浅析反常积分与定积分的定义与性质
考研数学高数6反常积分
第六讲:广义积分(反常积分)反常积分概念:定积分是有界函数()f x 在有限区间[,]a b 上讨论的积分问题,但有的积分问题需要在无穷区间上讨论,或者是讨论无界函数的积分,这就是广义积分(或称反常积分): 第一类反常积分(无穷积分)()af x dx +∞⎰或()bf x dx -∞⎰第二类反常积分(瑕积分)()baf x dx ⎰其中:lim ()x af x +→=∞或lim ()x bf x -→=∞ 在上两个定义式中,若积分存在,则称相应的反常积分收敛;若积分不存在,则称其为发散.例: 计算广义积分⎰∞+12d 1x x⎰∞+-02d e x x ⎰∞--0d e 2x x x重要例题:讨论p-积分的敛散性:+111111pp p dx x p ∞⎧>⎪-⎪⎪=⎨⎪+∞≤⎪⎪⎩⎰下面先针对第一类反常积分的敛散性的判断进行讨论 第一类反常积分的敛散性判别法: (仅讨论()af x dx +∞⎰的形式)绝对收敛性:若反常积分|()|af x dx +∞⎰收敛,则称反常积分()af x dx +∞⎰绝对收敛,或称()f x 在区间[,)a +∞上绝对可积;若反常积分|()|af x dx +∞⎰发散,而反常积分()af x dx +∞⎰收敛,则称反常积分()af x dx +∞⎰条件收敛,或称()f x 在区间[,)a +∞上条件可积。
定理: 若()af x dx +∞⎰绝对收敛,则()af x dx +∞⎰必收敛正项反常积分的敛散性判别:(即以下讨论中,被积函数都是非负的) 比较判别法:设在[,)a +∞上恒有)()(0x K x f ϕ≤≤,其中K 是正常数。
则 (1)当⎰∞+a dx x )(ϕ收敛时,⎰∞+adx x f )(也收敛;(2)当⎰∞+adx x f )(发散时,⎰∞+adx x )(ϕ也发散。
例:111ln(1)1dx x x +∞⎡⎤+-⎢⎥+⎣⎦⎰比较判别法的极限形式:设在[,)a +∞上恒有0)(≥x f ,0)(≥x g ,且()lim()x f x c g x →+∞=。
高等数学5-4反常积分
电磁学
在电磁学中,反常积分用于计算电磁波的传播 和散射特性。
热力学
在热力学中,反常积分用于计算热传导、热辐射和热对流等过程的热能分布。
在概率论中的应用
随机过程
在随机过程中,反常积分用于计算随机事件 的概率分布和概率密度函数。
统计推断
在统计推断中,反常积分用于计算样本数据 的统计特征和参数估计。
贝叶斯推断
05
反常积分的注意事项
计算过程中的常见错误
1 2 3
积分区间选择不当
在计算反常积分时,选择正确的积分区间至关重 要。如果积分区间选择不当,可能会导致计算结 果不准确或错误。
积分上限或下限错误
在计算反常积分时,需要注意积分上限或下限的 取值。如果取值错误,会导致计算结果偏离正确 值。
积分函数处理不当
感谢您的观看
THANKS
比较法
通过比较两个反常积分的敛散性来判断其敛散性。如果两个反 常积分具有相同的敛散性,则可以判断它们的敛散性。
如何处理无界函数和瑕点
无界函数的处理
在处理无界函数时,需要将其限制在 有界区间内进行积分。这样可以避免 无界函数对积分结果的影响。
瑕点的处理
在处理瑕点时,需要将其排除在积分 区间外。这样可以避免瑕点对积分结 果的影响。
Байду номын сангаас
反常积分的可加性
定义
如果两个反常积分 $int_{a}^{b}f(x)dx$ 和 $int_{c}^{d}f(x)dx$ 的极限都存在, 且 $lim_{x to a+}(F(x)-F(a))=lim_{x to c+}(F(x)-F(c))$,则称反常积分具 有可加性。
应用
在处理反常积分时,可加性可以帮助 我们简化计算,将复杂的积分拆分成 几个简单的积分进行处理。
数学《反常积分》讲义
第十一章 反常积分1 反常积分概念一、问题提出定积分 1) 积分区间的有穷性2) 被积函数的有界性如果函数(被积函数)的积分区间为无穷区间或被积函数在积分区间上无界,应如何讨论它们的积分,这类积分称为反常积分(或广义积分,Cauchy-Riemann 积分, C-R 积分), 而上一章的定积分称为正常积分.例 1 (第二宇宙速度) 例 2 (流水时间)二、两类反常积分的定义定义1 设函数f 定义在无穷区间[,)a +∞上, 且在任何有限区间[,]a u 上可积, 如果存在极限lim()uau f x dx J →+∞=⎰, 那么称极限J 为函数f 在[,)a +∞上的无穷限反常积分(无穷积分),记作()aJ f x dx +∞=⎰,并称()af x dx +∞⎰收敛, 有时也称f 在[,)a +∞上(Cauchy-Riemann )可积; 反之,若上述极限不存在, 则称()af x dx +∞⎰发散.注 1()af x dx +∞⎰收敛的几何意义:若f 在[,)a +∞上为非负连续函数,则介于曲线()y f x =,直线x a =及x 轴之间一块向右无限延伸的区域有面积J .注 2 类似可定义()lim()aauu f x dx f x dx -∞→-∞=⎰⎰()()()aaf x dx f x dx f x dx +∞+∞-∞-∞=+⎰⎰⎰lim()lim()uaauu u f x dx f x dx →+∞→-∞=+⎰⎰例 3 1) 讨论积分211dx x +∞+⎰,0211dx x -∞+⎰,211dx x +∞-∞+⎰的敛散性.2) 计算积分20125dx x x +∞++⎰.例4 讨论下列积分的敛散性.1) 11pdx x +∞⎰; 2) 21(ln )pdx x x +∞⎰.注3 设f 在[,)a +∞上连续,F 为f 的一个原函数,则()lim ()lim ()()()()uaau u f x dx f x dx F u F a F F a +∞→+∞→+∞==-=+∞-⎰⎰例 5 讨论sin axdx +∞⎰的敛散性注 4 ()f x dx +∞-∞⎰为两个非正常积分之和,而非lim()uuu f x dx -→+∞⎰.定义 2 设函数f 定义在区间(,]a b 上,在点a 的任一右邻域内无界, 但在任意内闭区间[,](,]b a b α⊂上有界且可积. 如果存在极限lim ()bu u af x dx J +→=⎰,那么称此极限为无界函数f 在(,]a b 上的反常积分,记作()baJ f x dx =⎰,并称反常积分()baf x dx ⎰收敛,如果上述极限不存在,则称反常积分()baf x dx ⎰发散.在上述定义中函数f 在点a 的附近无界, 我们称a 为f 的瑕点, 而无界函数的反常积分()ba f x dx ⎰也称为瑕积分.注 5 1) 类似可定义瑕点为b 的瑕积分()lim ()buaau bf x dx f x dx -→=⎰⎰其中f 在b 的任一左邻域内无界,且在任何内闭区间[,][,)a a b β⊂上可积.2) 若,a b 都为f 的瑕点,且在任一内闭子区间[,](,)u v a b ⊂上可积,此时可定义瑕积分()()()bc b aacf x dx f x dx f x dx =+⎰⎰⎰lim ()lim ()c vucu av bf x dx f x dx +-→→=+⎰⎰其中c 为(,)a b 内的任一实数,当且仅当右式两个瑕积分都收敛时,左式的瑕积分收敛.3) 若f 的瑕点(,)c a b ∈,则定义瑕积分()()()bc b aacf x dx f x dx f x dx =+⎰⎰⎰lim ()lim ()u bavu cv cf x dx f x dx +-→→=+⎰⎰其中f 在[,)(,]a c c b ⋃上有定义,在c 的任一邻域内无界, 且在任何闭子区间[,][,)a u a c ⊂, [,](,]v b c b ⊂都可积,当且仅当右边两个瑕积分收敛时, 左边的瑕积分收敛.例 6 1) 计算瑕积分1⎰2) 讨论瑕积分1pdxx ⎰的敛散性(p >0)3) 讨论瑕积分0p dxx+∞⎰的敛散性(p >0) 4) 24=⎰5) 1⎰三、两类反常积分的关系设()f x 连续,b 为瑕点,则11211()()t b xbab af x dx f b dt t t=-+∞-=-⎰⎰瑕积分可转化为无穷积分设0a >,1121()()t xaadtg x dx g t t =+∞=-⎰⎰12011()a g dt t t =⎰无穷积分可转化为瑕积分由此可见,瑕积分与无穷积分可相互转化,因而它们有平行的理论和性质. 例 7 讨论下列反常积分是否收敛 1) 2x xe dx +∞--∞⎰2) cos x e xdx +∞--∞⎰3) 2⎰4) 1(1)(ln )pdxp x x >⎰5) 1⎰例 8 举例说明瑕积分()b af x dx ⎰收敛,2()baf x dx ⎰未必收敛.例 9 1) 证明:若()af x dx +∞⎰收敛,且lim ()x f x A →+∞=,则0A =;2) 举例说明: ()af x dx +∞⎰收敛,f 在[,)a +∞上连续,未必有lim ()0x f x →+∞=成立.例 10 若f 在[,)a +∞上可导,且()af x dx +∞⎰与()af x dx +∞'⎰收敛,则lim ()0x f x →+∞=.2 无穷积分的性质与收敛判别一、 无穷积分性质由()af x dx +∞⎰收敛lim ()lim()duau u F u f x dx →+∞→+∞⇔=⎰存在, 根据函数极限收敛的Cauchy 准则,我们有定理 1 (Cauchy 准则) 无穷积分()af x dx +∞⎰收敛⇔120,,,:G a u u G ε∀>∃≥∀>1221()()()u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.性质1 (线性性质) 若1()af x dx +∞⎰和2()af x dx +∞⎰都收敛, 12,k k 为任意常数, 则1122[()()]ak f x k f x dx +∞+⎰也收敛,且11221122[()()]()()aaak f x k f x dx k f x dx k f x dx +∞+∞+∞+=+⎰⎰⎰.性质2 (区间可加性) 若f 在任何有限区间[,]a u 上可积,b a >,则()af x dx +∞⎰与()bf x dx +∞⎰同敛散,且()()()b aabf x dx f x dx f x dx +∞+∞=+⎰⎰⎰.定理2 无穷积分()af x dx +∞⎰收敛0,,:()uG a u G f x dx εε+∞⇔∀>∃≥><⎰当.性质 3 (绝对收敛) 若f 在任何有限区间[,]a u 上可积,且()af x dx +∞⎰收敛,则()af x dx +∞⎰也收敛,且()()aaf x dx f x dx +∞+∞≤⎰⎰.定义1 若()af x dx +∞⎰收敛, 则称()af x dx +∞⎰绝对收敛.性质3 说明绝对收敛的无穷积分其本身一定收敛,而反之未必成立. 我们称收敛而不绝对收敛的无穷积分为条件收敛的无穷积分.性质4 (换元) 设:[,)[,)a ϕα+∞→+∞是光滑严格单调映射,且()a ϕα=,lim ()t t ϕ→+∞=+∞. 若()af x dx +∞⎰收敛,则(())()f t t dt αϕϕ+∞'⎰收敛,且()(())()af x dx f t t dt αϕϕ+∞+∞'=⎰⎰.性质5 (分部积分) 设,f g 为[,)a +∞上的光滑函数, 且lim ()()x f x g x →+∞⋅存在, 则()()af xg x dx +∞'⋅⎰与()()af xg x dx +∞'⎰同敛散,且它们收敛时有等式()()()()()()aaaf xg x dx f x g x f x g x dx +∞+∞+∞''⋅=⋅-⋅⎰⎰其中()()lim ()()()()ax f x g x f x g x f a g a +∞→+∞⋅=-.二、 无穷积分判别法1、比较判别法 (绝对收敛判别法)定理 3 (比较法则) 设定义在[,)a +∞上的两个函数f 和g 在任何有限区间[,]a u 上可积,且()()f x g x ≤,[,)x a ∈+∞. 则i) 当()ag x dx +∞⎰收敛时, 必有()af x dx +∞⎰收敛;ii) 当()af x dx +∞⎰发散时, 必有()ag x dx +∞⎰发散.例 1 判断积分22sin(1)5x dx x+∞++⎰的敛散性.1) Cauchy 判别法推论1 设f 定义在[,)(0)a a +∞>上,且在任何有限区间[,]a u 上可积,则有i) 当1(),[,)1p f x x a p x≤∈+∞>且时,()a f x dx +∞⎰收敛. ii) 当1(),[,)1p f x x a p x≥∈+∞≤且时,()a f x dx +∞⎰发散.2) 比较原则的极限形式推论 2 设f 和g 都在任何区间[,]a u 上可积, ()0g x >, 且()lim ()x f x c g x →+∞=. i) 当0c <<+∞时,()af x dx +∞⎰与()ag x dx +∞⎰同敛散;ii) 当0c =时,若()ag x dx +∞⎰收敛,则()af x dx +∞⎰收敛;iii) 当c =+∞时,若()ag x dx +∞⎰发散,则()af x dx +∞⎰发散.推论 3 设f 定义在[,)(0)a a +∞>上,且在任何有限区间[,]a u 上可积,且lim ()p x x f x λ→+∞=,则有i) 当1p >,0λ≤<+∞时,()af x dx +∞⎰收敛; ii) 当1p ≤,0λ<≤+∞时,()af x dx +∞⎰发散.例 2 讨论下列无穷积分的敛散性:1) 1x x e dx α-⎰2)21+∞⎰2、 Dirichlet 和Abel 判别法定理4 (Dirichlet ) 若()()ua F u f x dx =⎰在[,)a +∞上有界, ()g x 在[,)a +∞上x →+∞时单调趋于0, 则()()a f x g x dx +∞⋅⎰收敛.定理5 (Abel ) 若()af x dx +∞⎰收敛, ()g x 在[,)a +∞上单调有界, 则()()af xg x dx +∞⋅⎰收敛.定理6 (Dirichlet- Abel ) 设无穷积分()()()aaf x dx u x dv x +∞+∞=⎰⎰, 其中()u x单调, 且(),()u x v x 中一个有界, 另一个在x →+∞时趋于0, 则()af x dx +∞⎰收敛.例 3 讨论无穷积分1sin p xdx x +∞⎰与1cos (0)px dx p x +∞>⎰的敛散性.例 4 证明下列积分条件收敛.1) 21sin x dx +∞⎰,21cos x dx +∞⎰;2) 41sin x x dx +∞⋅⎰;3)1+∞⎰. 例 5 若()af x dx +∞⎰绝对收敛. 且lim ()0x f x →+∞=,则2()af x dx +∞⎰必收敛.例6 设,,f g h 为[,)a +∞上三个连续函数,且()()()h x f x g x ≤≤. 证明:如果()ah x dx +∞⎰,()ag x dx +∞⎰收敛,那么()af x dx +∞⎰亦收敛.例 7 证明: 若f 在[,)a +∞上一致连续,且()af x dx +∞⎰收敛,则lim ()0x f x →+∞=.例 8 讨论下列无穷积分的敛散性1) 1ln n xdx x+∞⎰2) 31arctan 1x xdx x +∞+⎰3)21x edx +∞-⎰4) 1ln(1)px dx x +∞+⎰5) 0ln(1)px dx p x+∞+ (>0)⎰6) 0xdx ⎰7)21cos x e xdx +∞-⎰8) 0sin arctan xxdx x+∞⎰例9 证明:若f 是[,)a +∞上的单调函数,()af x dx +∞⎰收敛,则lim ()0x f x →+∞=, 且1()()f x o x x= , →+∞.注: 由()lim 1()x f x g x →+∞=, ()ag x dx +∞⎰收敛, 推不出()af x dx +∞⎰收敛.3 瑕积分的性质与判别法一、 瑕积分的性质 (瑕点为x a =)定理1 瑕积分()ba f x dx ⎰收敛0,0,εδ⇔∀>∃>当12,(,)u u a a δ∈+时,2121()()()bbu u u u f x dx f x dx f x dx ε-=<⎰⎰⎰.性质1 设函数1f , 2f 的瑕点同为a ,1k ,2k 为常数,则当瑕积分1()baf x dx ⎰,2()baf x dx ⎰都收敛时,瑕积分1122[()()]bak f x k f x dx +⎰必收敛,且11221122[()()]()()bb baaak f x k f x dx k f x dx k f x dx +=+⎰⎰⎰.性质2 设函数f 的瑕点为x a =,(,)c a b ∈, 则瑕积分()baf x dx ⎰与()caf x dx ⎰同敛散且()()()b c b aacf x dx f x dx f x dx =+⎰⎰⎰, 其中()bcf x dx ⎰为定积分.性质3 若f 的瑕点为a , f 在(,]a b 的任一闭子区间[,]u b 上可积, 则当()baf x dx ⎰收敛时,()baf x dx ⎰必收敛且()()bbaaf x dx f x dx ≤⎰⎰.当()baf x dx ⎰收敛时,称()baf x dx ⎰为绝对收敛; 而称本身收敛但不绝对收敛的瑕积分为条件收敛的瑕积分.二、瑕积分判别法定理2 (比较原则) 定义在(,]a b 上的两个函数,f g , 瑕点同为a , 在任闭子区间[,](,]u b a b ⊂上可积,且()()(,]f x g x x a b ≤ ∈,则i) 当()bag x dx ⎰收敛时,()baf x dx ⎰必收敛 (从而()baf x dx ⎰也收敛) ;ii) 当()baf x dx ⎰发散时,()bag x dx ⎰发散.推论1 设f 定义在(,]a b 上,瑕点为a ,且在任何闭子区间[,](,]u b a b ⊂上可积,则 i) 当1()01()pf x p x a ≤, <<-时, ()baf x dx ⎰收敛;ii) 当1()1()pf x p x a ≥, ≥-时, ()baf x dx ⎰发散.推论2 若()0g x >,且()lim ()x af x cg x +→=, 则 i) 当0c <<+∞时,()b af x dx ⎰与()bag x dx ⎰同敛散;ii) 当0c =,()b ag x dx ⎰收敛时,()baf x dx ⎰收敛;iii) 当c =+∞,()b ag x dx ⎰发散时, ()b af x dx ⎰发散.推论3 在推论2的条件下,若lim()()p x ax a f x λ+→-=, 则 i) 01,0p λ<<≤<+∞时, ()baf x dx ⎰收敛;ii) 1,0p λ≥<≤+∞时, ()baf x dx ⎰发散.定理 3 (Dirichlet- Abel ) 设瑕积分()()()b baaf x dx u x dv x =⎰⎰有唯一奇点a ,其中()u x 单调, 且(),()u x v x 中一个有界, 另一个在x a +→时趋于0, 则()baf x dx ⎰收敛.例 1 讨论下列瑕积分的敛散性.1) 10⎰2) 21ln dx x⎰3) 130arctan 1xdx x -⎰4) 201cos mxdx xπ-⎰5) 1⎰6) 10⎰7) 20(,0)sin cos p q dxp q x xπ>⎰例 2 讨论反常积分1()1x x dx xα-+∞Φ=+⎰的敛散性.例 3 证明瑕积分20ln(sin )J x dx π=⎰收敛,且ln 22J π=-,同时利用上述结果证明:1) 2ln(sin )ln 22d ππθθθ=-⎰2) 0sin 2ln 21cos d πθθθπθ=-⎰三、反常积分与正常积分的区别1、 Riemann 积分 f 在[,]a b 上可积,则f 在[,]a b 上有界. 无穷积分 f 在[,)a +∞上可积(()af x dx +∞⎰收敛) f ⇒在[,)a +∞上有界.如4()sin f x x x =⋅ 或者 ,()0,n x nf x x n =⎧=⎨≠⎩.2、Riemann 积分 f 在[,]a b 上可积⇒()f x 在[,]a b 上可积,但反之未必, 故Riemann 积分是绝对型积分,而无穷积分 ()f x 在[,)a +∞上可积⇒f 在[,)a +∞上可积,但反之未必, 故Cauchy-Reimann 积分是非绝对型积分, 如sin (),[1,)xf x x x=∈+∞.3、Riemann 积分 ,f g 在[,]a b 上可积⇒f g ⋅在[,]a b 上可积, 而无穷积分 ,f g 在[,)a +∞上可积⇒f g ⋅在[,)a +∞上可积.例4 证明:1) 11111p p x x dx dx x x --+∞=++⎰⎰2) 12π<<⎰3) 设f 在[,)a +∞上连续0a b <<,若lim ()x f x k →+∞=,则()()((0))ln f ax f bx adx f k x b+∞-=-⎰例5 证明: 1) 设f 在[,)a +∞上非负连续, 若0()xf x dx +∞⎰收敛, 则0()f x dx +∞⎰也收敛.2) 设f 在[,)a +∞上连续可微且当x →+∞时,()f x 递减趋于0, 则()f x dx +∞⎰收敛⇔0()xf x dx +∞'⎰收敛.习 题 课例 1 论述题:1) 设f 在(,)-∞+∞上连续,且()f x dx +∞-∞⎰收敛,则()(),()()x x d d f t dt f x f t dt f x dx dx +∞-∞==-⎰⎰. 2) 积分0()f x dx +∞⎰收敛,则lim ()0x f x →+∞=.3) 积分()baf x dx ⎰收敛,则此积分可用和式公式01lim ()ni i T i f x ξ→=∑来计算.4) 若lim ()x f x A →+∞=存在,()af x dx +∞⎰收敛,则0A =.5) 若0()f x dx +∞⎰收敛,lim ()0x f x →+∞=,则2()af x dx +∞⎰必收敛.6) 若()af x dx A +∞=⎰,则lim()nan f x dx A →+∞=⎰,但反之不成立.7) 若()af x dx +∞⎰收敛,g 有界, 则()()af xg x dx +∞⎰收敛.8) 若lim ()AAA f x dx -→+∞⎰存在,则()f x dx +∞-∞⎰收敛.例 2 计算下列无穷积分: 1) 0()x n n I e x dx n N +∞-=∈⎰2) 21dxx x+∞++⎰3) (1)(ln )padxa x x +∞>⎰4) 24011x dx x +∞++⎰5) 31⎰6)1+∞⎰例 3 1) 设1()(2)x x x x ϕ+=-,求321()1()x dx x ϕϕ'+⎰;2) 已知01()cos x x dt tϕ=⎰,求(0)ϕ'.例 4 证明: 0cos 1xdx x+∞+⎰收敛, 且0cos 11xdx x+∞≤+⎰.例 5 讨论下列积分收敛性 1)2301dx x x x +∞+++⎰2)0cos (0)kx e xdx k +∞->⎰3)0ln(1)m x dx x +∞+⎰4)1+∞⎰5)20sin mx dx x +∞⎰6) 01m n x dx x +∞+⎰ 7) 10p x x e dx +∞--⎰ 8) 0cos (0)1n ax dx n x+∞≥+⎰。
不定积分和定积分的关系
不定积分和定积分的关系
(原创版)
目录
一、不定积分和定积分的定义
二、不定积分和定积分的关系
三、举例说明不定积分和定积分的实际应用
正文
一、不定积分和定积分的定义
不定积分,又称为反常积分,是微积分学中的一个重要概念。
其主要用途是为了求解变化率、面积、体积等问题。
不定积分的符号表示为∫,它表示的是一个函数在某一区间内的累积量。
而定积分则是求解不定积分的一种方法,它是将一个函数在某一区间内分成无数个微小的部分,然后对每个部分进行求和,最后得到一个总和的结果。
定积分的符号表示为∫,它表示的是一个函数在某一区间内的平均值。
二、不定积分和定积分的关系
不定积分和定积分是微积分学中密切相关的两个概念,它们之间的关系可以从以下几个方面进行阐述:
1.定积分可以看作是不定积分的一种特殊形式。
当一个函数在某一区间内是恒定的时候,它的不定积分就等于该函数在该区间内的定积分。
2.不定积分是求解定积分的一种方法。
通过求解不定积分,我们可以得到一个函数在某一区间内的累积量,然后再对该累积量进行积分,就可以得到定积分的结果。
3.不定积分和定积分都是微积分学中的重要工具,它们在实际应用中有着广泛的应用。
三、举例说明不定积分和定积分的实际应用
假设有一个函数 f(x)=x^2,我们需要求解该函数在区间 [0,2] 内的定积分。
首先,我们需要求解该函数的不定积分,即∫f(x)dx=x^2+C。
然后,根据定积分的定义,我们可以得到该函数在区间 [0,2] 内的定积分为∫[0,2]f(x)dx=∫[0,2]x^2dx=(2^2-0^2)/2=2。
定积分的定义,牛顿莱布尼茨公式以及反常积分之间的联系的理解
定积分的定义,牛顿莱布尼茨公式以及反常积分之间的联系的理解
积分(Integral),又称为整合,是分析几何的,它是证明定理的基本工具。
例如,把一条平行线链接起来可以构成一个曲线,并且把一个平面区域分割成若干子区域,这就需要用积分把离散点整合成实体。
牛顿莱布尼茨公式(Newton-Leibniz Formula)是数学中重要的积分函数,它可以用来确定一条曲线在某个区域内的面积。
该公式包括自变量,上下界和函数值之间的关系:
∫u(x)x dx = ∑F(u)
其中,u(x)是被积函数,F(u)是它的积分值。
反常积分(inverse integration)是求反函数积分,即从上图可以看到,从定积分到反常积分,它是一个反向的关系,有助于我们得到反函数的系数。
反常积分的主要目的是用反方向的线性函数去积分,把定积分的结果几何化,从而把反函数证明。
积分是定义函数、求解极限以及解析几何定理等数学推导过程中不可或缺的基本方法。
而牛顿莱布尼茨公式则是求积分的一种快捷方法,而反常积分则是积分过程的一种逆运算。
微积分中的定积分与反常积分——微积分知识要点
微积分中的定积分与反常积分——微积分知识要点微积分是数学中的一个重要分支,主要研究函数的变化率和积分。
定积分与反常积分是微积分中的两个重要概念,本文将重点介绍这两个概念及其在微积分中的应用。
一、定积分的概念与性质定积分是微积分中的一个重要概念,表示函数在一定区间上的累积变化量。
定积分的计算可以通过求导的逆运算——不定积分来实现。
定积分的计算公式为:∫(a到b) f(x)dx其中,f(x)为被积函数,a和b为积分区间的端点。
定积分的结果是一个数值。
定积分具有以下几个重要性质:1. 定积分的值与积分区间的选取无关,只与被积函数有关。
这是定积分在实际应用中的重要特性。
2. 定积分可以表示函数曲线与x轴之间的面积或有向面积。
当被积函数为正时,定积分表示曲线所围成的面积;当被积函数为负时,定积分表示曲线下方的有向面积。
3. 定积分具有线性性质,即对于两个函数f(x)和g(x),以及常数k,有以下公式成立:∫(a到b) [f(x) + g(x)]dx = ∫(a到b) f(x)dx + ∫(a到b) g(x)dx∫(a到b) k·f(x)dx = k·∫(a到b) f(x)dx这些性质使得定积分在微积分中具有广泛的应用。
二、反常积分的概念与分类反常积分是指在积分区间上,被积函数存在某些特殊点或者函数在无穷远处趋于无穷或趋于零的情况下,定积分的计算方法。
反常积分可分为以下两类:1. 第一类反常积分:积分区间的一个或两个端点为无穷大或无穷小。
对于这类反常积分,需要对积分区间进行适当的变换,将其转化为有限区间上的定积分。
2. 第二类反常积分:被积函数在积分区间上存在无界或间断点。
对于这类反常积分,需要分别讨论无界点和间断点的情况,进行特殊处理。
反常积分的计算需要注意收敛性与发散性的判断,只有在积分收敛的情况下才能得到具体的数值结果。
三、定积分与反常积分的应用定积分与反常积分在微积分中具有广泛的应用。
定积分与反常积分的求解
定积分与反常积分的求解在微积分的学习中,积分是一个重要的概念。
积分的求解方法有很多种,其中包括定积分和反常积分。
在本文中,我们将探讨定积分和反常积分的求解方法以及它们的区别。
一、定积分的求解定积分是对一个函数在给定区间上的积分求解。
它可以表示为∫f(x) dx,其中f(x)是被积函数,dx表示微元。
定积分的求解方法包括几何解释、基本积分法和换元积分法等。
1. 几何解释定积分的几何解释是将函数图像与坐标轴围成的面积作为积分值。
这种方法适用于可以将被积函数图像与坐标轴所围成的区域分为几个基本几何形状的情况,例如矩形、三角形和梯形等。
通过计算这些几何形状的面积,可以得到定积分的值。
2. 基本积分法基本积分法是利用函数的原函数(即导函数的反函数)求解定积分。
定积分的求导逆过程是积分,因此我们可以通过求函数的原函数,然后利用原函数求解定积分。
例如,对于函数f(x) = x^2,它的原函数是F(x) = 1/3x^3,可以通过计算F(b) - F(a)来求解定积分。
3. 换元积分法换元积分法是将定积分中的自变量进行变换,从而简化定积分的求解。
通过选择适当的变换量,可以将原定积分转化为更易求解的形式。
例如,对于∫x^2 dx,可以进行变量替换令t = x^2,然后再进行积分。
二、反常积分的求解反常积分是对无界区间上的函数积分求解。
它可以表示为∫f(x) dx,其中f(x)是被积函数。
反常积分的求解方法包括瑕积分和广义积分等。
1. 瑕积分瑕积分是指在函数积分过程中出现的奇点(即函数在某些点上不连续或无界)使得积分发散的情况。
瑕积分的求解需要排除奇点的影响,并将积分区域分为多个无奇点的区间,然后分别求解每个区间的定积分,最后再将结果进行综合。
2. 广义积分广义积分是对收敛的无界区间上的函数进行积分求解。
广义积分的求解方法与定积分类似,可以利用几何解释、基本积分法和换元积分法等。
对于收敛的广义积分,可以得到有限的积分值;而对于发散的广义积分,积分值为无穷大。
不定积分、定积分与反常积分及定积分的应用
不定积分、定积分与反常积分及定积分的应⽤不定积分、定积分与反常积分不定积分⼀、不定积分概念1.定义\begin{align} &原函数:设对于区间I上的任意⼀点x均有F'(x)=f(x),则称F(x)为f(x)在区间I上的⼀个原函数\\ &不定积分:设函数f(x)于区间I上有原函数,则其余原函数的全体称为f(x)于区间I上的不定积分,记为\int{f(x)dx}\\ &线性:\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}2.计算\begin{align} &计算⽅法\begin{cases}&1.基本公式\\&2.线性\\&3.积分法\begin{cases}&1.换元法\\&2.分部积分法\\\end{cases}\\\end{cases}\\ \end{align}(1)第⼀换元法(凑微分)\begin{align} &设F'(u)=f(u),则\int{f(\Phi(x))\Phi'(x)}dx=\int{f(\Phi(x))d(\Phi(x))}=F(\Phi(x))+C\\ &注解:找到合适的凑微分\Phi'(x)dx=d(\Phi(x)) \end{align}常见凑微分:\begin{align} &1.\int{f(ax+b)dx=\frac{1}{a}\int{f(ax+b)d(ax+b)}}(a\neq0)\\ &eg1.\int{\sin (2x+3)}dx=\frac{1}{2}\int\sin (2x+3)d(2x+3)=\frac{1}{2}\cos{(2x+3)}+C\\\ &2.\int{f(ax^n+b)x^{n-1}dx}=\frac{1}{na}\int{f(ax^n+b)d(ax^n+b)}\\ &eg2.\int{\cos(2x^4+3)x^3dx}=\frac{1}{4*2}\int{\cos(2x^4+3)d(2x^4+3)}=\frac{1}{8}\cos{(2x^4+3)}+C\\ &3.\int{f(a^x+c)a^xdx}=\frac{1}{\ln{a}}\int{f(a^x+c)}d(a^x+c)\\ &eg3.\int{\sin(2^x+3)2^xdx}=\frac{1}{\ln2}\int{\sin{(2^x+3)}d(2^x+3)}=\frac{1}{\ln 2}\cos{(2^x+3)}\\ &4.\int{f(\frac{1}{x})\frac{1}{x^2}}dx=-\int{f(\frac{1} {x})}d(\frac{1}{x})\\ &eg4.\int{\ln(\frac{1}{x})}\frac{1}{x^2}dx=-\int\ln (\frac{1}{x})d({\frac{1}{x}})+C\\ &5.\int{f(\ln |x|})\frac{1}{x}d(x)=\int{f(\ln{|x|)}}{d(\ln|x|)}\\ &eg5.\int{\sin ({\ln{|x|}}})\frac{1} {x}dx=\int{\sin(\ln(|x|)d(\ln{|x|})}=\cos(\ln x)+C\\ &6.\int{f(\sqrt x)\frac{1}{\sqrt x}}dx=2\int{f(\sqrt x)}d(\sqrt x)\\ &7.\int f(\sin x)\cos xdx=-\int{(\sin x)}d(\sin x)\\ &8.\int{f(\cos x)\sin dx}=\int{f(\cos x)d(\cos x)}\\ &9.\int{f(\tan x)\sec^2 xdx}=\int{f(\tan x)d(\tan x)}\\ &10.\int{f(\cot x)\csc^2xdx}=-\int{f(\cot x)d{(\cot x)}}\\ &11.\int{f{(\arcsin x)\frac{1}{\sqrt{1-x^2}}}}dx=\int{f(\arcsin x)d({\arcsin x})}\\ &12.\int{f(\arccos x)(-\frac{1}{\sqrt{1-x^2}}})dx=\int{f(\arccos x)d(\arccos x)}\\ &13.\int{f(\arctan x)\frac{1}{1+x^2}dx}=\int{f(\arctan x)d(\arctan x)}\\ &14.\int{f(\sqrt{x^2+a})}\frac{x} {\sqrt{x^2+a}}dx=\int{f(\sqrt{x^2+a})}d(\sqrt{x^2+a})\\ &注解:(\sqrt{x^2\pm a})'=\frac{x}{\sqrt{x^2+a}},(\sqrt{a^2-x^2})'=\frac{-x}{\sqrt{a^2-x^2}}\\ \end{align}(2)第⼆换元法\begin{align} &设F'(u)=f(\Phi(u))\Phi'(u),则\\ &\int{f(x)dx}\overset{x=\Phi(u)}{=}\int{f(\Phi(u))\Phi'(u)du}=F(u)+C=F(\Phi^{-1}(x))+C\\ &注解:找到合适的x=\Phi(u)\\ \end{align}1)三⾓换元\begin{align} &x=a\sin u,x=a\tan u,x=a \sec u\\ &\sqrt{a^2-x^2}\overset{x=a\sin u}{=}a\cos u,u\in[-\frac{\pi}{2},\frac{\pi}{2}],x\in[-a,a]\\ &\sqrt{a^2+x^2}\overset{x=a\tan u}{=}a\sec u,u\in{(-\frac{\pi}{2},\frac{\pi}{2})},x\in{(-\infty,\infty)}\\ &\sqrt{x^2-a^2}\overset{x=a\sec u}{=}a\tan u,u\in(\frac{\pi}{2},\pi]\cup(0,\frac{\pi}{2}]\\ \end{align}2)倒变换\begin{align} &x=\frac{1}{u}常⽤于含\frac{1}{x}的函数\\ \end{align}3)指数(或对数)变换\begin{align} &a^x=u或x=\frac{\ln u}{\ln a}常⽤于含a^x的函数\\ \end{align}4)⽤于有理化的变换\begin{align} &\frac{1}{\sqrt{x}+\sqrt[3]{x}}⽤x=u^6\\ &\sqrt[n]{\frac{ax+b}{cx+d}}⽤u=\sqrt[n]{\frac{ax+b}{cx+d}}或x=-\frac{du^n-b}{cu^n-a}\\ \end{align}(3)分部积分法\begin{align} &\int{u(x)v'(x)dx}=\int{u(x)d(v(x))}=u(x)v(x)-\int{v(x)u'(x)dx}\\ &注解:找到合适的u(x),v(x)\\ \end{align}1)降幂法\begin{align} &\int{x^ne^{ax}dx},\int{x^n\sin axdx},\int{x^n\cos ax dx}\\ &取u(x)=x^n\\ \end{align}2)升幂法\begin{align} &\int{x^a\ln xdx},\int{x^a\arcsin xdx},\int{x^a\arccos x dx},\int{x^a\arctan x dx}\\ &取u(x)=\ln x\\ \end{align}3)循环法\begin{align} &\int{e^{ax}\sin ax dx},\int{e^{ax}\cos {ax} dx}\\ &取u(x)=e^{ax}或\sin{ax} \end{align}4)递推公式法\begin{align} &与n有关的结果I_n,建⽴递推关系I_n=f(I_{n-1})或f(I_{n-2})\\ \end{align}定积分⼀、定积分概念1.定义\begin{align} &定义:设函数f(x)在区间[a,b]上有定义且有界\\ &(1)分割:将[a,b]分成n个[x_{i-1},x_{i}]⼩区间\\ &(2)求和:[x_{i-1},x_{i}]上取⼀点\xi_{i},\sum_{i=1}^{n}{f(\xi_{i})\Deltax_i},\lambda=\max{\Delta x_{1},\Delta x_{2},...,\Delta x_{n}}\\ &(3)取极限:若\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}f(\xi_{i})\Delta x}\exist,且极值不依赖区间[a,b]分发以及点\xi_{i}的取法,则称f(x)在区间[a,b]上可积,\\ &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}{f(\xi)\Delta x_{i}} &\\ &注解:\\ &(1)\lambda \rightarrow0 \rightarrow \nleftarrow n\rightarrow \infty\\ & (2)定积分表⽰⼀个值,与积分区间[a,b]有关,与积分变化量x⽆关\\ &\int_{a}^{b}{f(x)dx}=\int_{a}^{b}{f(t)dt}\\ &(3)如果积分\int_{0}^{1}{f(x)dx}\exist,将[0,1]n等分,此时\Delta{x_{i}}=\frac{1}{n},取\xi_{i}=\frac{i}{n},\\ &\int_{0}^{1}f(x)dx=\lim_{\lambda \rightarrow 0}{\sum_{i=1}{n}{f(\xi_{i})\Delta x_{i}}}=\lim_{n\rightarrow \infty}\sum_{i=1}^{n}f(\frac{i}{n})\\ \end{align}\begin{align} &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}\sum^{n}_{i=1}f(\xi_i)\Delta_i=\begin{cases}&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+(i-1)\frac{b-a}{n})\frac{b-a}{n}}},左侧\\&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+i\frac{b-a}{n})\frac{b-a}{n}}},右侧\\\end{cases}\\ &中点:\Phi_i=a+(i-1)\frac{b-a}{n}+\frac{b-a}{2n}\\ \end{align}Processing math: 0%定理:(线性)\begin{align} &\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}注解:积分⽆⼩事\begin{align} &\int{e^{\pm x^2}dx,\int{\frac{\sin x}{x}}}积不出来\\ &F'(x)=f(x),x\in I,连续函数⼀定存在原函数,⽆穷多个\\ &[F(x)+C]'=f(x) \end{align}2.定积分存在的充分条件\begin{align} &若f(x)在[a,b]上连续,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上有上界,且只有有限个间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上只有有限个第⼀类间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ \end{align}3.定积分的⼏何意义\begin{align} &(1)f(x)\geqslant{0},\int_{a}^{b}{f(x)dx}=S\\ \end{align}\begin{align} &(2)f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=-S\\ \end{align}\begin{align} &(3)f(x)\geqslant{0}\cup f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=S_1+S_3-S_2\\ \end{align}注解:\begin{align} &(1)当f(x)\geq0时,定积分的⼏何意义是,以区间[a,b]为底,y=f(x)为曲边的曲边梯形⾯积\\ &(2)定积分是⼀个常数,只与f和区间[a,b]有关,与积分变量⽤什么字母⽆关\\ &\int_a^b{f(x)}dx=\int_a^b{f(t)dt}\\ &(3)\int_a^bdx=b-a\\ &(4)\int_{a}^{a}f(x)=0,\int_a^bf(x)dx=-\int_b^a{f(t)}dt \end{align}⼆、定积分的性质1.不等式性质\begin{align} &(1)保序性:若在区间[a,b]上f(x)\leqslant{g(x)},则\int_a^{b}{f(x)dx}\leqslant{\int_a^{b}{g(x)dx}}\\ &推论:\\ &(1)f(x)\geq0,\forall x\in[a,b],则\int_a^b{f(x)dx}\geq0\\ & (2)f(x)\geq0,\forall x\in[a,b],且[c,d]\subset[a,b],则\int_a^b{f(x)dx}\geq\int_c^d{f(x)dx}\\ &(3)|\int_a^bf(x)dx|\leq\int_a^b{|f(x)|dx}\\ &-|f|\leq f\leq |f|\Rightarrow \int_a^b-|f|\leq \int_a^bf\leq \int_a^b|f|\Rightarrow |\int_a^bf|\leq\int_a^b|f|\\ &如:x^2\leq x^3,x\in[0,1],则\int_0^1{x^3dx}\leq\int_0^1{x^2dx}\\ \end{align}\begin{align} &(4)(估值不等式)若M及m分别是f(x)在[a,b]上的最⼤值和最⼩值,\\ &则m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}\\ \end{align}\begin{align} &证明:M(b-a)=S_{AFDC}=S_1+S_2+S_3\\ &m(b-a)=S_{EBDC}=S_3\\ &\int_a^{b}{f(x)dx}=S_{ADBC}=S_2+S_3\\ &S_3\leqslant{S_2+S_3\leqslant{S_1+S_2+S_3}}\\&\Leftrightarrow{m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}}\\ \end{align}\begin{align} &(3)|\int_a^{b}{f(x)dx}|\leqslant{\int_a^{b}{|f(x)|dx}}\\ \end{align}2.中值定理\begin{align} &(1)若f(x)在[a,b]上连续,则\int_a^{b}{f(x)dx}=f(\xi)(b-a),(a<\xi<b)\\ &称\frac{1}{b-a}{\int_{a}^{b}{f(x)dx}为函数y=f(x)在区间[a,b]上的平均值}\\ &注解:F'(x)=f(x),F(b)-F(a)=\int_a^b{f(x)dx},f(\xi)(b-a)=F'(\xi)(b-a)\\ &(2)若f(x),g(x)在[a,b]上连续,g(x)不变号,则\int_{a}^{b}{f(x)g(x)dx}=f(\xi)\int_a^b{g(x)dx}\\ \end{align}注解:\begin{align} &\int_0^1{\frac{x}{\sin x}}dx\\ &f(x)=\begin{cases}&\frac{x}{\sin x},x\in[0,1]\\&1,x=0\\\end{cases}\\ &结论:有限处点的函数不影响定积分\\ &f(x)={\begin{cases}&x+1,[1,2]\\&x, [0,1]\\\end{cases}}\\ &\int_0^2{f(x)dx}=\int_0^1{xdx}+\int_1^2{(x+1)dx}\\ \end{align}\begin{align} &证明:\frac{1}{2}\leq\int_0^{\frac{1}{2}}\frac{1}{\sqrt{1-x^n}}dx\leq\frac{\pi}{6}\\ &估值积分:x\in[0,\frac{1}{2}]\\ &\\ \end{align}例题:\begin{align} &1.求极限\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}\\ &根据积分容易知道0\leq\frac{x^ne^x}{1+e^x}\leq x^n,x\in[0,1],n\in N^*\\ &⽤积分的保号性\\&0\leq\int_0^1{\frac{x^ne^x}{1+e^x}dx}\leq \int_0^1{x^n}dx=\frac{1}{n+1}\\ &⽤夹逼定理\\ &\lim_{n\rightarrow\infty}\frac{1}{n+1}=0\\ &\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}=0\\ \end{align}\begin{align} &2.设I_1=\int_0^{\frac{4}{\pi}}\frac{\tan x}{x}dx,I_2=\int_0^{\frac{4}{\pi}}\frac{x}{\tan x}dx则\\ &(A)I_1>I_2>1(B)1>I_1>I_2(C)I_2>I_1>1(D)1>I_2>I_1\\ &解:⽤保序性a<b,f(x)\leq g(x),\int_a^b f(x)\leq \int_a^b g(x)\\ &\tan x>x,x\in[0,\frac{\pi}{2}]\\ &\frac{\tan x}{x}>1>\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &根据保序性\\ &\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}dx>\int_0^{\frac{\pi}{4}}1dx=\frac{\pi}{4}>\int_0^{\frac{\pi}{4}}\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &证:\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}与1的关系\\ &积分中值定理\\ &\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}=f(\xi)(\frac{\pi}{4}-0)=\frac{\tan \xi}{\xi}*\frac{\pi}{4},\xi\in{[0,\frac{\pi}{4}]}\\ &根据\frac{\tan x}{x}在x\in[0,\frac{\pi}{4}]上单调递增\\ &0<f(\xi)<\frac{4}{\pi},0<\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}<1\\ &选(B)\\ \end{align}三、积分上限函数\begin{align} &如果f(x)在区间[a,b]上连续,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且\int_a^b{f(t)dt})\\ &(\int_a^xf(t)dt)'=f(x),(\int_a^{x^2}f(t)dt)'=f(x^2)*2x\\ &如果f(x)在区间[a,b]上连续,\phi_1(x),\phi_2(x)为可导函数,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且(\int_{\phi_1(x)}^{\phi_2(x)}{f(t)dt})'\\ &=f[\phi_2(x)]*\phi_2'(x)-f[\phi_1(x)]*\phi_1'(x)=(\int_{\phi_1(x)}^0{f(t)dt}+\int_{\phi_2(x)}^0{f(t)dt})'\\ &设函数f(x)在[-l,l]上连续,则\\ &如果f(x)为奇函数,那么\int_0^xf(t)dt必为偶函数\\ &如果f(x)为偶函数,那么\int_0^xf(t)dt必为奇函数\\\end{align}\begin{align} &任取x\in[a,b),取\Delta x>0,使x+\Delta x\in[a,b)\\ &\frac{\Delta F}{\Delta x}=\frac{F(x+\Delta x)-F(x)}{\Delta x}=\frac{1}{\Delta x}[\int_a^{x+\Delta x}f(t)dt-\int_a^xf(t)dt]=\frac{1} {\Delta x}\int_x^{x+\Delta x}f(t)dt=f(x+\sigma\Delta x)\rightarrow f(x)(\Delta x\rightarrow 0^+)\\ \end{align}推论:\begin{align} &若f(x)、\phi'(x)、\psi(x)于[a,b]上连续,则\\ &(1)(\int_a^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)\\ &(2)(\int_b^{\psi(x)}f(t)dt)'=-f(\psi(x))\psi'(x)\\ &(3)(\int_{\psi(x)}^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)-f(\psi(x))\psi'(x)\\ \end{align}例题\begin{align} &1.设函数f(x)在R上连续,且是奇函数,则其原函数均是偶函数.当f(x)是偶函数时?是周期函数?\\ &证:\\ &令F_0(x)\int_0^xf(t)dt,x\in R\\ &F_0(-x)=\int_0^{-x}f(t)dt\overset{t=-u} {=}\int_0^xf(-u)d(u)=\int_0^xf(u)du=F_0(x)\Rightarrow F_0(x)为偶函数\\ \end{align}\begin{align} &求变现积分导数\\ &(1)F(x)=\int_x^{e^{-x}}f(t)dt\\ &(2)F(x)=\int_0^{x^2}(x^2-t)f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt\\ &(4)设函数y=y(x)由参数⽅程\begin{cases}&x=1+2t^2\\&y=\int_1^{1+2\ln t}\frac{e^u}{u}du\\\end{cases}(t>1),求\frac{d^2y}{dx^2}|_{x=9}\\ &解:\\ &(1)F(x)'=(\int_x^{e^{-x}}f(t)dt)'=f(e^{-x})(-e^{-x})-f(x)\\ &(2)F(x)'=(\int_0^{x^2}(x^2-t)f(t)dt)'=(\int_0^{x^2}x^2f(t)dt-\int_0^{x^2}tf(t)dt)'\\ &=2x\int_0^{x^2}f(t)dt+x^2f(x^2)2x-x^2f(x^2)2x=2x\int_0^{x^2}f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt=-\frac{1}{2}\int_0^xf(x^2-t^2)d(x^2-t^2)\overset{u=x^2-t^2}{=}-\frac{1}{2}\int_0^xf(u)du\\ &F(x)'=\frac{1}{2}f(x^2)2x=xf(x^2)\\ &(4)\frac{dy}{dx}=\frac{\frac{e^{1+2\ln t}}{1+2\ln t}\frac{2}{t}}{4t^2}=\frac{e}{2(1+2\ln t)}\\ &\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{e}{2}(-\frac{\frac{2}{t}}{(1+2\ln t)^2})\frac{1}{4t}\\ \end{align}\begin{align} &2.求变现积分的积分:\\ &(1)设f(x)=\int_0^x{\frac{\sin t}{\pi -t}dt},求\int_0^\pi{f(x)}dx\\ &解:\\ &\int_0^\pi{f(x)}dx=\int_0^{\pi}\int_0^x\frac{\sin t}{\pi -t}dt\space dx\\&=x\int_0^x\frac{\sin t}{\pi t}|_0^{\pi}-\int_0^{\pi}x\frac{\sin x}{\pi -x}dx\\ &=\pi\int_0^{\pi}\frac{\sin x}{\pi t}+\int_0^{\pi}\frac{[(\pi-x)-\pi]\sin x}{\pi-x}dx=\int_0^{\pi}\sin xdx=2\\ &(2)\lim_{x\rightarrow\infty}{\frac{(\int_0^x{e^{t^2}}dt)^2}{\int_0^xe^{2t^2}dt}}=\lim_{x\rightarrow\infty}{\frac{(2\int_0^{x}e^{t^2}dt)e^{x^2}}{e^{2x^2}}}=\lim_{x\rightarrow\infty}\frac{2\int_0^{x}e^{t^2}}{e^{x^2}}=\lim_{x\rightarrow\infty}\frac{1}{2x}=0\\ \end{align}\begin{align} &(3)设f(x)连续,\phi(x)=\int_0^1{f(tx)dt},且\lim_{x\rightarrow0}\frac{f(x)}{x}=A(常数),求\phi'(x)并讨论\phi'(x)在x=0处的连续性\\ &当x\neq0时\\ &令u=tx,t\in[0,1],u=tx\in[0,x],\phi(x)=\int_0^1f(tx)dt\overset{tx=u}{=}\int_0^x{f(u)d(\frac{u}{x})}=\frac{\int_0^xf(u)du}{x}\\ &\phi'(x)=\frac{xf(x)-\int_0^xf(u)du}{x^2}\\ &当x=0时,f(0)=0,\phi(0)=f(0)=0,\phi'(0)=\lim_{x\rightarrow0}\frac{\phi(x)\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{\int_0^xf(u)du}{x^2}=\lim_{x\rightarrow 0}\frac{f(x)}{2x}=\frac{1}{2}A\\&\lim_{x\rightarrow0}\phi'(x)=\lim_{x\rightarrow 0}{\frac{xf(x)-\int_0^xf(u)du}{x^2}}=A-\frac{1}{2}A=\frac{1}{2}A=\phi'(0)\Leftrightarrow\phi'(x)在x=0处连续\\ \end{align}注解:\begin{align} &注意变限积分进⾏正逆运算时上下限的映射\\ &例如F(x)=\int_0^x{f(t)dt}\overset{t=-u}{=}\int_{-a}^{x}f(-u)d(-u)\\ \end{align}四、定积分的计算1.⽜顿莱布尼茨公式\int_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)2.换元积分法\int_a^bf(x)dx=\int_\alpha^\beta{f(\Phi(t))\Phi'(t)dt}3.分部积分法\int_a^budv=uv|_a^b-\int_a^bvdu4.奇偶性和周期性\begin{align} &直接使⽤奇偶性周期性定义证明\\ &(1)设f(x)为[-a,a]上的连续函数(a>0),则\\ &\int_{-a}{a}f(x)dx=\begin{cases}0,&f(x)奇函数\\2\int_0^af(x)dx,&f(x)偶函数\end{cases}\\ &证:\int_{-a}^0{f(x)dx}\overset{x=-t}{=}\int_0^a{f(-t)d(-t)}=-\int_{0}^{a}f(t)d(t)=-\int_0^a{f(x)dx}\\ \end{align}\begin{align} &(2)设f(x)是以T为周期的连续函数,则对\forall A,有\int_a^{a+T}f(x)=\int_0^T{f(x)dx}\\ &\int_a^{a+T}f(x)dx\overset{x=a+t}{=}\int_0^T{f(a+t)d(a+t)}=\int_0^{a+t}f(a+t)dt\\\end{align}\begin{align} &\Phi:x\in[a,b]\rightarrow y\in[c,d],令\frac{x-a}{b-a}=\frac{y-c}{d-c},y=c+\frac{d-c}{b-a}(x-a)\\ \end{align}\\5.奇偶函数积分后的奇偶性(奇偶函数求导后的奇偶性)1.奇偶函数求导后的奇偶性\begin{align} &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow f'(-x)(-1)=-f'(x)\\ &\Leftrightarrow f'(-x)=f'(x)\\ &\Leftrightarrow f'(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrowf'(-x)=f'(x)\\ &\Leftrightarrow f'(-x)(-1)=f'(x)\\ &\Leftrightarrow f'(-x)=-f'(x)\\ &\Leftrightarrow f'(x)为奇函数\\ \end{align}2.奇偶函数求积分后的奇偶性\begin{align} &设F(x)为f(x)的原函数\\ &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow \int f(-x)dx=-\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=-\int f(x)dx\\ &\Leftrightarrow F(-x)=F(x)\\&\Leftrightarrow F(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrow \int f(-x)dx=\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=\int f(x)dx\\ &\Leftrightarrow F(-x)=-F(x)\\&\Leftrightarrow F(x)为奇函数\\ \end{align}3.奇偶函数复合后的奇偶性\begin{align} &\exist f(x),g(x),F(x)=f(g(x))\\ &设f(x)为奇函数\\ &(1)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(-g(x))=-f(g(x))=-F(x),F(x)为奇函数\\ &设f(x)为偶函数\\ &(1)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &注解:外偶全偶,外奇奇偶\\\end{align}例题:\begin{align} &1.设M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\frac{\sin x}{1+x^2}\cos^4xdx},N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sin x^3+\cos^4x)dx},P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx,则\\ &(A)N<P<M(B)M<P<N(C)N<M<P(D)P<M<N\\ &根据对称性判断\\ &M:f_M(x)为奇函数,F_M(x)为偶函数\\ &N:N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sinx^3+\cos^4x)dx}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos ^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos ^4xdx\geq 0,\Rightarrow N\geq 0\\ &P:P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx-\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^4xdx\geq0,\Rightarrow P\leq0\\ &\Leftrightarrow P<M<N,\space\space选(D)\\\end{align}\begin{align} &2.设f(x)=\begin{cases}&kx,0\leq x\leq \frac{1}{2}a\\&c,\frac{1}{2}a<x\leq a\\\end{cases},求F(x)=\int_0^xf(t)dt,x\in[0,a]\\ &F(x)=\begin{cases}&\int_0^xktdt=\frac{1}{2}kt^2|_0^x=\frac{1}{2}kx^2,0\leq x\leq \frac{1}{2}a\\&\int_0^{\frac{1}{2}a}ktdt+\int_{\frac{1}{2}a}^c cdt=\frac{1}{8}ka^2+c^2-\frac{1}{2}ac,\frac{1}{2}a<x\leq a\\\end{cases}\\ \end{align} \begin{align} &3.证明:\int_0^{2\pi}f(|\cos x|)dx=4\int_0^{\frac{\pi}{2}}f(|\cos x|)dx\\ \end{align}6.已有公式\begin{align} &(1)\int_0^{\frac{\pi}{2}}{\sin^nxdx=\int_0^{\frac{\pi}{2}}\cos^n xdx=\begin{cases}\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{1}{2}*\frac{\pi}{2},&n为偶数\\\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{2}{3},&n为⼤于1的奇数\\\end{cases}}\\ &(2)\int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx(f(x)为连续函数)\\ \end{align}7.与定积分有关的证明8.经典例题:例题1:\begin{align} &\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}\\ &法1:夹逼定理+基本不等式\\ &\frac{1}{1+x}<\ln(x+1)<x\\ &令x=\frac{1}{n}\\ &得\frac{1}{n+1}=\frac{\frac{1}{n}}{\frac{1}{n}+1}<\ln(\frac{1}{n}+1)=\ln(n+1)-\ln(n)<\frac{1}{n}\\ &得\frac{1}{n+2}<ln(n+2)-ln(n+1)<\frac{1}{n+1}\\ &得\frac{1}{n+n}<\ln(n+n)-\ln(n+n-1)<\frac{1}{n+n-1}\\ &得\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}<ln(2n)-ln(n)=ln2\\ &法2:\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}中\\ &\frac{1}{n+1}中n为主体,1为变体\\ &\frac{变体}{主体}\rightarrow^{n \rightarrow{\infty}}\begin{cases}0,次(夹逼定理)\\A\neq 0,同(定积分)\end{cases}\\ &\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}{f(\xi_i)\Deltax_i}=\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{i=1}^{n}f(\xi_i)(b-a)}=\int_0^1\frac{1}{1+x}=\ln(1+x)|_{0}^{1}=\ln2\\ \end{align}例题2\begin{align} &设f(x)=\int_0^{\pi}{\frac{\sin x}{\pi-t}dt},计算\int_0^{\pi}f(x)dx.\\ &法1:分部积分+换元法\\ &原式=xf(x)|_0^{\pi}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}dx}\\ &=\pi{\int_0^{\pi}{\frac{\sin{t}}{\pi-t}dt}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}}dx}\\ &=\int_0^{\pi}{\frac{(\pi-x)\sin x}{\pi-x}dx}=2\\ &法2:\\ &原式=\int_0^\pi{f(x)d(x-{\pi})}=(x-\pi)f(x)|_0^{\pi}-\int_0^{\pi}{\frac{(x-\pi)\sin x}{\pi-x}dx}=2\\ &法3:⼆重积分转化为累次积分\\ &原式=\int_0^{\pi}{\int_0^{\pi}\frac{x\sin t}{\pi-t}dt}dx\\ \end{align}例题3\begin{align} &法1:构造辅助函数\\ &根据题意f(1)=f(-1)=1,f(0)=-1\Rightarrow f(x)为偶函数,f最低点函数值为-1\\ &可以构造符合题意的辅助函数f(x)=2x^2-1\\ &法2:根据函数的性质直接判断 \end{align}例题4\begin{align} &因为\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=c(c\neq 0)\\ &所以\lim_{x\rightarrow 0}{ax-\sin x}=0并且\lim_{x \rightarrow 0}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}=0\\ &化简,使⽤洛必达法则上下求导\\ &\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{\frac{\ln{1+x^3}}{x}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{x^2}}\\ &\Rightarrow a=1,c=\frac{1}{2},b=0\\ \end{align}反常积分⼀、⽆穷区间上的反常积分\begin{align} &(1)\int_a^{+\infty}{f(x)}dx=\lim_{t\rightarrow +\infty}{\int_{a}^{t}f(x)dx}\\ &(2)\int_{-\infty}^{b}{f(x)}dx=\lim_{t\rightarrow -\infty}{\int_{t}^{b}f(x)dx}\\ &(3)\int_{-\infty}^{0}{f(x)}dx和{\int_{0}^{+\infty}f(x)dx}都收敛,则{\int_{-\infty}^{+\infty}f(x)dx}收敛\\ &且{\int_{-\infty}^{+\infty}f(x)dx}=\int_{-\infty}^{0}{f(x)}dx+{\int_{0}^{+\infty}f(x)dx}\\ &如果其中⼀个发散,结果也发散\\ &常⽤结论:\int_a^{+\infty}{\frac{1}{x^p}dx}\begin{cases}&p>1,收敛\\&p\leq1 ,发散\\\end{cases},(a>0)\\ \end{align}⼆、⽆界函数的反常积分\begin{align} &如果函数f(x)在点a的任⼀领域内都⽆界,那么点a为函数f(x)的瑕点(也称为⽆界点).⽆界函数的反常积分也成为瑕积分\\ &(1)设函数f(x)在(a,b]上连续,点a为f(x)的瑕点.如果极限\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\exist,\\ &则称此极限为函数f(x)在区间[a,b]上的反常区间,记作\int_{a}^{b}f(x)dx,即\int_{a}^{b}f(x)dx=\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\\ &这时也称反常积分\int_a^b{f(x)dx}收敛,如果上述极限不存在,则反常积分\int_a^b{f(x)dx}发散\\ &(2)设函数f(x)在[a,b)上连续,点b为函数f(x)的瑕点,则可以类似定义函数f(x)在区间[a,b]上的反常积分\int_a^bf(x)dx=\lim_{t\rightarrow b^-}{\int_a^tf(x)dx}\\ &设函数f(x)在[a,b]上除点c(a<c<b)外连续,点c为函数f(x)的瑕点,如果反常积分\int_a^c{f(x)dx}和\int_c^b{f(x)dx}都收敛\\ &则称反常积分\int_a^b{f(x)dx}收敛,且\int_a^b{f(x)dx}=\int_a^c{f(x)dx}+\int_c^b{f(x)dx}\\ &如果⾄少⼀个发散,则称\int_a^b{f(x)dx}发散\\ &常⽤结论:\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ \end{align}三、例题例题1\begin{align} &\int\frac{1}{\ln^{\alpha}x}d(\ln x)\rightarrow^{\ln x=u}\int{\frac{du}{u^{\alpha+1}}}\begin{cases}&{\alpha-1< 1}\\&{\alpha+1>1}\\\end{cases}\Rightarrow 0<\alpha<2\\\end{align}定积分的应⽤⼀、⼏何应⽤1.平⾯图形的⾯积\begin{align} &(1)若平⾯域D由曲线y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b)所围成,则平⾯域D的⾯积为\\ &S=\int_a^b{[f(x)-g(x)]dx}\\ &(2)若平⾯域D由曲线由\rho=\rho(\theta),\theta=\alpha,\theta=\beta(\alpha<\beta)所围成,则其⾯积为S=\frac{1}{2}\int_{\alpha}^{\beta}{\rho^2(\theta)d\theta} \end{align}2.旋转体的体积\begin{align} &若区域D由曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成,则\\ &(1)区域D绕x轴旋转⼀周所得到的旋转体体积为V_x=\pi\int_a^b{f^2(x)dx}\\ &(2)区域D绕y轴旋转⼀周所得到的旋转体体积为V_y=2\pi\int_a^b{xf(x)dx}\\ &(3)区域D绕y=kx+b轴旋转⼀周所得到的旋转体体积为V=2\pi\int_D\int{r(x,y)d\sigma}\\ &例如:求y=x,y=x^2在第⼀象限的封闭图形绕转轴的体积\\ \end{align}\begin{align} &V_x=2\pi\int_D\int yd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}ydy\\ &V_y=2\pi\int_D\int xd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}xdy\\ &V_{x=1}=2\pi\int_D\int (1-x)d\sigma\\ &V_{y=2}=2\pi\int_D\int (2-y)d\sigma\\ \end{align}3.曲线弧长\begin{align} &(1)C:y=y(x),a\leq x\leq b,s=\int_a^b{\sqrt{1+y'^2}dx}\\ &(2)C:\begin{cases}&x=x(t)\\&y=y(t)\\\end{cases},\alpha \leq t\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{x'^2+y'^2}dx}\\ &(3)C:\rho=\rho(\theta),\alpha \leq \theta\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{\rho^2+\rho'^2}dx}\\ \end{align}4.旋转体侧⾯积\begin{align} &曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成的区域绕x轴旋转所得到的旋转体的侧⾯积为\\ &S=2\pi\int_a^b{f(x)\sqrt{1+f'^2(x)}dx}\\ \end{align}⼆、物理应⽤1.压⼒2.变⼒做功3.引⼒(较少考)例题1\begin{align} &分析题意可知,该容器由x^2+y^2=1的圆和x^2+(y-1)^2=1的偏⼼圆组成\\ &根据图像的对称性可以避免不同表达式带来的困难\\ &对圆的⼩带⼦进⾏积分,带⼦长度为x,积分区间为-1到\frac{1}{2},\int_{-1}^{\frac{1}{2}}{\pi x^2dy}\\ &由于图像的对称性,将积分结果乘⼆\\ &(1)V=2\pi\int_{-1}^{\frac{1}{2}}{x^2}dy=2\pi\int_{-1}^{\frac{1}{2}}{(1-y^2)dy}=\frac{9\pi} {4}\\ \end{align}\begin{align} &(2)W=F*S=G*S=mg*S=\rho VSg\\ &上部为W_1=\int_{\frac{1}{2}}^{2}(2y-y^2)(2-y)dy*\rho g\\ &下部为W_2=\int^{\frac{1}{2}}_{-1}(1-y^2)(2-y)dy*\rho g\\ &W=W_1+W_2\\ \end{align}例题2\begin{align} &F_p=P*A=\rho gh*A\\ &将图像分为上部和下部,上部为矩形区域和下部的抛物线围成的⾯积区域,对其进⾏依次求解\\ &P_1=2\rho gh\int_1^{h+1}{h+1-y}dy=\rho gh^2\\ &P_2=2\rho gh\int_0^1{(h+1-y)\sqrt{y}dy=4\rho g(\frac{1}{3}h+\frac{2}{15})}\\ &\frac{P_1}{P_2}=\frac{4}{5}\Rightarrow h=2,h=-\frac{1}{3}(舍去) \end{align}。
定积分与反常积分的区别
定积分与反常积分的区别
定积分与反常积分在数学中是两个重要的积分概念,它们之间存在明显的区别。
定义:
定积分:定积分是对于一个给定的函数f(x)和区间[a, b],对任意x∈[a, b],f(x)在[a, b]上的定积分定义为:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的原函数。
反常积分:反常积分又称为瑕积分,是对函数f(x)在区间[a, b]上的瑕点进行积分。
假设f(x)在[a, b]上的瑕点为c,那么反常积分∫abf(x)dx可以定义为:∫abf(x)dx=limT→0+∫c-Tc+Tf(x)dx,其中∫c-Tc+Tf(x)dx表示将区间[c-T, c+T]分成许多小区间,然后在每个小区间上使用定积分来近似计算f(x)的值,最后求和得到的结果。
区别:
1. 定义不同:定积分是在给定的区间上对函数进行积分,而反常积分是在瑕点处对函数进行积分。
2. 物理意义不同:定积分可以用来求解面积、体积、平均值等问题,而反常积分可以用来求解质量、电荷、线密度等问题。
3. 计算方法不同:定积分可以使用牛顿-莱布尼茨公式、换元法、分部积分法等方法进行计算,而反常积分需要使用留数定理、柯西积分公式等方法进行计算。
4. 收敛条件不同:定积分在区间[a, b]上收敛的条件是f(x)在[a, b]上有界且可积,而反常积分在区间[a, b]上收敛的条件是f(x)在瑕点c处有界且可积。
定积分与反常积分是两个不同的积分概念,它们在定义、物理意义、计算方法和收敛条件等方面存在明显的差异。
浅析反常积分与定积分的定义与性质
浅析反常积分与定积分的定义与性质作者:刘汉兵,刘树兵来源:《教育教学论坛》 2015年第28期刘汉兵1,刘树兵2(1.中国地质大学(武汉)数理学院,湖北武汉430074;2.湖北省鄂州市第二中学,湖北鄂州436001)摘要:积分学是微积分理论中的一个重要部分。
一元函数的积分学主要包括定积分和反常积分两大类。
这两类积分各自具备一些性质,而这些性质常常被拿来相互比较。
本文将从定义出发,结合一些反例,深入剖析定积分和反常积分的性质差异及其原因。
关键词:反常积分与定积分;性质差异;定义中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)28-0178-02作者简介:刘汉兵(1985-),男(汉族),湖北鄂州人,博士,讲师,研究方向:微分方程的最优控制理论;刘树兵(1982-),男(汉族),湖北鄂州人,本科,高中教师,研究方向:数学教学教育。
积分学是微积分理论中的一个重要组成部分。
一元函数的积分学主要包括定积分和反常积分两大类,反常积分又包含了无穷积分与瑕积分,它们可以看作是定积分的推广,是定积分的某种意义下的极限形式。
粗略来看,反常积分是更为一般的积分,定积分作为更为特殊的积分,应该具备反常积分所具备的性质。
但是在这部分内容的学习过程中,可以看到反常积分与定积分的一些性质有所区别,甚至从表面上看,反常积分的一些性质,定积分并不具备。
本文将从定义出发,剖析这些性质的差异及其原因,以更加准确深刻的理解定积分和反常积分的异同。
一、无穷积分与定积分的定义与性质我们知道对于无穷积分,有如下的一个重要性质。
这显然是不合情理的,因为无穷积分是定积分的推广,定积分是更为特殊的积分。
仔细分析会发现,上述两个命题中第二个命题即为定理2的结论,是真命题,而命题一看似定理1的结论,但是它与定理1的描述相比,去掉了一个非常重要的条件:“f在任何有限区间[a,u]上可积”,所以命题一是错误的。
实际上,我们上述定义的函数E(x)可以更直接的说明命题一是不对从定理的证明我们也可以进一步认识到A、B两部分内容的差异对定理结论的影响。
反常积分的理解
反常积分的理解
反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。
反常积分就是积分区间是无界的,也就是区间可以有无穷大,也可以是有限区间函数在某点处无界。
反常积分的出现,是因为在实际应用和理论研究中,还会遇到一些在无限区间上定义的函数或有限区间上的无界函数,对它们也需要考虑类似于定积分的问题。
反常积分和定积分的区别:
反常积分可能出现积分区间无界的情况,而定积分只能在有限的区间上积分。
反常积分的被积函数可能存在瑕点(即无界点),而定积分的被积函数都是有界的。
反常积分可能出现积分后结果为无穷大的情况,而定积分的积分结果总是有限的。
反常积分和定积分的联系:
反常积分和定积分都是用来计算面积的。
反常积分的结果可能是一个数,也可能是一个无穷大,而定积分的结果是一个数。
反常积分和定积分的计算方法有很多相似之处,如换元法、分部积分法等。
反常积分的应用:
在物理学中,反常积分被广泛应用于处理具有无限大能量或质量的系统的问题。
在经济学中,反常积分可以用来计算具有无限时间跨度的投资或消费的累积效应。
在工程学中,反常积分可以用来分析具有无限大尺寸或无界范围的系统的性质。
《反常积分初步》课件
04
CATALOGUE
在概率论与数理统计中,反常积分用于计算概率密度函数和累积分布函数等。
概率论与数理统计
在复变函数中,反常积分用于计算复函数的积分和级数展开等。
复变函数
在微分方程中,反常积分用于求解初值问题和边值问题等。
微分方程
信号处理
控制系统
材料科学
反常积分的扩展知识
05
详细描述
在无穷区间上的反常积分,其积分上限或下限可能趋于无穷。这种情况下,我们需要考虑如何处理无穷大或无穷小的量,以及如何确定积分的值。
总结词:无界函数的反常积分是指被积函数在积分区间内无界的情况。
总结词:含参变量的反常积分是指被积函数中含有参数的情况。
详细描述:含参变量的反常积分是反常积分的一种复杂类型。在这种情况下,被积函数中的参数可能会影响积分的值。因此,我们需要仔细分析参数的变化对积分的影响。
反常积分可积的条件
被积函数在积分区间上连续或具有有限个第一类间断点时,反常积分可能可积。
反常积分可积的判断方法
通过定积分存在的充分条件、定积分存在的必要条件等方法判断反常积分的可积性。
03
02
01
反常积分的计算方法
03
CATALOGUE
03
微分法
通过积分函数的微分性质,将反常积分转化为定积分,再利用定积分的计算方法求解。
反常积分的性质
02
CATALOGUE
反常积分收敛的定义
如果反常积分在某个区间上的积分值存在,则称该反常积分在该区间上收敛。
反常积分收敛的判断方法
通过比较测试、Cauchy收敛定理等方法判断反常积分的收敛性。
反常积分收敛的条件
当被积函数在积分区间上非负或单调递减时,反常积分可能收敛。
一元函数积分学的应用
一元函数积分学的应用教案:一元函数积分学的应用引言:在高中数学中,一元函数积分学是一个重要的概念,它是微积分的核心内容之一。
积分学是研究函数积分的方法和应用的学科。
通过学习一元函数积分学,我们可以研究函数的变化趋势、面积计算、物理问题的建模和解决等一系列问题。
本教案将针对一元函数积分学的应用进行深入的探讨,帮助学生更好地理解该知识点的实际应用。
一、定积分与反常积分1.1 定积分的概念和性质- 定积分的定义与几何意义- 定积分的性质:线性性质、区间可加性、保号性1.2 反常积分的概念和性质- 反常积分存在的条件- 反常积分的判定方法二、定积分的应用2.1 函数的面积计算- 定积分与曲线下面积的关系- 利用定积分计算曲线下的面积2.2 平均值和中值定理- 平均值定理的说明和应用- 中值定理的说明和应用2.3 函数的积分学基本定理与变限积分 - 函数的积分学基本定理的说明和应用 - 变限积分的定义和计算2.4 应用题- 利用定积分求解几何问题- 利用定积分求解物理应用问题三、反常积分的应用3.1 收敛性和计算方法- 收敛性的定义和判定- 常见反常积分的计算方法3.2 物理问题的建模与解决- 利用反常积分解决物理问题- 建立数学模型求解问题结语:通过本教案的学习,学生将对一元函数积分学的应用有更深入的理解,能够掌握定积分和反常积分的基本概念、性质和应用方法,并能够将其应用于面积计算、物理问题的建模和解决等实际场景中。
同时,本教案也可激发学生对数学的兴趣和求知欲望,培养他们的数学思维和问题解决能力。
希望学生们通过学习,能够掌握一元函数积分学的应用,为今后的学习打下坚实的基础。
反常积分的知识点总结
反常积分的知识点总结一、反常积分的概念和性质1. 反常积分的定义反常积分是指在某些情况下,定积分的积分区间非有限区间,导致积分结果不存在或者收敛性不足的积分。
具体来说,若被积函数 f(x) 在积分区间内存在无穷大或者间断点,则定积分就无法进行,这时需要使用反常积分来进行求解。
反常积分可以分为第一类反常积分和第二类反常积分两种。
第一类反常积分指的是区间端点处的函数值为无穷大或定义间断的情况。
第二类反常积分则是函数在积分区间范围内的某一点发散的情况。
2. 反常积分的分类反常积分根据积分区间的不同性质可以分为以下几种情况:(1)无穷区间上的反常积分当被积函数在整个实数轴上无穷大或者间断时,就出现了无穷区间上的反常积分。
(2)有限区间上的反常积分当被积函数在积分区间内的某一点为无穷大或者不连续时,就出现了有限区间上的反常积分。
3. 反常积分的性质反常积分具有一些特殊的性质,这些性质对于理解和处理反常积分都具有重要意义。
(1)线性性质反常积分具有线性性质,即两个反常积分的和或差仍然是反常积分。
(2)可加性对于有限区间上的反常积分,如果将积分区间进行分割,可加性成立,即将积分进行分割后分别积分再求和等于整体积分。
(3)定积分收敛性的判定若函数在区间端点处的正负极限只要有一个是无穷大,则对应的反常积分就发散。
否则,就收敛。
二、反常积分的计算方法1. 无穷区间上的反常积分对于无穷区间上的反常积分,计算方法一般采用积分限的变换,将无穷区间转化为有限区间,然后再进行积分运算。
常用的方法包括极限计算和变量代换等。
极限计算法的基本思路是将无穷区间上的反常积分转化为有限区间上的积分,再利用定积分的性质进行求解。
变量代换法则是利用变量代换将无穷区间变换为有限区间,再进行积分求解。
2. 有限区间上的反常积分对于有限区间上的反常积分,可以采用逐点定义的方法,即将积分区间内的无穷大或间断点分别处理,再将结果求和,从而得到整体的反常积分结果。
高数提高讲义 - 第四讲 定积分与反常积分
第四讲 定积分与反常积分一、 考试要求1. 理解(了解)定积分的概念。
2. 掌握定积分的性质及换元积分法与分部积分法,掌握(了解)定积分中值定理。
3. 会求有理函数、三角函数有理式及简单无理函数的积分。
4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。
5. 了解反常积分的概念,会计算反常积分。
二、内容提要1 定义 f x dx f x i i i na b()lim ()=→=∑⎰λξ01∆2 若f(x)在[a,b]上连续,则f x dx ab()⎰存在,特别f x dx b a n f a b ank n a bi n ()lim ()=-+-→∞=⎰∑1 f x dx n f n k n i n ()lim ()=→∞=⎰∑011113 f x dx f u du f t dt abab ab ()()()===⎰⎰⎰4 性质:(1) f x dx f x dx baab ()()=-⎰⎰(2) [()()]()()k f x k g x dx k f x dx k g x dx aba b a b1212+=+⎰⎰⎰ (3) f x dx f x dx f x dx cbac ab()()()=+⎰⎰⎰(4) 不等式性质(5) 估值定理 m f x M x a b ≤≤∀∈(),[,], 则 m b a f x dx M b a a b()()()-≤≤-⎰(6) 积分中值定理:若f(x)在[a,b]上连续,则f x dx f b a a b ab()()(),[,]=-∈⎰ξξ,注:ξ可在开区间(a,b )内取到.一般地,f(x)在[a,b]上连续, g(x)在[a,b]上可积且不变号,则 f x g x dx f g x dx a b abab()()()(),[,]=∈⎰⎰ξξ5 定积分的计算(1) 牛顿—莱布尼兹公式 f x dx F x F b F a a b ab()()()()==-⎰(2) 换元积分法 (3) 分部积分法6 反常积分(1)无界区域上的反常积分:设)(x F 是)(x f 在),(+∞a 上的一个原函数,且)()(),0(lim A F F a F A +∞→≡+∞+均存在,则称⎰+∞adx x f )(收敛,且定义⎰+∞adx x f )(=)0()(+-+∞a F F ;如果 )()(),0(lim A F F a F A +∞→≡+∞+中有一个不存在,则称⎰+∞adx x f )(发散。
反常积分知识点的总结
反常积分知识点的总结一、反常积分的基本概念(一)反常积分的定义反常积分是指在积分区间上,当被积函数存在无穷限的时候,即函数在积分区间上的某一个或两个端点处存在无穷大或者无穷小的情况,这种积分就称为反常积分。
数学上对函数在无穷限处的性态进行了严格的定义,并分别称为无穷限的反常积分。
反常积分的求解是非常重要的,也是数学中的一个重要工具。
(二)反常积分的类型反常积分主要有两种类型:一是无穷限的反常积分,二是间断点的反常积分。
1. 无穷限的反常积分当被积函数在积分区间有一个端点处无穷或者是无穷小的时候,那么这类积分就是无穷限的反常积分。
2. 间断点的反常积分当函数在积分区间上有一个间断点,且在那个点可能是无穷大,或者是无穷小的时候,这类积分就是间断点的反常积分。
(三)反常积分的性质反常积分具有一些特殊的性质,主要包括:1. 线性性质:对于反常积分,有线性积分的性质,即如果函数f(x)和g(x)在区间[ a, b ]上可积,那么有$\int_{a}^{b} [ f( x )+g( x ) ] dx= \int_{a}^{b} f( x )dx+\int_{a}^{b} g( x )dx$2. 可加性:如果函数f(x)在[a, c]和[c, b]上都是可积的,那么有$\int_{a}^{b} f( x )dx=\int_{a}^{c} f( x )dx+\int_{c}^{b} f( x )dx$3. 绝对收敛性:如果函数在某区间上绝对收敛,则在该区间上的反常积分也是收敛的。
以上是反常积分的基本概念,包括定义、类型和性质。
下面将介绍反常积分的求解方法。
二、反常积分的求解方法(一)无穷限的反常积分的求解方法对于无穷限的反常积分,常见的求解方法包括:1. 极限求解法当被积函数在积分区间上的一个端点处有无穷大或无穷小时,可以通过极限的方式来求解反常积分。
具体步骤如下:(1)将积分转化为某个极限形式;(2)利用极限的相关性质,对极限进行分析和计算;(3)得到反常积分的极限解。
收敛的反常积分和定积分的关系
收敛的反常积分和定积分的关系在数学中,积分是一个重要的概念,它在计算面积、体积、曲线长度等方面起到了关键作用。
在积分的研究中,定积分和反常积分都是常见的概念。
定积分是对一个有界函数在一个闭区间上的积分,而反常积分是对一个无界函数或在某些点上不连续的函数的积分。
本文将探讨收敛的反常积分和定积分之间的关系。
我们来回顾一下定积分的定义。
设函数f(x)在闭区间[a, b]上有界,将[a, b]分成n个小区间,每个小区间的长度为Δx。
在每个小区间上任取一个点ξi,将函数f(ξi)乘以Δx,然后将这些乘积相加,得到一个和Sn。
当n趋向于无穷大时,这个和Sn趋向于一个定值I,即∫[a, b]f(x)dx = I,这就是定积分的定义。
接下来,我们来讨论反常积分的概念。
反常积分是对无界函数或在某些点上不连续的函数进行积分的方法。
具体来说,设函数f(x)在区间[a, +∞)上有定义,若对于任意的有限数a < b,函数f(x)在区间[a, b]上的定积分存在有限数,则称反常积分∫[a, +∞)f(x)dx收敛。
类似地,对于函数f(x)在区间(-∞, a]上有定义,若对于任意的有限数a > b,函数f(x)在区间[b, a]上的定积分存在有限数,则称反常积分∫(-∞, a]f(x)dx收敛。
现在,我们来探讨收敛的反常积分和定积分的关系。
在某些情况下,收敛的反常积分可以等于定积分。
具体来说,如果函数f(x)在区间[a,+∞)上连续,并且反常积分∫[a, +∞)f(x)dx收敛,则定积分∫[a, b]f(x)dx也存在并且等于反常积分,其中b是一个任意有限数。
类似地,如果函数f(x)在区间(-∞, a]上连续,并且反常积分∫(-∞, a]f(x)dx收敛,则定积分∫[b, a]f(x)dx也存在并且等于反常积分。
然而,并非所有情况下收敛的反常积分都等于定积分。
在某些情况下,收敛的反常积分可能存在而定积分不存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析反常积分与定积分的定义与性质
浅析反常积分与定积分的定义与性质
浅析反常积分与定积分的定义与性质
刘汉兵1,刘树兵2
(1.中国地质大学(武汉)数理学院,湖北武汉430074;2.湖北省鄂州市第二中学,湖北鄂州436001)
摘要:积分学是微积分理论中的一个重要部分。
一元函数的积分学主要包括定积分和反常积分两大类。
这两类积分各自具备一些性质,而这些性质常常被拿来相互比较。
本文将从定义出发,结合一些反例,深入剖析定积分和反常积分的性质差异及其原因。
关键词:反常积分与定积分;性质差异;定义
作者简介:刘汉兵(1985-),男(汉族),湖北鄂州人,博士,讲师,研究方向:微分方程的最优控制理论;刘树兵(1982-),男(汉族),湖北鄂州人,本科,高中教师,研究方向:数学教学教育。
积分学是微积分理论中的一个重要组成部分。
一元函数的积分学主要包括定积分和反常积分两大类,反常积分又包含了无穷积分与瑕积分,它们可以看作是定积分的推广,是定积分的某种意义下的极限形式。
粗略来看,反常积分是更为一般的积分,定积分作为更为特殊的积分,应该具备反常积分所具备的性质。
但
是在这部分内容的学习过程中,可以看到反常积分与定积分的一些性质有所区别,甚至从表面上看,反常积分的一些性质,定积分并不具备。
本文将从定义出发,剖析这些性质的差异及其原因,以更加准确深刻的理解定积分和反常积分的异同。
一、无穷积分与定积分的定义与性质
我们知道对于无穷积分,有如下的一个重要性质。
这显然是不合情理的,因为无穷积分是定积分的推广,定积分是更为特殊的积分。
仔细分析会发现,上述两个命题中第二个命题即为定理2的结论,是真命题,而命题一看似定理1的结论,但是它与定理1的描述相比,去掉了一个非常重要的条件:“f在任何有限区间[a,u]上可积”,所以命题一是错误的。
实际上,我们上述定义的函数E(x)可以更直接的说明命题一是不对从定理的证明我们也可以进一步认识到A、B两部分内容的差异对定理结论的影响。
定理1的两个证明都是围绕积分上限趋于正无穷时,变上限积分极限的存在性展开的,而定理2的证明则是依赖于有限区间上的可积性定理,即证明当划分足够细时,Daboux大和与Daboux小和收敛到同一个极限,这是完全不同的两个对象。
另一方面,我们从证明里面看到,定理1确实是依赖于条件A的。
在定理1的证明里,我们用到了f(x)在任一有限区间上的定积分,如果没有条件A,这些定积分是不存在的,这也说明了为什么不能运用定理1的证明方法得到定积分的类似性质。
从以上的分析我们可以看到反常积分的一些性质,(.fwsir.)特别是基于条件A的'一些变限积分极限的收敛性质不能简单的从表面形式上与定积分的可积性质进行比较,更不能因此错误的认为反常积分具有定积分所不具备的性质。
定理1和定理2所表述的是两个毫不相关的对象的性质,把它们进行比较没有实质的意义,反而容易产生认知上的混淆。
二、瑕积分与定积分的定义与性质
瑕积分的定义与无穷积分有类似的特点。
从以上的论述我们可以认识到,不论是无穷积分还是瑕积分,它们都是定积分的推广。
这两类积分的收敛性首先都要以某类有限区间上的可积性为前提,其次是要求积分上(下)限在某一趋势下的变限积分的极限存在。
反常积分的一些性质,形式上看起来可以与定积分的某些性质进行比较,但是实际上这种比较是非常牵强的,甚至会混淆概念、模糊认知,因此,应该从定义出发,区分这些性质的异同,理解背后本质的原因,更加准确深刻地理解反常积分和定积分。
参考文献:
[1]华东师范大学数学系。
数学分析[M].北京:高等教育出版社,20xx.
[2]同济大学数学教研室。
高等数学[M].北京:高等教育出版社,20xx.。