求二面角的平面角PPT教学课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二面角的平面角来解题.
复习: 二面角的平面角
以二面角的棱上任意一点为端点, 在两个面内分别作垂直于棱的两条射线, 这两条射线所成的角叫做二面角的平面角.
O
二二面面角角的的求求法法
(1)定义法——直接在二面角的棱上取一 点(特殊点)分别在两个半平面内作棱的 垂线,得到平面角.
(2)三垂线法——利用三垂线定理或 逆定理作出平面角,通过解直角三角 形求角的大小.
• 了解回忆性叙事文的主要 特点
• 初步学会按照内容划分文 章的段落层次概括中心
• 感受作者对老师的真切感 情
检测预习
• 呵斥 敷衍 懊丧 蕴寓 癖好 临摹 寥寥 揶揄 悚然 悼念 伫立 鞭策
• 灵柩
疾言厉色
络绎不绝 语重心长
• 娓娓动听 茅塞顿开
• 促膝长谈 一瓣心香
初步感知
• 这是一篇回忆性的记叙
2BM MN
3
则BMN arccos 6 . 3
例2.正方体ABCD-A1B1C1D1的棱长为1, P是AD的中点,求二面角A-BD1-P的大小.
C1
B1
D1
A1
E
C
F B
D
P
A
例3、(高考题)⊿ABC中,AB⊥BC, SA ⊥平面ABC,DE垂直平分SC, 又SA=AB=a,SB=BC, (1)求证:SC ⊥平面BDE, (2)求二面角E-BD-C的大小?


• 事情发生的地点在寄园

• “情”是文章的中心内

深容入感知

关于“寄园” 为何难忘 是怎样的一种感情
我在童年和少年时代曾
在寄园求学,得到钱名 山先生的教诲,令我终 生难忘,迄今对他充满 感恩和怀念
作文马虎 找我谈话
寄 夜幕降临 促膝长谈 园 欣赏书画 读 书 先生评画
炫耀诗才 先生批评
第二课时
在RtSAC中,tanSCA= SA = a = 3 AC 3a 3
则SCA=300,则CDE=900-SCA=600
在正方体ABCD-A1B1C1D1中, 求二面角D1—AC—D的大小?
D1
C1
A1
B1
wenku.baidu.com
答案:arctan 2
DO
C
A
B
小结
1. 二面角是立体几何的重点、热点、难 点,求二面角的大小方法多,技巧性 强.但一般先想定义法,再想三垂线法, 要抓住题目中的垂直关系.
N
B
M
D
C
解:作BM AC于M,作MN AC交AD于N, 则BMN就是二面角B AC D的平面角
由AB AC BC 2, M是AC的中点,且MN//CD
得BM 6 , MN 1 CD 1 , BN 1 AD 3 .
2
2
2
2
2
由余弦定理得
cos BMN BM 2 MN 2 BN 2 6 ,
(3)垂面法——通过做二面角的棱的垂 面,两条交线所成的角即为平面角.
(4)射影面积法——若多边形的面积是S,它在
一个平面上的射影图形面积是S’,则二面角的
大小为COS = S’÷ S
A
B
E
O
D
C
3
例1.(06年江西卷)如图,在三棱锥A-BCD中, 侧面ABD、ACD是全等的直角三角形,AD是公 共的斜边,且AD= 3 ,BD=CD=1,另一个 侧面是正三角形,求二面角B-AC-D的大小. A
S
E
D
A
C
B
解:(1)因为SB=BC,E为SC的中点,
所以BE SC,又DE SC
S
因此SC 平面BDE
E
(2)由SC 平面BDE,得BD SC
D
又由SA 平面ABC,得BD SA
A
C
则BD 平面SAC
B
因此CDE为二面角E-BD-C的平面角
由AB BC,AB=a,BC= 2a,得AC= 3a
求二面角的平面角
一、教学目标 1.理解和掌握二面角的有关概念;掌握二面角
的平面角的常见求法. 2.用转化的思维方法将二面角问题转化为其平
面角问题,进一步培养学生的空间想象能力 和分析、解决问题的能力.
二、教学重点、难点 1.教学重点:二面角的平面角的常见求法. 2.教学难点:如何选取恰当的位置和方法作出
茅塞顿开 精益求精
炫耀诗才 先生批评
劝戒警勉 育我成人
淡淡地笑道 警勉而略带揶揄
惶恐不安 发人深省 鞭策至今
五件小事是从课内写到课外, 表现钱先生在课内对学生— ———,在课外对学生—— ——。
教学目标
• 了解回忆性文章的特点 • 体会先生爱生之心、作者
敬师之情 • 初步学习细致观察的作用
以及实际应用
拓展阅读 《父亲的爱》
• 概括说明本文写了有 关爹的哪几件事
• 通过这些具体的事例, 说明父亲的爱具有怎 样的特点
教学目标
• 了解回忆性文章的特点 • 初步学习细致观察的作用
以及实际应用
• 体会先生爱生之心、作者 敬师之情
回忆性叙事文的特点
• 选择典型事例 • 挖掘重点词语 • 体悟真挚情感
作文马虎 找我谈话
寄 夜幕降临 促膝长谈
园 读
熟谙癖好 给予培养
书 先生评画 终生受益
炫耀诗才 先生批评
作文马虎 找我谈话
2. 实施解题过程仍要注意“作、证、求” 三环节,计算一般是放在三角形中,因 此,“化归”思想很重要.
作业:
1.四棱锥P-ABCD的底面 P
是边长为4的正方形,
PD⊥面ABCD,PD=6,
C
M,N是PB,AB的中点,求
二面角M-DN-C的平 D
面角的正切值?
2.如图,在平面角为600的二面
角 -l-内有一点P,过P作PC P 于点C,PD 于点D,且PC=1, D
严格要求 教育有方
(轻轻地)抚摸 (温和地)问 (语重心长地)说
惭愧 后悔 懊丧 从此不敢怠慢
夜幕降临 促膝长谈
学识渊博 寄教于乐
上下五千年 纵横九万里 娓娓动听
络绎不绝 新奇愉快
熟谙癖好 给予培养
激发兴趣 因材施教
熟谙学生 奉献珍藏
迷上了画画 爱上了文艺
先生评画 终生受益
见识独到 修养深厚
看 沉思 寥寥数语 一针见血
PD=2,求(1)CD的长; (2)P到棱l的距离为多少?
M
B N
A
C
l
第一课时
谢稚柳几乎是一位全 能的艺术家,他精通 书画鉴定、美术理论、 绘画、书法、诗词等 各个艺术领域。就以 绘画而论,山水、花 鸟、人物、鞍马,他 无所不能,且均有独 到的艺术成就,可谓 博大精深。
竹 竹鸟图
山寺松泉
教学目标
相关文档
最新文档