but innovation is the key question is not clear mechanical science. Large complex mechanical system design and performance optimization of product innovation design, smart structures and systems, intelligent robots and their dynamics, nano Mocaxue, manufacturing process 3D numerical simulations and physical simulation, precision and ultra-fine processing technology key basis, about 10 mega large and sophisticated equipment design and manufacturing base, virtual manufacturing and virtual instruments, nanometer measurement and instrumentation, parallel connection axis machine tools, and although the field ofmicro-electromechanical systems have done a lot of research, but there are still many key science and technology issues to be resolved. Information science, nano science, materials science, life science, management science and manufacturing science of the 21st century will be to change the mainstream science, and the resulting high-tech industry will change the face of the world. Therefore, the above areas of cross-development manufacturing systems and manufacturing informatics, nano manufacturing machinery and nano science, better machinery and better manufacturing science, management science and manufacturing systems will be critical to the 21st century mechanical engineering science is important frontier science.2.1 Manufacturing science and information science cross -- manufacturing informaticsMechanical and electrical products, chemical raw materials in the information. Many modern value added products primarily reflected in the information. Thus the manufacturing process for the acquisition and application of information is very important. Information science and technology is to create an important symbol of globalization and modernization. While the manufacturing technology began to explore product design and manufacturing processes, the nature of the information, on the other hand, to create technology to transform itself to adapt to the new information makes its manufacturing environment. Along with the manufacturing process and manufacturing systems to deepen understanding, researchers are trying to new concepts and approaches to their description and expression to achieve further control and optimization purposes.And manufacturing-related information mainly product information, technical information and information management in this area following major research direction and content :(1) manufacturing information acquisition, processing, storage, transmission and application of knowledge to create information and decision-making transformation.(2) Non-symbols expressing information, manufacturing information enables transmission, manufacturing information management, manufacturing informationintegrity in a state of non-production decision-making, management of virtual manufacturing, based on the network environment of the design and manufacturing, manufacturing process control and manufacturing systems science. These elements are manufactured in science and the scientific basis for the integration of product information, constitute the manufacture of the new branch of science -- to create informatics.2.2 Micro mechanical and manufacturing technology researchMicro-electronic mechanical systems (MEMS) refers to the collection of micro-sensors, micro-devices and the implementation of signal processing and control circuits, interface circuits, communications and power with the integration of micro-electromechanical system integrity. MEMS technology objectives through system miniaturization, to explore a new theory of integration, new functional components and systems. MEMS development will greatly facilitate the pocket of various products, miniaturization, a number of devices and systems to enhance the level of functional density, information density and Internet density, significantly saving, thin section. Not only can it reduce the cost of mechanical and electrical systems, but also to be completed and the size of many large systems impossible task. For example, using sophisticated 5μm diameter micro tweezers walls are made of a red blood cell can; Created to keep the cars 3mm size; In the magnetic field, like butterflies flying size aircraft. MEMS technology has opened up a completely new technology areas and industries, with many traditional sensors incomparable advantages in manufacturing, aerospace, transportation, telecommunications, agriculture, biomedical, environmental monitoring, military, families, and access to almost all areas have very broad application prospects.Micro machinery is machinery and electronic technology in nano-scale technology integration photogenic product. Back in 1959 scientists have raised the idea of micro-mechanical and micro-1962, the first silicon pressure sensors. 1987 California University of California Berkeley developed rotor diameter of the silicon micro-60~120 16ug m electrostatic electric motors, show produced using silicon micro-machining small movable structures and compatible with IC manufacturingmicro system potential. Micro-mechanical technology might like 20th century microelectronics technology, the technology of the world in the 21st century, economic development and national defense building a tremendous impact. Over the past 10 years, the development of micro-mechanical spectacular. Its characteristics are as follows : a considerable number of micro-components (micro structure, the implementation of micro-sensors and micro-machines, etc.) and micro-systems research success reflects the current and potential applications of value; The development of micro-manufacturing technology, particularly semiconductor processing technology have become small micro systems support technology; micro-electromechanical systems research needs of the interdisciplinary research team, micro-electromechanical systems technology in the development of microelectronics technology on the basis of multidisciplinary cross-frontier area of research, involving electronic engineering, mechanical engineering, materials engineering, physics, chemistry and biomedical engineering and other technical and scientific.The current micro-mechanical systems under the conditions of the campaign laws, the physical characteristics and micro components of the role of the mechanics payload acts lack adequate understanding is not yet in a theoretical basis for a micro-system design theory and methodology, and therefore can By experience and test methods research. Micro-mechanical systems, the existence of key scientific research issues of micro-scale system effects, physical properties and biochemical characteristics. Micro-system research are in the eve of a breakthrough, which is the in-depth study of the area.2.3 Material produced / manufactured parts integration of new technologies for processing.Material is a milestone in the progress of mankind, is the manufacturing and high-tech development. Every important to the success of the production and application of new materials, will promote the material and the promotion of national economic strength and military strength. 21, the world will be resource consumption-based economy to a knowledge-based industrial transformation for materials and parts and functions of a high performance, intelligent features; Requestmaterials and components designed to achieve quantitative-based and digitized; Prepare materials and components for the rapid, efficient and achieve both integration and integrated. Digital materials and components designed to be a simulation and optimization of materials and components to achieve high quality production / manufacturing and other integration, integrated manufacturing key. On the one hand, to be completed through computer simulation optimization can reduce the material is produced in the course of manufacture of spare parts and experimental links to the best craft programmes, materials and components to achieve high quality production / manufacturing; On the other hand, according to the requirements of different material properties, such as flexible modules volume, thermal expansion coefficient, magnetic performance, Research materials and components designed form. And the removal of traditional materials-manufacturing technology, and increase the level of information technology, the research group of synthetic materials is a process technology. Forming materials and components manufacture digital theory, technology and methods, such as rapid adoption of emerging technologies material growing principles, a breakthrough in the traditional law and to build law mechanical deformation processing many restrictions, no processing tools or dies, can rapidly create arbitrary complex shape and has a certain function 3D models or entity parts.2.4 machinery manufacturing breakthroughThe 21st century will be the century of life science, mechanical and life sciences depth integration will generate new concept products (such as better intelligence structure), to develop a new process (such as the growth processes shape) and the opening of new industries and to resolve product design, manufacturing processes and systems provide a series of problems new solutions. This is a highly innovative and leading edge area in the challenge.Earth's biological evolution in the long accumulated fine qualities of human manufacturing activities to address the various problems with examples and guidelines. Learning from life phenomena organizations operating complex systems and methods and techniques, manufacturing is the future solution to the current problems facing many an efficient way. Better manufacturing refers to the replicationof biological organs from organizations, since healing, self growth and evolution since the function of the model structure and operation of a manufacturing system and manufacturing process. If the manufacturing process mechanization, automation extends human physical and intelligent extension of the human intellectual, then "create better" may be said to extend its own organizational structure and human evolution process.Gene involved in the manufacture of biological science is the "self-organization" mechanism and its application in manufacturing systems. The so-called "self-organization" refers to a system in its internal mechanism driven by the organizational structure and operation mode learning, thereby enhancing the capacity for environmental adaptation process. Create better "since the organization" bottom-up mechanism for parallel product design and manufacturing processes of automatic generation, the dynamics of production systems and manufacturing systems and products more automatic a theoretical foundation and achieve superior conditions.Create a better manufacturing and life sciences "far edge hybrid" of the 21st century manufacturing will have an enormous impact. Create better research content is twofold :2.4.1 To create better livesResearch lives of the general phenomenon of the law and models, such as artificial life, cellular automatic machines, biological information processing skills, biological wisdom, biological-based organizational structure and mode of operation and the evolution of biological mechanisms and getting better;2.4.2 Oriented manufacturing breakthrough manufacturingResearch organizations better manufacturing systems since the mechanisms and methods, for example : based on full information-sharing breakthrough design principles, multi-discipline modules based on the distributed control and coordination mechanism based on the evolution of an excellent strategy; Study the concept of creating better system and its basis, such as : the formalization described space and better information shine upon relations better system and its evolution of complexity measurement methods.Machinery manufacturing is better and better mechanical science and life science, information science, materials science disciplines such as high integration, the study includes growth formative processes, better design and manufacturing systems, mechanical and biological wisdom better shape manufacturing. Currently doing research mostly forward exploratory work, with distinct characteristics of the basic research, if the research continues to seize opportunities that might arise revolutionary breakthroughs. Future research should concern areas of biological processing technology, better manufacturing system, based on rapid prototype manufacturing engineering technology organizations, as well as biological engineering related key technical basis.3. Modern manufacturing technology trendsSince the beginning of the 1990s, the nations of the world have manufacturing technology research and development as a national priority for the development of key technologies, such as the United States advanced manufacturing technology plan AMTP, Japan wisdom manufacturing technology (IMS) international cooperation schemes, Korea senior national plan of modern technology (G--7), Germany plans to manufacture 2000 and the EC Esprit and BRITE-EURAM plan.With the electronics, information, the constant development of new and high technologies, market demand individuality and diversity, the future of modern manufacturing technology to the overall development trends of the sophisticated, flexible, and networked, virtual and intelligent, green integrated, globalization direction.Current trends in modern manufacturing technology has the following nine areas :(1) Information technology, management techniques and technology closelyintegrated technology, modern production model will be continuousdevelopment.(2) Design techniques and more modern means.(3) Shaped and manufacture of sophisticated technology and manufacturingprocesses to achieve longer.(4) The formation of new special processing methods.(5) Development of a new generation of ultra-sophisticated, ultra-high-speedmanufacturing equipment.(6) Machining skills development for the engineering sciences.(7) Implementation of clean green manufacturing.(8)The widespread application of virtual reality technology to the manufacturingsector.(9) To create people-oriented.译文:先进制造技术的新发展摘要:本文介绍了当今制造技术面临的问题,论述了先进制造的前沿科学,并展望了先进制造技术的发展前景。
(完整)辽宁工程技术大学,先进制造技术,唐一平主编,英文版第三版,题库,翻译,复习资料
(完整)辽宁工程技术大学,先进制造技术,唐一平主编,英文版第三版,题库,翻译,复习资料编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)辽宁工程技术大学,先进制造技术,唐一平主编,英文版第三版,题库,翻译,复习资料)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)辽宁工程技术大学,先进制造技术,唐一平主编,英文版第三版,题库,翻译,复习资料的全部内容。
完形填空(1)The spokes of the wheel are made from various kinds of CAPACS involved in the activity .Each CAPACS has a communication link to the controlled database so that it will capture the data to form its own distributed database 。
Values are added the distributed database to meet the needs and requirements of its expected users. The application of CAPACS to the manufacturing process enables the total system to increase productivity,reduce waste, and produce things it would not otherwise be able to make. As a result, new technologies, demands for products of higher quality and lower production costs, and the needs for improved technology in a competitive society have caused extensive use of CAPACS。
先进制造技术英语作文
先进制造技术英语作文English:In recent years, advanced manufacturing technology has played a pivotal role in shaping industries across the globe. This technology encompasses a wide range of innovations, including automation, robotics, artificial intelligence, and additive manufacturing, among others. These advancements have revolutionized traditional manufacturing processes, leading to increased efficiency, reduced costs, and enhanced product quality. One of the most significant impacts of advanced manufacturing technology is its ability to streamline production. Automation and robotics, for example, can perform repetitive tasks with high precision and speed, reducing human error and allowing workers to focus on more complex tasks. Additionally, artificial intelligence has enabled manufacturers to predict maintenance needs and optimize production schedules, minimizing downtime and maximizing productivity. Additive manufacturing, or 3D printing, has also changed the game by allowing for rapid prototyping and customized production, reducing waste and shortening time to market. Moreover, advancedmanufacturing technology has positive environmental implications. By reducing material waste and energy consumption, these technologies contribute to sustainability and lower carbon footprints. As industries continue to evolve, the importance of advanced manufacturing technology will only grow, driving innovation and fostering economic growth.中文翻译:近年来,先进制造技术在全球范围内塑造了许多行业。
先 进 制 造 技 术 Advanced manufacturing technology
(2) 实体造型与仿真
(3) CAD系统的集成化
减速机三维数字化模型
2、CAE技术
计算机辅助工程分析(Computer Aided Engineering ,CAE)技 术,是指在零件或整机的数字化特征建模完成之后,运用有限 元及边界元等数值分析方法,对零件或整机对其未来的工作状 态和运行行为进行结构、动力、运动及各种物理场耦合等一系 列分析、模拟的计算机辅助分析方法,其目的是及早发现设计缺 陷、优化结构并证实未来的产品功能和性能的可用性和可靠性。 它与CAD和CAM技术构成了当今计算机技术在机械设计及制造 领域最重要的三大支撑技术。
在世界经济史上,英国是第一个被称为“世 界制造中心”的国家,从1760年至1830年工业 革命期间,英国制造业在全世界的比重从 1.9%上升到9.5%,后来又达到19.9%,英国以 占世界2%的人口控制了全世界工业生产的 30%~50%和接近五成的制成品贸易。当时, 英国无论在贸易、商业、金融、技术和管理等 方面在世界经济上都是第一位。特别是在1820 年,英国的工业比重占全世界工业的50%,其 进出口占世界贸易总量的27%。
计算机辅助设计(Computer aided design) 计算机辅助工艺规划(Computer aided process planning,CAPP) 计算机辅助工程(Computer aided engineering,CAE) 计算机辅助制造(Computer aided manufacturing,CAM) 现代数控机床、柔性制造系统(Flexible manufacturing system,FMS)等
第二部分 主要现代制造技术
一、CAD/CAE/CAM技术
二、虚拟设计制造技术
三、柔性制造 四、其它先进制造技术
(完整)先进制造技术(英文版第三版)唐一平,第五章翻译
P655数控数控(NC)是一种控制运动的方法通过直接插入代码指令的机器部件,以数字和字母,进入系统.系统自动解释这些数据并将其转换成输出信号。
这些信号,反过来,控制各种例如机器的部件,通过旋转主轴和关闭,改变工具,移动工件或工具沿着特定路径,或转向切削液的开和关.为了感谢机床数字控制的重要性,让我们简要回顾一个过程如何如工历来是开展。
在研究一部分的工作图纸,操作员设置合适的工艺参数(如切削速度,切削深度进给,切削液,等等),确定加工操作顺序要执行,夹在工件夹具的工件(如卡盘或夹头),并与部分的收益。
根据零件的形状和规定的尺寸精度,这方法需要熟练的操作人员。
后面的加工过程可能依赖于特定的操作;由于人类的可能性错误,甚至部分由同一操作者产生可能不完全相同。
零件的质量,因此,依赖于特定的操作或(甚至同一运营商)在一周或一天的时间一天。
因为增加关注提高产品质量和降低制造成本,这种变异(和对产品质量的影响)不再可接受的。
这种情况可以通过数值控制消除加工操作。
数值控制的重要性可以通过进一步的说明下面的例子。
假设几个孔被钻的一部分图5所示位置。
1.P66在加工这部分传统手工方法,操作者位置钻头相对于工件,使用参考点通过三种方法显示在图中给出。
然后操作员进行钻孔.让我们先假设100个部分,都有形状和尺寸精度的同时,也要钻。
显然,这操作将是乏味的,因为操作者必须经过相同的动作反复。
此外,概率高,各种原因,一些零件加工将与众不同。
现在让我们假设这个生产运行过程中,这些组成部分的顺序是改变了,和十的部分现在需要不同位置的孔.的机械师现在必须重新定位工作台;此操作将时间消费是错误的。
这样的操作可以由数控机床很容易进行能够生产部分多次准确地处理不同的部分(通过加载不同的部分程序,将描述后).在数值控制操作下,有关的所有方面的数据加工操作,如位置,速度,饲料,和切削液,可以存储在磁性介质上,随着时间变化从磁带到硬盘.的数控控制概念,具体信息可以向这些存储设备到机床的控制面板。
先进制造技术(有出处)--中英文翻译
毕业设计(论文)外文资料翻译系别:机械工程学院专业:机械设计制造及其自动化外文出处:Advanced Manufacturing Technology附件:1、外文原文;2、外文资料翻译译文。
1、外文原文(复印件)2、外文资料翻译译文先进制造技术尽管裁断的深度是由材料去除率的总额决定的,增加径向的裁断深度同样能够增加磨损率。
就像增加进给速度一样,工具的使用寿命会随着切削深度的加深而缩短。
因此,工具的使用寿命与磨损率能够像预期那样保持平衡。
每个金属在切削过程中会产生三个力:切向力,即零件运转时产生的力;径向力,由工件材料切削深度的阻隔产生的力;纵向力,利用进给速度产生的力。
这些力比机器运转过程中产生的力强30%到80%。
例如,在洛氏硬度62HRC的强度下,分别经过预热处理和热处理,纵向力会从30%增加到50%,切向力会从30%增加到50%,径向力会从70%增加到100%。
因此,机床必须能够承受不断增加的切削力,尤其是径向的切削力。
切削液能够影响白层的产生,因为白层是物象变化在表面发生的结果,当冷却工件表面时,切削液能够减轻热损坏。
一些报道认为切削液会消除白层,但却有研究表明切削液没有这样的作用。
刀具状态也是一个很重要的因素,然而白层的增加同样伴随着刀具的磨损。
如果硬态切削能够代替精磨操作,硬态切削的产品表面光洁度能够与精磨操作相媲美。
与精磨操作不同的是,表面光洁度是由大小,形状,强度和在磨削砂轮中磨粒的作用决定的。
硬车削表面通常是由切削过程中形成的几何图形决定的,其中主要是由切削工具的进给和刀尖半径决定的。
对于磨削圆柱的应用,其砂轮和工件必须能够顺利的旋转。
其次,砂轮飞快旋转的同时工件要缓慢的旋转。
如果旋转的构件不完全同心,组合的缺陷和旋转速度的细微差别会引起圆柱的凸角。
当生产的几何图形不够圆时,这会影响最终的生产。
另一方面,对于硬切削来说,工件或者切削工具不能同时旋转。
因此,机器加工表面将会与机床主轴和紧挨机床的中心线的机床纵向的方向一样精准。
先进制造技术(英文版第三版)唐一平,第三章翻译
3.1引言我们在创造历史的观点,历史,将在世界人民的未来扮演重要的角色。
改变一般被认为是渐进的。
然而,突然而迅速的变化,我们在过去的几年中看到的,或是具体的,在新的科学和技术的进步,已经非常明显,这些都会影响我们的想法,我们的工作方式,我们的互动,特别是我们的制造。
两个最重要的变化是:全球化和快速变化,它(信息技术)。
我们生活在信息时代。
我们可以坐在家里得到的信息在世界上的事件。
电视是有限维。
电脑已成为无穷维。
的地方,你可以访问和丰富的信息,你可以得到的事情你可以完成多种数量已经达到惊人的比例已经。
互联网技术的出现和发展以及相关的服务器已经为我们通过信息高速公路铺平了道路。
让我们先来分析变化的基本骨干,即信息技术。
进步是多方面的硬件和软件。
计算机变得越来越强大,越来越灵活。
进化是从20世纪50年代的简单数据处理机器的知识处理系统。
软件和硬件的进步是非常重要的。
一些如互联网发展,万维网服务器,数字图书馆,互动学习工具,虚拟教室和多媒体,等,给人们的日常生活中不用制造它们的重要性应力。
知识就是力量,这是有利于储存,处理和传输知识。
这将极大地影响人们的生产方式,教育市场。
P29现在让我们来观察全球化进程。
社会已经从一个封闭的市场,一个封闭的制造场所开放。
它不再需要有集中的生产设施。
该功能可以分布。
设计可以在法国完成,制造可以在墨西哥,印度尼西亚或其他国家的成本可能会保持在较低水平;生产计划可以在美国发展;营销策略在香港和中国大陆生产的部分服务。
这样一个全球化导致政府之间的跨文化对话,企业,社会,最重要的是个人。
我们的制造业者都集中在制造过程中,材料和方法。
虽然这些仍然是极其重要的,它变得越来越明显,我们也需要关注额外的动力,是由于全球化和信息爆炸,2。
我们需要意识到采购,生产和销售与反馈是在全球化过程中制造生命周期的主要成分。
我们需要到达随着环境约束实现的经济原因。
这是我们模型的全球化过程和使用的数据到决策的必要。
先进制造的英文作文带翻译
先进制造的英文作文带翻译Advanced Manufacturing。
Advanced manufacturing refers to the use of cutting-edge technology, innovative processes, and sophisticated materials to produce goods more efficiently and effectively than traditional manufacturing methods. This approach encompasses a wide range of industries, from automotive and aerospace to electronics and pharmaceuticals. In today's rapidly evolving global economy, advanced manufacturing plays a crucial role in driving innovation, increasing productivity, and maintaining competitiveness.One key aspect of advanced manufacturing is the integration of automation and robotics into production processes. By employing automated systems, manufacturers can streamline operations, reduce labor costs, and improve product quality and consistency. Robotics, in particular, enables precise and repetitive tasks to be performed with unmatched accuracy and speed, leading to higher throughputand lower error rates.Furthermore, advanced manufacturing techniques often involve additive manufacturing, commonly known as 3D printing. This revolutionary technology enables the creation of complex components and structures layer by layer, using a variety of materials ranging from plastics to metals. Additive manufacturing offers significant advantages over traditional subtractive methods, such as CNC machining, including reduced material waste, faster prototyping, and greater design flexibility.Another key enabler of advanced manufacturing is the Internet of Things (IoT), which refers to the network of interconnected devices and sensors that collect and exchange data in real-time. By harnessing the power of IoT, manufacturers can monitor equipment performance, optimize production processes, and predict maintenance needs, thereby minimizing downtime and maximizing efficiency.Moreover, advanced manufacturing relies heavily on advanced materials with unique properties andcharacteristics. These materials, such as carbon fiber composites and high-strength alloys, offer superiorstrength-to-weight ratios, corrosion resistance, andthermal conductivity, making them ideal for demanding applications in aerospace, defense, and beyond.In addition to technological advancements, advanced manufacturing also requires a skilled workforce capable of operating and maintaining complex machinery, analyzing data, and implementing continuous improvement initiatives. As such, education and training programs play a vital role in preparing the next generation of manufacturingprofessionals for the challenges and opportunities of the future.In conclusion, advanced manufacturing represents a paradigm shift in the way goods are produced, leveraging technology, innovation, and talent to drive efficiency, quality, and competitiveness. By embracing advanced manufacturing principles and practices, companies can stay ahead of the curve and thrive in today's dynamic and ever-changing marketplace.先进制造。
(完整)先进制造技术(英文版第三版)唐一平,第八章翻译
(完整)先进制造技术(英文版第三版)唐一平,第八章翻译P1178高速切削(HSC)8。
1定义在某些情况下,高速切削加工是指在高的切削速度(主轴转速)和/或以高进给率实现短加工时间.然而,一个合理的分类,必须考虑被加工材料(软或硬加工),切削材料和金属去除rate.111英语术语HSC(高速切削)通常用于高速加工甚至在德语国家。
为此,它将在下面的讨论。
8。
2引言高速切削高速加工是由所罗门在上世纪30年代。
基于金属切削的所罗门在钢制的研究,在切削速度为440米/分有色轻金属(钢),1600米/分钟(青铜),2840米/分钟(铜)和高达6500米/分钟(铝),基本结果是事实,从一个特定的切削速度上升的加工温度开始下降(图)。
科学证据还发现,切削力随着切削速度的提高先增加然后下降到一个平稳的趋势后达到.此外,研究表明,随着切削速度的提高,芯片的流动逐渐变成不连续的芯片.美国的研究在上世纪60年代早期表明,生产力的急剧增加和产品成本的降低可以预期如果重型刀具磨损和机械振动的问题是可以克服的。
在一项研究中发现,切削速度高于6500米/分钟打开新的有趣的方面加工铝。
最密集的研究为切屑形成的理论。
P118只有当应用在机床在上世纪80年代初,它继续高速切削机理研究高速电主轴的发展成为可能。
高速加工应用的重点,使自己在这项新技术带来的好处。
要特别提到的应用是模具制造,航空航天技术,光学和精密机械加工以及汽车、家电等行业。
虽然高速加工不一定是生产的高精度部件的方法,还可以进步到高精度加工领域。
RA值0。
2 ^ IM 和RZ值低3果酱并不少见。
由于高的表面质量可以在许多情况下,消除后续精加工完全或部分。
一个例子是汽轮机制造刀片已经不再单独和铣削磨削加工.另一个典型的例子是模具制造,表面可以产生非常接近的最终精度要求在尺寸和形状偏差以及表面质量.这减少了人工返工时间P119(图8.2)。
手动工作80%、成本降低高达30%的时间节省相当的现实.而HSC技术发现其在航空航天工业的应用现状第一次使用,不仅来自工具和模具制造,而且高精度零件的生产,以及薄壁零件(表8。
(完整版)先进制造技术(英文版第三版)唐一平,第七章翻译
P957计算机集成制造计算机集成制造(CIM)这个术语用来描述制造的现代方法。
虽然C1M包括了很多其他先进制造技术如计算机数值控制(CNC),计算机辅助设计/计算机辅助制造(CAD/CAM),机器人,和及时交货(JIT),它不仅仅是一个新的技术或一个新的概念.计算机集成制造是一个完全制造新的方法,新的经营方式.理解CIM,它必须从现代的比较与传统制造业。
现代制造业包括所有的活动和流程所需的材料转换成产品,提供给市场,并在现场支持他们.这些活动包括以下:(一)确定一种产品的需要。
(2)设计的产品来满足的需要。
(3)获得所需生产产品的原材料。
(4)采用合适的方法把原材料转换成成品.(5)运输产品到市场.(6)维护产品以确保适当的性能的领域.这种广泛的,制造现代观点可以与比较有限的传统观点,几乎完全集中在转换过程。
旧的方法排除临界预转换元件市场分析研究,开发,设计,以及这种转换后元素的产品交付和产品维护.I1”换句话说,在制造业的老方法,只有那些过程发生在车间是制造.这种传统的方法分离的整体概念为众多独立的专业要素没有自动化的出现从根本上改变了。
P96CIM,不仅是各种元素的自动化,但群岛都是联系在一起的综合自动化。
一体化意味着系统能提供完整的即时共享信息。
在现代制造业,整合是由计算机来完成的。
CIM,然后,是参与原材料的转化所有组件完全融合成品和产品市场,如图7。
1.CIM 7.1历史发展术语计算机集成制造了1974哈林顿为他写的一本书关于搭售的岛屿的称号通过使用计算机自动化.它已经采取了许多年CIM的发展作为一个概念,但集成制造是不是新的.在事实上,整合是制造真正开始。
制造业经历了四个不同的阶段:(1)手工制造。
(2)机械化、专业化。
(3)自动化。
(4)整合.使用简单的手工工具手工制造是集成制造。
所有的信息都需要设计,生产,并提供一个P97产品很容易获得,因为它存在于人的头脑的人执行所有必要的任务。
先进制造技术中英文翻译
外文资料翻译附1、外文原文(复印件)Advanced Manufacturing Techndogylimitations on acceptable feed rates-determined by the ability of the cutting t∞l to withstandincreased cutting loads without fracture.Increasing radial cutting depths also could increase removal rates, although cutting depth is often determined by the amount of stock removal required. As in the case of increased feedrates, IOol life decreased with increased depth of cut. As expected t a tradeoff exists between t∞llife and removal rate.generated in every Inetal removal process: tangential There are three forforce, generated by the part rotation; radial force, generated by the resistance of the workpiecematerial to depth of cut; and, lastly, longitudinal force, generated by the feed rate applied. Theseforces are 30% to 80% greater than in “soft" machining processes. For example f when comparingpreheat-treated to heat-treated steel with a hardness of 62 HRC, the longitudinal force increasesfrom 30% to 50% ∙ Thetangential force increases 30% to 40% f and the radial force increases from 70% to 1CK)% ∙Therefore, the machine tool must be able to handle the increased cutting forces t especially in theradial direction.Cutting c∞lant can influence the generation of white layer. Because white layer is thought to occur as the result of a phase transformation on the surface, cutting c∞1ant might helpeliminate thermal damage by keeping the workpiece surface c∞L So<ne reports say cuttingc∞lant eliminates white layer, but other studies show c∞!ant having no effect. T∞l condition isalso believed to be an important factor, with new t∞ls producing undamaged surfaces, whilewhite layer increases with increasing t∞l wear.If hard turning is to replace finish grinding operations, it must be capable of ProdUCing surface finishes comparable to those generated by grinding. Unlike grinding, where surface finishis deteπnined by the size, shape, hardness> and distribution of abrasive grains in the grindin gwheel, hard-turned surfaces are nominally defined by the geometry of the cutting process,primarily by the cutting t∞Γs feed rate and nose radius.For grinding cylindrical applications, both the wheel and the woriφiece must rotate.Moreover, the wheel rotates rapidly while the workpiece rotates slowly. If the rotating membersare imperfectly concentric, the combination of imperfections and ∏)lational speed differentialproduces lobing. A geometric OUl-Of-round pattern on the workpiece is produced t which canaffect the end-product performance. With hard turning t on the other hand l either the workpieceor cutting t∞l is rotated, not both.Z7∏5Therefbre, the machined surface will be as accurate as the machine tool spindle and the longitu dinal direction Ot the machine t∞l relative to the center line of the machine.Another disadvantage with grinding is the generation of tremendous surface heat at the point of contact between the grinding wheel and the workpiece. Even when flood cwlant is properly applied, workpiece surface stress risers and heat checks can occur, which can lead to premature failure of the ground part in service. With hard turning, less heat is generated t and if properly applied, the heat that is generated will be carried away with the brittle material removed. Thus, the finished parts are produced without stress risers or heat checks.Another major advantage of HFM is that conventional turning machines can be used with workpieces as hard as 65 HRC using commercially available ceramic inserts. Savings occur in two areas, processing and capital investment. In processing, the machining t setup, and t∞l changing time are significantly reduced. Grinding wheel changing, on the other hand, is time-consuming. Guards must be removed, along with the spindle locking nuts, the worn wheel must be changed, and the new wheel balanced and dressed. Wheel changing can take as much as IOO times longer than changing ceramic inserts, which require only simple indexing or replacement in the holder.Equipment also is less expensive. A turning machine costs significantly less than a production grinder to do comparable work. As already mentioned, setup is easier and quicker. Turning machines also are simpler in ∞nstruction-there are no reciprocating slides to wear, maintain, or replace-for easier maintenance. However, the strength and rigidity of every component in the machine must be adequate to handle the additional cutting forces.3.7.2 Hard MillingOne machining advancement that has taken hold over the past few years is hard milling. Typically mold and die makers perform hard milling to cut P∙20, H-13 and other tool steels.These materials range in hardness from 45 to 64 HRC and are traditiona]ly electrical discharge machined. But new technologies make hard milling a viable alternative. Successful hard milling requires several components to ∞me together一the machine tool, t∞lholders f cutting IoolSg CAD/CAM system and pr how.S u know-… -------------------- Advanced MamArturing Technology Ho VV —1> Machine FactorsThe machine t∞l is the most significant component. The m aspect of the machine tool is that it must be designed for hard milling and have the samecharacteristics found in a high-speed machining center. The machine t s base ∞nstιυction andindividual components, such as the drive train, spindle and CNC, must be capable of handling thedemands of hard milling.The base ∞nstruction must be extremely rigid and have a high degree of damping abilities.These characteristics are found in machine tools with bases ∞nstructed from polymer concrete.These machines typically have six to 10 times the damping characteristics of machines with castiron bases. Additionally, polymer ∞ncrete has excellent mechanical and theππal characteristics.The machine t∞Γs drive train should in∞rporate digital drive technology for optimalacceleration and de celeration. This technology allows the CNC to perfbπn a high degree ofcontouring accuracy and gives it excellent dynamics capabilities.One of the most overlooked components is the spindle. The spindle must be able to providea great deal of flexibility, offering high torque at low spindle speeds and maximum power for alarge range of spindle speeds. An ideal spindle t s speed ranges from 100 rpm to 20f 000 rpm orhigher, depending on the application. Hybridceramic bearings in the construction of the spindle increase spindle Stiffil andtemperature stability. Figure 3.14 shows a 5-axis milling machine designed forhard milling, which has a similar requirements as high-speed machining.Figure 3.14 Mikron 1S HSM 5-axis machine.fundamental,accuracyOne of the main ∞ntributors to successful hard milling is the cutting tool. Fbr roughing hardened materials9 end mills with four or more flutes arc recommended. These provide small chip loads while having the capability to cut at higher feed rates.The cutting took should be short with short flute lengths and have a helix angle of approximately 300. A 30o helix has proven to be optimal for chip flow and dispersal of heat.The carbide substrate should also be ∞nsidered. Only caιbide t∞ls with fine or ultra-fine grain sizes9about 0.5μm to0.6 μm , should be used. These tools provide increased edge strength and reduce built-up edge.For milling larger hardened cavities and cores, cutting t∞ls with inserts should be considered. Carbide inserts are less expensive than solid-caΛide end-mills, and by indexing the insert, tool life can be extended. However, these t∞ls are typically not designed for high spindle speeds. There is also a significant safety risk if improperly handled.Hard milling puts a great amount of stress on the cutting tool from high heat and abrasive wear. To help overcome these stresses, coated cutting t∞Js must be used. Coatings offer a protective layer on the IoOI, substantially increasing t∞l life.Coating selection should be made based on individual properties. Titanium-based coatings, such as TiCN and TiAlN, are the most common for hard milling. The wear resistance, or its Iianlness l is the most important property of TiCN, while TiAlN resists heat and oxidation better. The t∞lmaker may further enhance its coatings by offering unique multilayer blends.Flood c∞lant is not commonly used in hard millin g. Hard milling often generates tremendous amount of heat, which is transferred into the chips and causes the c∞lant to vaporize as it hits the hot chips. The use of ∞olant can also create thermal instability with the cutting t∞l.Compressed air is used to help displace chips during cutting› Additionally, a ∞mbination of oil and mist is often selected. Oil helps reduce friction, thereby increasing tool life and improving surface finish. When using oil and mist, an extraction unit should be integrated into the machine t∞l to help remove the oil from the air.2.CAD/CAM AnalysisThe CAD/CAM system is another important component. CAD/CAM systems have gready advanced over the years, and now provide a variety of advanced featuresAdvanced Manufacturing TechncJogy118 ∖∖and capabilities. However t not all systems are created equal and there are still many (hat do not have the capabilities to create t∞l paths for hard nulling .Although no CAD/CAM system is designed exclusively for hard milling, many of the systems that offer HSMing capabilities have the same strategies for hard milling because the two are related. When hard milling t strategies that keep the cutting tool in motion should be used. This ensures the t∞l is ∞ntinuously cutting with a constant chip load, which is one of the more desirable conditions to maintain when hard milling.Before tool paths can be applied, a complete analysis of the part must be performed. Not all parts are suitable for hard milling. The specific areas to be machined should be clearly identified, determining the smallest internal radius and largest working depth. A tool with a 4:1 length-to-diameter ratio commonly does not pose any problems.Problems arise when the ratio grows. When ratios are excessive t hard milling experience plays an important role in deteπnining how successful one is. Hard milling with small diameter cutting tools are possible as long as care is taken to maintain a ∞nstant chip load and machine at minimal LXXs.If a CAD/CAM system does not have the t∞ls to verify or simulate the NC code directly, there are numerous software packages on the market that can.Finally, proper know-how is vital to successful hard milling. AD of the necessary components are of no use without knowledge of the processing procedures ∙ Successful hard milling is based on specific know-how, advanced knowledge HSMing t proper choice of cutting t∞ls and clamping systems, and using a HSM- capable CAD/CAM system.A clear understanding of all the components provides better awareness of what is needed to be successful at hard milling.3.Precision MachiningPrecision machining is any process using a cutting tool, whether turning, milling, or grinding, which forms a precise dimension, form, and finish of surface. The accuracy held must be 10 μm or less. Any operation resulting in less accuracy is generally ∞nsιdcred ∞nventional machining.Compared to standard machining of traditional materials (steel, Al) f successful precision machining of hard materials is more sensitive to parameters such as machine IoOl accuracy, stiffness, toolholder design t cutting t∞l material and geometιy,fixtυring, c∞)ant presentation, and machining technique.The properties that make hard materials attractive for commercial use also make them extremely difficult to machine to the tolerances required by advanced applications.Obtaining tighter tolerances on hard materials is a challenge that must be met if manufacturers are to achieve the improved performance; it f s also where the future of manufacturing lies.A major factor that influences the production of close-tolerance parts from hard materials is the machine tool itself and its parameters, including inherent repeatability, accuracy, stiffness, and the sm∞thness or uniformity of travel t spindle speed, thermal stability, machine protection f control capabilities, etc.Virtually any machine t∞l Can produce some close-tolerance parts if the feed rate is reduced and the cutting t∞I changed frequently. To SUCCeSSftIIIy produce precision components to meet market demands, however, the machining operation must be cost-effective, as well as accurate and repeatable.A key design factor in machine t∞ls is the rigidity or stiffness of the cutting t∞l to the workpiece. Obviously, components and subassemblies must also have high stiffness. Machine stiffness is a major contributing factor to overall machine accuracy and performance. Stiffness is measured by the deflection of an element of the machine when it's subjected to a load.Machine accuracy is another critical design parameter. To have the confidence to cut high-precision parts on a production basis, ifs necessary that the user know the 3-D accuracy of the machine t∞l.The same criteria apply to t∞lholders. They too must provide precision, rigidity f and repeatability to produce close-tolerance parts, and to do so they must be kinematically correct.Cutting tools are another element that ProdUCe a major effect on the production of precision parts from hard materials. Parameters to be considered are: material, design, fabrication t tolerance, cost, and availability.Tool life is an economic issue that must be considered when machining precision parts from hard materials. While it may perfoπn well, a tool that you must change after every IOO mm of cut length is nυ( an economical so lution to machining these materials. T∞l life depends UPon the materia] to be machined and the process.Workholding is another key element. Material considerations are important.2、外文资料翻译译文先进制造技术尽管裁断的深度是由材料去除率的总额决定的,增加径向的裁断深度同样能够增加磨损率。
(完整版)先进制造技术(英文版第三版)唐一平,第六章翻译
P836柔性制造作为生产系统的后续讨论介绍和先进的制造技术,它是目前定义的有用制造系统的概念。
制造系统可以被定义为一个增值的制造过程将原材料系列更为有用的形式和最终产品的11。
)在现代制造环境中,灵活性是一个重要的特征。
这意味着,一个制造系统是通用的和适应性,同时也有较高的生产能力。
柔性制造系统,可生产多种零件是通用的。
它适应性强,因为它可以迅速调整生产完全不同的零件。
柔性制造系统(FMS)是一个人机或组机器通过一个自动化材料处理系统服务计算机控制的具有工具处理能力。
因为它的工具能力和计算机控制处理,这样的系统可以不断地重新配置到各种各样的配件制造。
这就是为什么它被称为柔性制造系统。
柔性制造代表着完全的目标迈出的重要一步集成制造。
它包括自动化生产一体化过程。
在柔性制造,自动化的制造机器(即,车床,铣,钻)和自动化材料处理系统之间通过计算机网络即时通信。
图为例柔性制造系统。
柔性制造向完全整合的目标迈出的重要一步由于集成了多种自动化制造概念制造:(1)计算机数值控制(CNC)个别机床。
(2)分布式数字控制(DNC)的制造系统。
(3)自动化材料处理系统。
P84(4)成组技术(家庭部分)。
当这些自动化流程,机器,和概念都带来了在一个完整的系统,就是所谓的柔性制造系统。
人类与电脑在FMS中扮演重要的角色。
人类的劳动量比少的多手工操作的制造系统,当然。
然而,人类仍然在柔性制造系统的运行起着至关重要的作用。
人类的工作包括下列各项:(1)设备的检修,维护,维修。
(2)更换和调整工具。
(3)装卸系统。
(4)数据输入。
(5)改变程序的部分。
(6)发展计划。
柔性制造系统设备,像所有的制造设备,P85必须检测错误,故障,故障。
一个问题是当发现,检修人员必须确定它的来源和使用纠正措施。
所有系统都正常运行时,周期维护是必要的。
人类的运营商也设置了机器,更换刀具,并重新配置系统是必要的。
FMS工具处理能力的增加,但不排除更换和调整工具的人类。
先进制造技术名词翻译
1.2 制造系统/Manufacturing System 制造系统是制造业的基本组成实体。
结构:是制造过程所涉及的硬件(物料、设备、工具、能 源等)、软件(制造理论、工艺、信息等)、人员所组 成的具有特定功能的有机整体。
功能:输入制造系统的资源(原材料、能源、信息、人 力...)通过制造过程输出产品
向全寿命周期设计发展 由单纯考虑技术因素转
向综合考虑技术、经济 和社会因素
5.2 先进制造技术的学科内容
2、先进制造工艺技术
精密、超精密加工技术
精密加工:精度为3~ 0.3μm Ra0.3~0.03 μm
超精密加工:精度为0.3~ 0.03μm Ra0.3~0.005 μm
纳米加工:精度高于 0.03μm Ra小于0.3~
支撑 技术群
制造基础 设施环境
5.2 先进制造技术的学科内容
1、先进设计技术
设计方法现代化
产品动态分析和设计 产品可靠性
可维护性及安全设计 产品优化设计 快速响应设计 创新设计 智能设计 仿真与虚拟设计 价值工程设计 模块化设计
设计手段计算机化
有限元法 优化设计 计算机辅助设计 反求工程技术 CAD/CAM一体化技术 工程数据库
一、美国的教训
1) 上个世纪70年代,美国不重视制造业,把制造业称为“夕阳工业”,结 果导致美国80年代的经济衰退。
2) 80年代后期,美国的一些国会议员、政府要员纷纷要求政府出面, 协调和支持制造产业的发展,1991年,布什政府期间,美国白宫 科学技术政策办公室发表了总数为22项的美国国家关键技术,其 中制造技术占4项,标志着美国科技政策的转变。
来源: Bullinger
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、计算机辅助设计和计算机辅助制造在我们的工业社会的历史,许多发明已经申请专利和新技术的发展。
惠特尼的可互换零件的概念,瓦特的蒸汽机,和福特的装配线不过是一些发展,我们的工业时期最值得注意的。
所有这些发展都影响了制造我们所知道的,在我们的历史书,这些人得到了应得的认可。
或许单个的发展影响制造更快更明显比以往任何技术是数字计算机。
由于计算机技术的出现,制造的专业人士都想自动化设计过程和使用数据库开发自动制造过程。
计算机辅助设计/计算机辅助制造(CAD/CAM),如果成功实施,应该去掉“墙”,历来存在之间的设计和制造的部件。
CAD/CAM是指在设计和制造过程中使用计算机。
由于CAD / CAM的到来,其他方面发展:(1)计算机图形(CG)。
(2)计算机辅助工程(CAE)。
(3)计算机辅助设计与绘图(CADD)。
(4)计算机辅助工艺规划(CAPP)。
这些附带条件都是CAD/CAM的概念的具体方面。
CAD / CAM本身是一个更广泛,更具包容性的术语。
它的核心是自动化和集成manufacturing.111CAD/CAM的一个关键目标是产生的数据可以用于制造产品而开发的,产品设计的数据库。
当成功实现了CAD /CAM,涉及到一个共享P40一个公司的设计和制造的部件之间常见的数据库。
交互式计算机图形学(ICG)是CAD/CAM的重要作用。
通过ICG的使用,设计开发一个图形设计在存放电子构成的图形图像数据的产品形象。
图形图像可以在一个二维(2-D),提出了三维(3-D),或固体的格式。
ICG图像使用等基本几何特征的点,线,圆,曲线构造。
一旦创建,这些图像可以很容易地编辑和以各种方式包括放大,缩小,旋转操作,和运动。
ICG系统主要有三部分组成(图中):(1)硬件,包括计算机和各种外围设备;(2)软件,包括计算机程序和技术手册的系统(流行的CAD /CAM软件使用ICG目前包括了AutoCAD,Pro/E,,UG,CATIA等)和I-DEAS和;(3)人的设计师,最重要的三个组成部分。
一个典型的ICG系统硬件配置包括一台电脑,一个显示终端,用于软盘磁盘驱动器,硬盘,或两者;和输入/输出设备,如键盘,绘图仪/打印机和扫描仪。
这些P41设备,随着软件的工具,是现代设计师们用来开发和文档设计。
ICG系统能通过允许设计者关注设计过程知识方面提高设计过程,如概念和判断为基础的决策。
计算机执行它更适合,如数学计算,存储和检索数据,以及各种重复操作如开。
CAD / CAM 4.1为理论基础CAD/CAM为基础是类似的,用来证明任何制造技术的改进。
它是一个需要不断提高的生产力,质量,和,反过来,竞争力。
也有其他原因,公司可以从CAD/CAM的手动流程进行转换:(1)提高生产率。
(2)更好的质量。
(3)更好的沟通。
(4)制造业常见的数据库。
(5)降低建造成本原型。
(6)对客户快速响应。
4.1.1提高生产力在设计过程中,生产率提高CAD/CAM。
耗时的任务,如数学计算,数据存储和检索,可视化设计是由计算机处理,这给设计师更多的时间花在构思并完成设计。
此外,要求设计文件可与CAD/CAM的时间明显减少。
所有这些加在一起意味着更短的设计周期,缩短整个项目的完成时间,和更高的生产力。
P424.1.2质量更好因为CAD CAM让设计师更专注于实际的设计问题和耗时的,非生产任务,产品质量的提高与CAD CAM。
CAD /CAM允许设计者检测范围更广的设计方案(例如,产品特点)和分析每个选择之前,选择一个更彻底。
此外,由于劳动密集型的任务都由计算机完成,减少设计错误发生。
这些都导致更好的产品质量。
4.1.3更好的沟通设计文件,如图纸,零件清单,材料清单,和规格的工具用于沟通设计那些制造它。
更均匀,规范,准确的这些工具,沟通会更好。
因为CAD / CAM导致更均匀,标准,和准确的资料,提高了通信。
4.1.4常用数据库这是一个CAD / CAM的最重要的好处。
随着CAD/CAM的数据,生成一个产品的设计过程中可用于生产的产品。
他们共享一个数据库有助于消除分离设计和制造功能的古老的4twair(图4.2)。
4.1.5原型成本降低与手工设计,模型和原型的设计必须制作和测试,增加了成品的成本。
随着CAD/CAM,计算机三维模型可以降低,在某些情况下,消除建设昂贵的原型的需要。
固体建模允许设计师用电脑模型代替在许多情况下,CAD /CAM功能原型等。
4.1.6更快响应客户响应时间是至关重要的制造。
需要多长时间来填补P43客户的订单?时间越短越好。
快速的响应时间是在竞争日益激烈的市场竞争的关键之一。
今天,以最快的响应时间是厂家可能用最低的出价赢得合同。
缩短整个设计周期,提高设计和制造的组件之间的通信,CAD / CAM可以提高公司的响应时间。
CAD / CAM 4.2的历史发展CAD/CAM的发展历史已经紧跟计算机技术的发展,对应了ICG技术的发展。
领先的CAD/CAM重大的发展始于20世纪50年代后期和1960年代初期。
这首先是发展,在麻省理工学院(MIT),自动的P44编程工具(APT)的计算机程序设计语言。
APT的目的是简化数控机床零件程序的开发。
这是第一个计算机语言是用于此目的的。
APT语言的代表向自动化生产的重要一步过程。
在CAD/CAM的发展史上的又一重大发展紧随其后的APT,麻省理工也发达,被称为画板项目。
这个项目,伊凡萨瑟兰诞生了ICG的概念。
画板项目是第一次使用了计算机上创建和实时显示CRT操作图形图像。
在上世纪60和70年代的其余部分,CAD的不断发展,一些供应商为自己的名字生产和销售交钥匙工程CAD系统。
这是完整的系统,包括硬件,软件,维护和培训作为一个包装出售。
这些早期的系统被配置在大型机和小型机。
作为一个结果,他们在中小型制造企业实现大规模接受太贵了。
到了20世纪70年代,它变得清晰,微机将最终在CAD /CAM的进一步发展起到一定的作用。
然而,早期的计算机没有处理能力,内存,或图形功能所需的ICG。
因此,早期的CAD / CAM配置在微机系统失败。
1983 IBM推出了PC,第一台微型计算机的处理能力,内存和图形功能,可用于CAD/CAM。
这对一个LED的数量在迅速增加,CAD / CAM供应商。
1989,对CAD/CAM基于微机装置和基于大型机和小型机的数量。
4.3电脑设计电脑已经在日常工作与设计的一个重要影响是完成。
它可以用在很多方面做很多事情。
P45然而,使用计算机所有完成的设计工作分为四大类:(1)造型设计。
(2)设计分析。
(3)设计审查。
(4)设计文件。
4.3.1设计建模在CAD / CAM设计建模,开发了产品几何模型描述了部分数学。
数学描述转换为图形的形式显示在阴极射线管(CRT)。
的几何模型还允许图形图像可以很容易地编辑和操纵一次显示。
这个过程开始时,设计器创建一个图形图像使用一种特殊的ICG软件包。
图像是通过输入命令使计算机构建图像的点,生成线,圆,曲线。
要创建一个图形图像,计算机必须翻译成相应的几何特征的数学模型。
看来设计师作为一个图形图像存储在计算机中的一系列数学坐标。
作为设计师的命令修改或操纵的图形图像,计算机对数学模型。
计算机必须首先在它可以改变图像变化的几何模型,它必须在它可以显示字符计算的数学坐标的几何特征。
图形图像显示有三种格式:(1)二维或二维(2)two-and-a-half-dimensional或21 /二维(3)三维或三维效果。
这三种格式进行了fig.4.3,4.4和4.5。
二维图形图像显示一个正(平)表示,通常显示两个或两个P47多个视图(例如,前,前,右)。
21 /二维图形图像是斜的表示。
三维图形图像可能是一个线框模型或一个真正的三维实体模型(偏)。
通讯可以进一步提高时,图像的颜色会显示出来。
CAD/CAM的许多功能,包括有限元分析,三维实体建模,和,比较容易理解的图形图像显示的颜色。
具体应用如管道图纸更易于阅读显示在适当的各种颜色。
当图像都只有一种颜色显示,有时很难确定何时线交叉或下,什么是近,什么是远,什么是失真图像与原图像是什么(如有限元分析的情况下),和层某一部分上。
色彩的运用可以更明确的区分上下,远近,和原来的和扭曲的。
它也有助于澄清许多组成的物体表面或几个组成部分。
4.3.2设计分析电脑简化了设计分析阶段P48过程明显。
一旦设计已被开发,有必要分析它将如何站起来的条件,这将是。
这样的分析方法作为传热和应力应变计算费时和复杂。
与CAD/ CAM,特殊编写的计算机程序分析的目的是提供具体的Tor。
这样的一个程序,简化了分析制成品叫高元分析。
有限元分析的对象涉及打破成许多小矩形或三角形的元素(中心),然后再由计算机分析每个元素。
这种方法提供了一个彻底的分析,不可能不借助电脑是可行的。
它还提供了专门针对问题的位置,这样的设计可以修正更容易取得优势。
有限元分析,计算机必须有一个强大的处理能力。
计算机通过分析每个有相互关联的有限元分析的总体目标。
通过分析对象的每个有限元的应力,应变响应,热,或其他力上,计算机可以预测整个对象的反应。
有限元分析现代CAD / CAM系统的能力过程的简单实现。
用户首先定义区域,分和计算机自动划分领域互联有限元网络。
P49有限元分析的一个特别重要的特征是其能够直观地显示分析结果的能力。
例如,如果对一个部分进行分析,以确定如何在受到一定的压力,使计算机能叠加的强调部分图像在非重读的部分。
在这种方式中,所产生的失真是很容易看到的。
这种视觉证据的结果可以为设计者确定必要的设计变化更容易。
4.3.3设计审查在设计过程中,已由计算机简化的另一个步骤是设计审查。
这包括检查所有方面的设计精度。
有几个ICG能力使CAD / CAM容易用手工设计综述。
首先是许多CAD / CAM软件包半自动标注功能。
为了产生一个图像,一个ICG系统必须先建立数学模型。
在这个模型中的数据可用于计算机自动计算尺寸。
最良好的CAD / CAM软件可以根据标准尺寸及公差显示这些方面的做法。
这意味着更少的标注错误,手工标注的常见问题。
分层能力的CAD / CAM软件还简化了设计审查。
如果一个多层印刷电路板的设计,每一层的痕迹,可以单独显示在CRT显示不同的颜色。
他们也可以同时显示。
以这种方式,可以很容易地追踪检查以确保所有的连接已被适当地确定。
分层能力还可以用来检查复杂的管道布局,确保管道不相交,他们不应该这样做,他们应该相交。
良好的CAD / CAM系统可以在超过250层。
另一个CAD/CAM软件的功能,简化了设计审查称为干涉检查。
有了这种能力,交配部分可加入的CRT显示器,因为他们将在最后的装配。
设计师可以立即看到如果有干扰。
用干涉检查,这P50计算机变焦能力是特别有用。