恒定电流的电场

合集下载

恒定电流的电场和磁场

恒定电流的电场和磁场

同轴线横截面
2021/4/7
19
第三章 G恒=定电I 流的I电场J和磁场E U
构成方程
J
E
U
解:
J
I
2 rL
er
I
2 r
er
电场强度为
1
I
E J 2 r er
两导体间的电位差为
b
U Edr
I
ln b
a
2 a
这样,可求得单位 长度的漏电电导为
G0
I U
b
I Edr
2
ln b
a
a
2021/4/7
2021/4/7
5
第三章 恒定电流的电场和磁场
III、面电流密度: n
JS
I lim l 0 l
n
dI dl
n
面电流密度
注:n 是垂直于dl,且通过 dl与曲面相切的单位矢量。
任意线 l 上的电流强度I:
IS l J S dl
2021/4/7
6
第三章 恒定电流的电场和磁场
IV、J 的另一表达式:
P U I E lI EJ lS EJ V
J 与 E 之关系
其极限值:p
lim P V 0 V
EJ
E 2
导体内任 一点的热
功率密度
或:
p
JE
(焦耳定律的微分式)
注:焦耳定律不适应于运流电流。
2021/4/7
14
第三章 恒定电流的电场和磁场
3.1.5 恒定电流场的基本方程
积分形式 微分形式
边界条件
边值问题
电位
一般解法
2021/4/7
电导与接地电阻

恒定电流的电场和磁场课件

恒定电流的电场和磁场课件
恒定电流的电场和磁场 课件
目录
• 恒定电流的基本概念 • 电场与电场力 • 磁场与磁场力 • 恒定电流的磁场效应 • 恒定电流的应用 • 实验与实践
01
恒定电流的基本概念
电流的定义与性质
电流
电荷在导体中定向移动形成电流 ,单位时间内通过导体横截面的 电荷量称为电流强度,简称电流 。
电流的性质
电荷的定向移动形成电流,其方 向由正电荷定向移动的方向决定 ,而与导体内自由电荷的运动方 向无关。
电场力是电荷在电场中受到的力,其大小与电荷的电量成正比,与电场强度成正比 。
电场强度是描述电场强弱和方向的物理量,等于单位正电荷在电场中受到的力。
电场强度具有方向性,规定正电荷受力方向为电场强度的方向。
电势与电场能量
电势是描述电场能的物理量,等于单 位正电荷在电场中具有的电势能。
电场能量是电场中储存的能量,与电 势能密切相关。
电阻
导体对电流的阻碍作用,由导体的材 料、长度、横截面积和温度等因素决 定。
02
电场与电场力
电场的概念与性质
电场是由电荷产生的 ,对放入其中的电荷 有力的作用。
电场的性质包括对放 入其中的电荷有力的 作用、静电感应现象 等。
电场具有物质性,是 传递电荷间相互作用 的一种特殊物质形态 。
电场力与电场强度
详细描述
电磁感应现象是当导体在磁场中发生相对运动时,会在导体中产生电动势或电流的现象。这个现象由英国物理学 家迈克尔·法拉第于19世纪30年代发现,是电磁化的电场和磁场相互激发,形成电磁波并传播出去。
详细描述
电磁波是由变化的电场和磁场相互激发而形成的。当电场或磁场发生变化时,就会产生电磁波,并传 播出去。电磁波的传播速度等于光速,在真空中传播不受影响,但在介质中传播速度会减慢。

高中物理 第二章静电场和恒定电流电场

高中物理 第二章静电场和恒定电流电场

第二章 静电场和恒定电流电场§2.1 静电场的基本方程1 静电场的定义:场的源-电荷,相对于观察者(坐标系)静止。

2 静电场的基本方程:0=∂∂t,因此有 ⎪⎪⎩⎪⎪⎨⎧=⋅∇==⋅∇==⨯∇=⨯∇000B HB D E D E H μρε 可以发现电场量(ε,,D E )与磁场量(μ,,B H)无耦合,故可以单独研究静电场和静磁场。

于是静电场的基本方程是⎪⎩⎪⎨⎧=⋅∇==⨯∇ρεD ED E3 静电场的物理特性;1)场源:电荷,散度源,旋度为零,是保守场,可以定义势能。

2)电力线:非环,始于正电荷或带正电荷的导体或无穷远,终于负电荷或带负电荷的导体或无穷远。

3)与磁场关系:无关。

§2.2 电位1 为什么需要电位:1)电位作辅助量,简化求解过程,矢量变标量。

2)静电场电位有物理意义:电位是单位正电荷的势能。

3)电位比电场易测量。

2 电位定义:前提是旋度为零。

任何标量梯度的旋度恒等于零:0=∇⨯∇ϕ (梯度的物理解释:最陡)因此只要让ϕ-∇=E静电场的旋度方程自然满足。

3 电位的物理意义:任意一点A 的电位等于把单位正电荷从该点移到电位参考点P (零电位点)电场力所做的功,也就是外力克服电场力把单位正电荷从电位参考点(零电位点)移到该点所做的功。

数值上也就是单位正电荷所具有的势能。

⎰⎰⎰⎰⎰⎰=-==⋅∇=⋅∇-=⋅→⋅=⋅=PAA PA PA P A PAP AP AAP d l d l d l d E l d E q l d F W ϕϕϕϕϕϕ上式结果与A 点到P 点的具体路径无关,这是因为⎰=⋅=+=-AMPNAANPAMP ANP AMP l d E W W W W 0AMNP所以 A N P A M P W W =因此我们才可以说(在静电场条件下)电位是单位正电荷的势能。

势能本身就意味着它只与状态有关,与过程无关。

4 电位参考点的选择:1)电荷在有限区域,无穷远点为参考点。

第四章-恒定电流的电场和磁场

第四章-恒定电流的电场和磁场

第四章 恒定电流的电场和磁场§4.1 恒定电流的电场§4.2 恒定电场与静电场的比拟§4.3 恒定磁场的基本方程§4.4 恒定磁场的矢量磁位§4.5 介质中的磁场§4.6 恒定磁场的边界条件§4.7 电感的计算§4.8 恒定磁场的能量和力§4.1 恒定电流的电场图 4-1 导体中的恒定电流4.1.1 微分形式的欧姆定律和焦耳定律它的定义是: 单位时间内通过导体任一横截面的电荷量, 数学表示式为所以恒定电流的电流强度定义为上式中Q 是在时间t 内流过导体任一横截面的电荷, I 是常量。

电流强度的单位为(A =C/s )。

图 4-2 电流密度矢量dtdQ t Q i t =∆∆=→∆0lim tQ I =式中J 是体传导电流密度, 单位为A/m2。

如果所取的面积元的法线方向 与电流方向不平行, 而成任意角θ, 如图4-2(b )所示, 则通过该面积的电流是所以通过导体中任意截面S 的电流强度与电流密度矢量的关系是1.欧姆定律的微分形式由实验已知, 当导体温度不变时, 通过一段导体的电流强度和导体两端的电压成正比, 这就是欧姆定律式中R 称为导体的电阻, 单位为Ω, 表示式为或上式中, l 为导体长度; S 为导体横截面; σ称为导体的电导率, 它由导体的材料决定, 单位为1/Ω·m=S/m 。

表 4-1 几种材料在常温下的电阻率和电导率 dS dIS I J S =∆∆=→∆0lim θcos Jds s d J dI =⋅= ⎰⎰⋅=⋅=S S ds n J s d J I 0 0n RI U =S l R σ=Sdl R lσ⎰=图 4-3 推导欧姆定律微分形式所以J =σE 。

在各向同性媒质中, 电流密度矢量J 和电场强度E 方向一致, 都是正电荷运动方向, 故有运流电流不服从欧姆定律, 所谓运流电流, 是指电荷在真空或气体中由于电场的作用而运动时形成的电流。

恒定电流的电场

恒定电流的电场


如果导体的横截面不均匀,上式应写成积分式

式中的σ称为电导率,它由导体的材料决定。


从欧姆定律,可导出载流导体内任一点 上电流密度与电场强度的关系。 如图所示,在电导率为σ的导体内沿电流 线取一极微小的直圆柱体,它的长度是 Δ l ,截面积是Δ s,则圆柱体两端面 之间的电阻 。通过截面Δ s的电 流Δ I=J Δ s ,圆柱体两端面之间的电 压是Δ U =E Δ l,根据式有



这就是电流连续性方程的积分形式。由高斯散度定理,上式中的 面积分可化为体积分 闭合曲面s是任意选的,因此,它所限定的体积v也是任意的。

这是电流连续性方程的微分形式
恒定电流的电流强度是恒定的,电荷的分布也是恒定 的。任一闭合面内都不能有电荷的增减,即
这就是恒定电流的连续性方程的积分形式。 它的物理含义是,单位时间内流入任一闭合面的电荷 等于流出该面的电荷。电流线是连续的闭合曲线。由 上式,应用高斯散度定理可得恒定电流的连续性方程的 微分形式。这说明恒定的电流场是无源场(管形场)

电流的强弱用电流强度来描述。 它的定义是,单位时间内通过导体任一横截面 的电荷量。 如果在时间Δ t内流过导体任一横 截面的电量是Δ q,便取下式作为时变电流强 度的定义。 恒定电流的电流强度的定义是


式中的q是在时间t内流过导体任一横截面的电 荷。I是个常量。电流强度一般简称为电流。
二、电流密度

J表示传导电流密度,如果所取的面积元的法线方向n0与电流方 向不垂直而成任意角度θ,则通过该面积元的电流是

通过导体中任意截面s的电流强度I与电流密度矢量J的关系是


电流密度矢量J在导体中各点有不同的方向和数值,从而构成一个 矢量场,称为电流场。这种场的矢量线称为电流线。电流线上每 点的切线方向就是该点的电流密度矢量J的方向。 从电流强度I与电流密度矢量J的关系看出,穿过任意截面s的电流 等于电流密度矢量J穿过该截面的通量.如图所示。

第三章 恒定电流的电场和磁场1-4

第三章 恒定电流的电场和磁场1-4
1
+ + + + E2t + +
2
+ +
Jc1
U
E2n E 2 E2t Jc1
E2 E2n
图 输电线电场示意图
两种有损电介质分界面上的边界条件: 如图所示,在两种有损电介质的分界面上,应有
E E 1 1 n 2 2 n
J2
2, 2 P 1, 1
同时,还有

E E 2 2 n 1 1 n
U 1 b R 0 ln I 2 a
(2)解法二:静电比拟法
在同轴电缆分析中,已求得电场强度为
S
E
U0 b ln a

a b

a o A
b
,
P B Jc
U0
故泄漏电流密度 图 同轴电缆中的泄漏电流 U0 Jc E e a b b ρ ln a 同理,单位长电导可以由单位长度电容求得,即电缆的单位长绝缘电阻为
1 1 1 b R ln G C 2 a
镜像法的比拟:


2 1 2 2 ) ( I I, I I 1 2 1 2
恒定电场模拟静电场实验
因为电流场中的电流、电位分布容易测定,所以可 以利用相应的电流场模型来实测待求的静电场问题。
1, 1
U0 d1 d2
2, 2
图 非理想介质的平板电 容器中的恒定电流场
例:试用边值问题求解电弧片中电位、电场及导体分界面上 的面电荷分布。 解:
2 1 2 1 0 1 2 2 2 1 2 2 0 2 2 2

静态电磁场II:恒定电流电场介绍

静态电磁场II:恒定电流电场介绍
断的闭合矢量线,因而磁场空间没有磁感应强度矢量线的
源和汇,磁场是一个无源场。
B0
图 磁通连续性原理
静电场 ( 0) 恒定电场(电源外)静电场 恒定电场
E 0 D 0
D E
2 0
q SD dS
E 0
J 0
J E
2 0
I SJ dS
E
E
D
J
ε
q
I
C
q
DdS S
EdS
S
U Edl Edl
l
l
G I
JcdS EdS
S
S
U Edl Edl
l
l
G C
当满足比拟条件时,用比拟法由电容计算电导。
3.2.2 接地电阻
接地电阻
接地器和接地 导线的电阻
接地器与大地 的接触电阻
1.深埋球形接地器
解:深埋接地器可不考 虑地面影响,其电流场可与 无限大区域 ( ) 的孤立圆球 的电流场相似。
两接地器之间 土壤的电阻
图 深埋球形接地器
解法一 直接用电流场的计算方法
I J 4Ir2
E J
I
4r2
U
I
3.3.1 恒定磁场的基本方程
积分形式: 微分形式:
H d l J c d S
S
S
B dS 0
S
H Jc B0
媒质构成方程:
B H
结论: 恒定磁场是无源有旋场。
3.3.2 真空中安培环路定律-恒定磁场有旋性
真空中的安培环路定律
n
Bdl 0 Jc dS 0 Ik
S
S
k1
dt时间内有dq电荷自元电流
管的左端面移至右端面,则 电场力作功为dW = dUdq

恒定电流的电场与磁场

恒定电流的电场与磁场

电源电路的分析需要掌握电 路的基本原理,如欧姆定律、 基尔霍夫定律等,以及各种
电子元件的特性。
电源电路的设计与分析对于保 证电力系统的稳定运行和节能
减排具有重要意义。
电磁感应在日常生活中的应用
例如,变压器利用电磁感应原理实现电压的变换,电 动机利用电磁感应将电能转换为机械能,发电机利用 电磁感应将机械能转换为电能。
电流的性质
电流具有连续性,电荷在 导体中不会积累或消失, 而是以一定的速度不断通 过导体。
电流的方向
规定正电荷定向移动的方 向为电流方向,与负电荷 定向移动的方向相反。
欧姆定律与基尔霍夫定律
欧姆定律
导体中的电流与导体两端的电压成正 比,与导体的电阻成反比。
基尔霍夫定律
电路中任一节点上流入的电流之和等 于流出的电流之和,即节点电流定律 ;任意回路上,电压降之和等于电压 升之和,即回路电压定律。
描述磁场中磁通量变化产生电动势的物理定律,指出当磁场中的磁通量发生变化 时,会在导体中产生电动势。
03
恒定电流产生的电场与 磁场
恒定电流的电场特性
恒定电流的电场是静电场的一种特殊形式,其电场线不随时间变化,只与导体的位 置和形状有关。
恒定电流的电场具有高斯定理和环路定理等基本性质,这些性质与静电场相同。
电源与电阻
电源
提供电能并维持电路中恒定电流 的装置,分为直流电源和交流电 源两类。
电阻
导体对电流的阻碍作用,由导体 的材料、长度、横截面积和温度 等因素决定。
02
电场与磁场的基本理论
电场强度与电位
电场强度
描述电场中电场力作用强弱的物理量,单位为伏特/米(V/m)或牛顿/库仑 (N/C)。
电位

恒定电流的电场

恒定电流的电场

26
27
28
29
30
说明分界面上电场强度的切向分量是连 续的。
17
电场方向的关系
18
19
20
21
22
3—5 恒定电场与静电场的比较
通过前面几节的讨论,我们发现导电媒 质中的恒定电场(电源外)与电介质中的静 电场(体电荷密度为0的区域)在许多方面 有相似之处。为了清楚起见,列表比较 如下。
23
24
25
4
J表示传导电流密度,如果所取的面积元的法线方向n0与电流方 向不垂直而成任意角度θ,则通过该面积元的电流是
通过导体中任意截面s的电流强度I与电流密度矢量J的关系是
电流密度矢量J在导体中各点有不同的方向和数值,从而构成一个 矢量场,称为电流场。这种场的矢量线称为电流线。电流线上每 点的切线方向就是该点的电流密度矢量J的方向。
面电流密度的方向仍然是正电荷运动的方向。为区别 起见,J又称为体电流密度。
6
3—2欧姆定律
实验证明,导体的温度不变时,通过一段导体的电流强度和导体 两端的电压成正比,这就是欧姆定律
式中的比例系数R称为导体的电阻,R只与导体的材料及几何尺寸 有关。由一定材料制成的、横截面均匀的线状导体的电阻只与导 体长度l成正比ห้องสมุดไป่ตู้与横截面积s成反比,即
电荷在电场作用下的宏观定向运动就形成电流。不随时间变化的电流称为 恒定电流(直流)。随时间变化的电流称为时变电流(交流).如果在一个导 体回路中有恒定电流,回路中必然有一个推动电荷流动的恒定电场.这 是静电场以外的又一种不随时间变化的电场。这个恒定电场是由电源产 生的。我们知道,在静电场中,导体内部的电场强度等于零,但通有恒 定电流的导体内部的电场强度却不等于零。因此,有关导体在静电场中 的一些结论,例如电力线必须与导体表面垂直,导体表面是一个等位面 等概念,在恒定电流的电场中是否仍然成立,就需要重新研究。

第2章静电场和恒定电流电场

第2章静电场和恒定电流电场

ϕ = C E1t = E2t Et = 0 ρs ⇒ ⇔ ∂ϕ D n − D2n = 1 Dn = ρs ε ∂n = −ρs 0
E = −∇ϕ, ∇⋅ D = ρ Q v v v ∇⋅ (ϕD) = ϕ∇⋅ D +∇ϕ ⋅ D v v v v v v ∴E ⋅ D = −∇ϕ ⋅ D = −∇⋅ (ϕD) +ϕ∇⋅ D = −∇⋅ (ϕD) + ρϕ v 1 1 ∴W = ∫∫∫ ρϕdv − ∫∫∫ ∇⋅ (ϕD)dv 2 2 v v v 高斯定理) Q∫∫∫ ∇⋅ (ϕD)dv = ∫∫ ϕD⋅ dS (高斯定理) v v 1 1 ∴W = ∫∫∫ ρϕdv − ∫∫ ϕD⋅ dS 2 2 1 v v 1 Q ∫∫ ϕD⋅ dS 通常 = 0 ∴W = ∫∫∫ ρϕdv (2) 2 2
−ρ 0 ≤ x ≤ d 2 , ∇ ϕ1 = 2 ε d ∇2ϕ = 0, ≤ x≤d 2 2 ϕ 因为ϕ1 , 2与坐标y,z 无
+
x
d

2
ρ
2
O
关,电位方程可简化为: 电位方程可简化为:
d ϕ1 −ρ ∇ ϕ1 = = , 2 dx ε
2 2
d ϕ2 ∇ ϕ2 = = 0, 2 dx
v v 1 W = ∫∫∫ E ⋅ Ddv (1) 六 静电场的能量 v v 2
例1 平行板电容器极板平面的尺寸远大于它们之间的距 离d,两极板间加恒定电压 U 0 ,极板间的介电常数为ε, 其中一半空间有体电荷均匀分布, 其中一半空间有体电荷均匀分布,体电荷密度为 ρ ,分 界面与极板平行。试求极板间的电位分布。 界面与极板平行。试求极板间的电位分布。 解
当分界面为导体与电介质的交界 面时,由于导体的特殊性质, 面时,由于导体的特殊性质,在导体和介质的分解面上 的边界条件有其特点。导体在静电场中有以下性质: 的边界条件有其特点。导体在静电场中有以下性质: 1)导体内部不带电,电荷只分布在导体表面上; 导体内部不带电,电荷只分布在导体表面上; 导体内部电场为零; 2)导体内部电场为零; 3)导体表面电场方向为法线方向,导体是个等势体, 导体表面电场方向为法线方向,导体是个等势体, 表面是等势面。 表面是等势面。 导体和电介质分界面上的边界条件为: 导体和电介质分界面上的边界条件为:

恒定电流场的基本方程

恒定电流场的基本方程

能量转为电能的装置称为电源。
恒定电流的形成
◇ 电源电动势与局外场强
电源电动势与有无外电路无关,它是表示电源本身的特征量。
电源内的一种非静电场称为局外场,设局外场强为 E f
则电源电动势为 e A E • dl (V) B
q
◇ 路经电源内部绕电路一周的环量
ห้องสมุดไป่ตู้
( E E ) • d l E •d l E •d l 0 E•dl A E•dl e
第 3 章 恒定电场
3.2 恒定电场的基本方程
Postulates of Steady Electric Fields
恒定电场的基本方程
1. 电流连续性方程: 依据:电荷守恒定律
从任一封闭面中流出的电流等于该封闭面中电量在单位时间的减

s J
• dS
dQ dt
• J
t
电流连续性方程的积分形式 电流连续性方程的微分形式
c
c
c
c
B
局外场 E是非保守场。
4. 导体中的电位方程
• J •(E ) • E • E
• 2 0
导体均匀, = c 导体不均匀, = (r)
5. 恒定电场与静电场的比较
2 0 2 • 0
恒定电场
静电场
产生根源: 区域外的电源
全部区域的静电荷
场特性: 无散无旋
有散无旋
平衡状态: 动态平衡
静态平衡
总结恒定电场的基本方程:
导电媒质内
导电媒质外
sJ • dS 0 c E • dl 0
J E
•J 0 E 0
J E
s D • dS Q cE • dl 0
D E

第3章 恒定电流的电场和磁场

第3章 恒定电流的电场和磁场

第三章 恒定电流的电场和磁场 将非静电力对电荷的影响等效为一个非保守场(非库仑 场),其电场强度E'只存在于电源内部(如图)。在电源外部只 存在由恒定分布的电荷产生的电场(库仑场),用E表示。 在电源内部既有库仑场,也有非保守场,二者方向相反。 电动势:在电源内部搬运 单位正电荷从负极到正极时非 静电力所做的功,用ε表示。其 数学表达式为
第三章 恒定电流的电场和磁场
第三章 恒定电流的电场和磁场
运动的电荷在它周围不但产生电场,同 时还产生磁场。由恒定电流或永久磁铁产生 的磁场不随时间变化,称为恒定磁场,也称 静磁场。本章主要讨论恒定电流产生的电场 和磁场的基本特性以及磁场计算等,主要内 容有:
第三章 恒定电流的电场和磁场 3.1 3.2 3.3 3.4 3.5 3.7 3.8 3.9 恒定电流的电场 恒定电流的电场* 磁感应强度 磁感应强度* 恒定磁场的基本方程* 恒定磁场的基本方程 矢量磁位 磁偶极子 恒定磁场的边界条件* 恒定磁场的边界条件 标量磁位 标量磁位 互感和自感* 互感和自感
ε = ∫ E' ⋅ d l
B
A
图 3-3 电动势
第三章 恒定电流的电场和磁场 电动势主要用来描述电源的特性。与有无外电路无关, 它是表示电源本身的特征量。 对恒定电流场来说,其性质与静电场相同,故有
∫ E ⋅ dl
l
A
=0
式中的积分路径是电源之内或之外的导体中的任何闭合回路。
ε = ∫ E ' ⋅ d l = ∫ ( E + E ') ⋅ d l
1. 电源外部的欧姆定律
J =σ E U = RI
σ
(3 − 11)
--微分式 --积分式
是电导率,单位为西门子/米(S/m)。

3-恒定电流电场

3-恒定电流电场

直立管形接地器
实际电导 G ′ =
I 2 1 1 4l = G , 即 R= ln 2πγl d U 2
3.
浅埋半球形接地器
解:考虑地面的影响用镜像法处理。此时由静电比拟
C ε = G γ
, C = 4πεa → G = 4πγa
实际电导 接地器接地电阻
G′= G 2,
R = 1 2πγa
图2.5.6 浅埋半球形接地器
注册电气工程师考试辅导
电磁场理论
恒定电流的电场
●电流密度 电流密度 ●电荷守恒定律 电荷守恒定律 ●欧姆定律的微分形式 欧姆定律的微分形式 ●焦耳定律 焦耳定律 ●恒定电流场的基本方程 恒定电流场的基本方程 ●恒定电流场的边界条件 恒定电流场的边界条件 ●恒定电流场与静电场的比拟 恒定电流场与静电场的比拟
设 I→ J → E=
J
→ U = ∫ E dl → G =
当恒定电场与静电场边界条件相同时,用静电比拟法,由电容计算电导。
C Q U ∫sD ds ∫LE dl ε∫sE ds ε = = = = G I U ∫ J ds ∫ E dl γ ∫ E ds γ
s L s

G γ = C ε
静电系统的部分电容可与多导体电极系统的部分电导相互比拟。
I
v n
dI j= dS dS dS⊥ v v ∴dI = jdS⊥= jdS cosθ = j dS

θ v
j
通过导体中任一有限截面S 通过导体中任一有限截面S的电流强 度为 v v
I = ∫ j dS
S
(2)电荷守恒定律
(3)欧姆定律的微分形式
一.电源 电容器放电过程:正电荷 电容器放电过程: 板经导线移到B 从A板经导线移到B板, 与B板上负电荷中和 ----不能形成稳恒电流 不能形成稳恒电流

《恒定电流场》课件

《恒定电流场》课件
恒定电流场
目录
Contents
• 恒定电流场的基本概念 • 恒定电流场的物理性质 • 恒定电流场的应用 • 恒定电流场的实验研究 • 恒定电流场的发展前景
01 恒定电流场的基本概念
电流场的中运动所 产生的电场,其特征是电荷在电 场中受到电场力的作用而产生运 动。
02
维持电流场的持续需要保持电源与负载之间的能量平衡,以保持电荷的运动状态。
电流场的产生与维持涉及到电路中的电阻、电容和电感等元件的作用,以及电源的 特性和负载的性质。
02 恒定电流场的物理性质
电场与电流的关系
电流产生电场
电流在空间中流动时,会激发电场,电场的方向与电流的方 向垂直。
电场对电流的作用
电流场的测量技术
1 2
电流测量
使用电流表或高精度测量仪器来测量电流的大小 和方向,以获取电流场的详细信息。
电位测量
通过测量电位差来了解电流场中的电场强度和电 势分布,有助于分析电流场的特点和规律。
3
磁场测量
在某些情况下,可能需要测量磁场强度和方向, 以进一步了解电流场对周围物体的影响。
实验结果的分析与解释
磁场力
电流在磁场中受到磁场力的作用,磁 场力的大小与电流的大小和磁场的强 度有关。
03 恒定电流场的应用
电子设备中的电流场
集成电路
在集成电路中,恒定电流场用于驱动电子设备,实现信号的传输和处理。
电子元件
在电子元件中,恒定电流场用于产生磁场和电场,实现电子元件的功能。
电流场在电磁学中的应用
电磁感应
数据处理
01
对实验数据进行处理和分析,包括数据整理、图表绘制等,以
便更好地理解和解释实验结果。
结果解释

第三章 恒定电流的电场和磁场

第三章 恒定电流的电场和磁场
ab cd
又⊿l很小,所以⊿l上电场强 度可看成常数
E dl E1 l0l E 2 l0l 0
l
1 2
或 E 2 t E 1t
20
l 0 ( E 2 E1 ) 0
或 n ( E2 E1 ) 0
• 跨步电压:人跨一步(约0.8m)的两脚间的电压。如 果短路,大的电流流入大地时,接地电极附近地面两 点间电压可能达到相当大的数值。
13
例:求半球形电极的接地电阻 设经引线由O点流入半球形电极的电流为I,则距球心为 r处的地中任一点的电流密度为:
I e 2 r 2r 则电场强度为: E J
欧姆定律微分形式: J E 其中σ 为电导率,单位:西门子/米(S/m)
恒定电场中,仅理想导体(σ →∞ )内才有: E 0 静电场中,导体内有: E 0
欧姆定律积分形式:U RI 注意:只适用于传导电流、电源外部,不适用于运流电流
8
如右图,考虑一横截面为S,长度为 ,电导率为 的均匀导电媒质。该导电媒质横界面S的总电流为:
I dI 》与I的关系 I J dl J S lim n n l l 0 l dl 》与ρS的关系 J S v
3、线电流密度 如果电流流过一根非常细的导线时,引入线电流密度 J l In l v 6 电流密度动态演示:
V 0
V
补充:接地电阻(无线电仪器或电气装置中常需接地) • 接地:将金属导体埋入地内,而将设备中需要接地的 部分与该导体连接。
• 接地体或接地电极:埋在地内的导体或导体系统。
• 接地电阻:电流由电极流向大地时所遇到的电阻。当 远离电极时,电流流过的面积很大,而在接地电极附 近,电流流过的面积很小,或者说电极附近的电流密 度最大,因此,接地电阻主要集中在电极附近。

恒定电流和恒定电场.ppt

恒定电流和恒定电场.ppt

或者
VB VA RI
正负号规定:
1、若通过电阻的电流和积分路径方向相同,该电阻上的电 势降取“+”号,否则取“-”。
2、若电动势的指向和积分路径的方向相同,该电动势前取 “+”,否则取“-”号。
例题10-2
I
3 , Ri 4
1、求电路中的电流 2、电池A的端电压U12
B
2019/11/22
§10-2 恒定电流和恒定电场 电动势
• 恒定电流(Steady Current):导体内任一点的 的大 小和方向均不随时间改变的电流。
1.恒定条件
若电流场内 的大小和方向不随 t 变,则

要求空间电荷分布不随 t 变,即 dq 0
则在电流场内作一任意闭合 S 面,有 dt
2019/11/22
(2)不同处 : • 产生恒定电流的电荷是运动的(但电荷分布不随 t
变)。 • 恒定电场对运动的电荷要作功,恒定电场的存在,
总伴随着能量转移。 • 节 点 电 流 定 律 ( 基 尔 霍 夫 第 一 定 律 ) (Kirchhoff
first law)
2019/11/22
• 电动势(electromotive force简写作emf)
• 非静电力:电源内部都有非静电力(nonelectrostatic force);
• 非静电力使正电荷由负极经电源内部到达正极。
• 引入:非静电力场强:单位正电荷所受的非静电力
E非

F非 q
• 把电荷 q 由负极移向正极(经电源内部)非静电力作功
I
2019/11/22
F非
R
• 电动势:把单位正电荷经电源内部由负极移向正极过程 中,非静电力所作的功。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


在各向同性的导电媒质中,电流密度矢量和电场强度的方向相同,都是 正电荷运动的方向,上式可写成矢量形式 这就是欧姆定律的微分形式。 但要注意,面电流密度。 最后必须指出,运流电流不服从欧姆定律。 设在空间一点,电荷的运动 速度是v(米/秒),该点的电荷密度是ρ(库/米3),过该点取一垂直于电 荷运动方向的面积元ds,并沿电荷运动的方向取长度元dl,则体积元dv =dsdl内的电量dq= ρ dsdl ,这些电荷在dt=dl/v的时间内全部流过ds, 由电流强度的定义

说明在分界面上电流密度的法向分量是连续的。
E的边界条件

将 应用于图中的矩形闭合路径上得

说明分界面上电场强度的切向分量是连 续的。
电场方向的关系
3—5 恒定电场与静电场的比较

通过前面几节的讨论,我们发现导电媒 质中的恒定电场(电源外)与电介质中的静 电场(体电荷密度为0的区域)在许多方面 有相似之处。为了清楚起见,列表比较 如下。

有时电荷在一很薄的导体片上流动,称为面电流,如 图 所示。这时,与电流方向垂直的横截面积s近似为零, 面积元Δ s变为线元Δ l。为了描述面电流在横截面上 的分布,取面电流密度Js的定义为

面电流密度的方向仍然是正电荷运动的方向。为区别 起见,J又称为体电流密度。
3—2欧姆定律

实验证明,导体的温度不变时,通过一段导体的电流强度和导体 两端的电压成正比,这就是欧姆定律
第三章恒定电流的电场


电荷在电场作用下的宏观定向运动就形成电流。不随时间变化的电流称为 恒定电流(直流)。随时间变化的电流称为时变电流(交流).如果在一个导 体回路中有恒定电流,回路中必然有一个推动电荷流动的恒定电场.这 是静电场以外的又一种不随时间变化的电场。这个恒定电场是由电源产 生的。我们知道,在静电场中,导体内部的电场强度等于零,但通有恒 定电流的导体内部的电场强度却不等于零。因此,有关导体在静电场中 的一些结论,例如电力线必须与导体表面垂直,导体表面是一个等位面 等概念,在恒定电流的电场中是否仍然成立,就需要重新研究。 导体表面上的恒定电荷分布在导体周围的电介质中也要产生一个恒定的 电场,达与静电场没有什么区别。 本章主要研究导体中恒定电场的基本性质,同时,还要由此推导出直流 电路理论中的一些基本定律,如欧姆定律,焦耳定律,基尔霍夫电流定 律和电压定律等。 当导体中有恒定电流时,导体内外还有磁场,这将在第四章中讨论。
3-1 电流和电流密度
一电流 通常所说的电流是指电荷的宏观定向运动。 在金属导 体中,运动的是带负电的自由电子,其运动的方向与 电场强度方向相反。但习惯上总是把电流看成是正电 荷的运动,并规定正电荷运动的方向为电流的方向。 也就是说,电流的方向总是沿着电场强度的方向,从 高电位流向低电位。在导电溶液中,正、负离子向相 反 的方向运动。 上述固态或液态导体(或统称为导电媒质)中的电流都 称为传导电流。 在真空或气体中,电荷在电场作用下的定向运动形成 的电流,称为运流电流,本章只讨论传导电流。

0
二、恒定电场的旋度

既然恒定电荷产生的是库仑电场,它具 有与静电场相同的性质,所以
三、导体内(电源外)恒定电场的基本 方程
3—4恒定电场的边界条件
当恒定电流通过具有不同电导率的两种导电媒质的分 界面时,在分界面上,J和E各自满足的关系称为恒定 电场的边界条件。边界条件可由恒定电场基本方程的 积分形式导出,所用方法与第二章相仿。 将 应用于图中的柱形闭合面上得
式中的比例系数R称为导体的电阻,R只与导体的材料及几何尺寸 有关。由一定材料制成的、横截面均匀的线状导体的电阻只与导 体长度l成正比,与横截面积s成反比,即

如果导体的横的材料决定。


从欧姆定律,可导出载流导体内任一点 上电流密度与电场强度的关系。 如图所示,在电导率为σ的导体内沿电流 线取一极微小的直圆柱体,它的长度是 Δ l ,截面积是Δ s,则圆柱体两端面 之间的电阻 。通过截面Δ s的电 流Δ I=J Δ s ,圆柱体两端面之间的电 压是Δ U =E Δ l,根据式有

则电流密度 运流电流密度的方向就是电荷运动的方向。
3—3恒定电流的基本方程

一、电流连续性方程,恒定电场的散度 根据电荷守恒定律,单位时间内由闭合面流出的电荷应等于单位 时间内闭合面内电荷的减少量。 设闭合面上的法线方向都由里向外,由电流密度J的定义,单位时 间内由闭合面流出的电荷是
单位时间内f面内电荷的减少量是 =



这就是电流连续性方程的积分形式。由高斯散度定理,上式中的 面积分可化为体积分

闭合曲面s是任意选的,因此,它所限定的体积v也是任意的。
这是电流连续性方程的微分形式
恒定电流的电流强度是恒定的,电荷的分布也是恒定 的。任一闭合面内都不能有电荷的增减,即
这就是恒定电流的连续性方程的积分形式。 它的物理含义是,单位时间内流入任一闭合面的电荷 等于流出该面的电荷。电流线是连续的闭合曲线。由 上式,应用高斯散度定理可得恒定电流的连续性方程的 微分形式。这说明恒定的电流场是无源场(管形场)

电流的强弱用电流强度来描述。 它的定义是,单位时间内通过导体任一横截面 的电荷量。 如果在时间Δ t内流过导体任一横 截面的电量是Δ q,便取下式作为时变电流强 度的定义。 恒定电流的电流强度的定义是


式中的q是在时间t内流过导体任一横截面的电 荷。I是个常量。电流强度一般简称为电流。
二、电流密度

J表示传导电流密度,如果所取的面积元的法线方向n0与电流方 向不垂直而成任意角度θ,则通过该面积元的电流是

通过导体中任意截面s的电流强度I与电流密度矢量J的关系是


电流密度矢量J在导体中各点有不同的方向和数值,从而构成一个 矢量场,称为电流场。这种场的矢量线称为电流线。电流线上每 点的切线方向就是该点的电流密度矢量J的方向。 从电流强度I与电流密度矢量J的关系看出,穿过任意截面s的电流 等于电流密度矢量J穿过该截面的通量.如图所示。


在通常的直流电路中,一般只考虑某一导线中的总电 流。但在某些情况下,在导体内部各点,单位时间内 流过单位截面的电荷可能不同,甚至流动的方向也不 同。这时,为了说明导体横截面上电流分布的情况, 就需要引入另一个物理量——电流密度J。 电流密度J是一个矢量,它的方向是在导体中某点上正 电荷运动的方向(即电流方向),它的数值等于通过该点 单位垂直面积上的电流强度。如图(4—1)所示,设在 导体中某点取一个与电流方向垂直的面积元Δ s,通过 该面积元的电流是Δ I,则该点电流密度的数值是
相关文档
最新文档