数学高效课堂导学案-函数的概念
高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案
【新教材】3.1.1 函数的概念(人教A版)1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
一、预习导入阅读课本60-65页,填写。
1.函数的概念(1)函数的定义:设A,B是,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域:函数y=f(x)中,x叫做,叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.2.区间概念(a,b为实数,且a<b)3.其它区间的表示1.判断(正确的打“√”,错误的打“×”) (1)区间表示数集,数集一定能用区间表示. ( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞]. ( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合. ( ) 2.函数y =1x +1的定义域是 ( )A .[-1,+∞)B .[-1,0)C .(-1,+∞)D .(-1,0) 3.已知f (x )=x 2+1,则f ( f (-1))= ( ) A .2 B .3 C .4 D .5 4.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________. (2){x |x >1}用区间表示为________.题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x . 跟踪训练四1.求函数y=√2x +3√2-x1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x; ④y =2x -√x −1.跟踪训练五1.求下列函数的值域: (1)y = √2x +1 +1;(2)y =1−x 21+x 2.1.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},由下列图形给出的对应f 中,不能构成从A 到B 的函数有( )个A.1个B.2个C.3个D.4个2.函数()2121f x ax x =++的定义域为R ,则实数a 的取值范围为( )A .a >1B .0<a <1C .a <0D .a <13.函数f (x )=√x−1x+3的定义域为 A .{x|1≤x <3或x >3} B .{x|x >1} C .{x|1≤x <2} D .{x|x ≥1}4.已知函数f (2x +1)的定义域为(−2,0),则f (x )的定义域为( ) A.(−2,0)B.(−4,0)C.(−3,1)D.(−12,1)5.下列各组函数中,()f x 与()g x 相等的是( )A .()()2,2f x x g x x =-=-B .()()32,f x x g x ==C .()()22,2x f x g x x x=+=+D .()()22,1x x x f x g x x x-==- 6.集合A ={x |x ≤5且x ≠1}用区间表示____________.7.已知函数8()2f x x =-(1)求函数()f x 的定义域; (2)求(2)f -及(6)f 的值. 8.求下列函数的值域: (1)f (x )=211x x -+;(2)f (x )=x .答案小试牛刀1.(1)× (2) × (3)√ (4)× (5 )× 2.C 3.D4. (1)[10,100] (2)(1,+∞) 自主探究 例1 【答案】D 跟踪训练一【答案】C 例2 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 跟踪训练二【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 例3 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 跟踪训练三【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3).例4【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 跟踪训练四【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−√2-x+1x 的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 例5【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.跟踪训练五【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 当堂检测1-5.CADCD 6.(,1)(1,5]-∞7.【答案】(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f = 【解析】(1)依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞. (2)()8223122f -=+-+=---,()8663562f =+=-. 8. 【答案】(1)(–∞,2)∪(2,+∞); (2)[–54,+∞). 【解析】(1)因为f (x )=()2131x x +-+=2–31x +,所以f (x )≠2, 所以函数f (x )的值域为(–∞,2)∪(2,+∞).(21x +(t≥0),则x=t 2–1,所以y=t 2–t –1(t≥0). 因为抛物线y=t 2–t –1开口向上,对称轴为直线t=12∈[0,+∞),所以当t=12时,y取得最小值为–54,无最大值,所以函数f(x)的值域为[–54,+∞).。
《函数的概念》导学案
第1课时函数的概念1.通过具体实例,理解函数是从一个数集到另一个数集上的对应,理解函数的概念和数学符号表示,了解构成函数的三要素.2.理解函数定义域、值域的概念,会求一些简单的函数的定义域、函数值.我们知道高速路上匀速行驶的车辆行驶的路程与时间成正比,每天的气温也随时间的变化而变化.现实生活中存在着许多相互依赖的两个变量之间的关系的数学模型,我们称之为函数关系.你学习过哪些函数?问题1:我们在初中学习过函数.函数的定义是一个变量随着另一个变量的变化而发生变化,具体我们学习过函数、函数和函数.问题2:设A、B是非空数集,如果按照某个确定的对应法则f,使对于集合A中的数x,在集合B中都有的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作.其中x叫作,x的取值集合叫作函数的;与x的值相对应的y值叫作,函数值的集合叫作函数的.问题3:(1)函数f:A→B应该满足什么样的对应关系?一个函数的构成要素有几部分?(2)两个函数的定义域和对应关系分别相同,值域相同吗?由此你对函数的三要素有什么新的认识?(1)应满足:①集合A、B都是;②对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有的元素y与之对应.一个函数的构成要素: 、和,简称为函数的三要素.(2)如果两个函数的和分别相同,那么它们的值域一定相同.由此可以认识到:只要两个函数的和分别相同,那么这两个函数就相等.问题4:如何求函数的定义域?函数的定义域主要通过解不等式(组)或方程(组)来求解,定义域要用集合或区间表示.求给出解析式的函数的定义域需注意:①分式的分母不能为;②偶次根式的被开方数;③0次幂的底数不能为;④实际问题中定义域要由确定.对函数概念的理解(1)下列式子:①x2+y2=2;②-+-=1;③y=-+-.能确定y是x的函数的是.(2)与函数y=x+1相等的函数是.①y=(x+1)0; ②y=t+1;③y=()2; ④y=|x+1|.函数值的求法已知f(x)=x3+2x+3,求f(1),f(t),f(2a-1)和f[f(-1)]的值.函数定义域的求法求下列函数的定义域:;(1)f(x)=-(2)f(x)=-(a为不等于0的常数).(2014年·上海卷)设常数a∈R,函数f(x)=-+-,若f(2)=1,则f(1)= .考题变式(我来改编):参考答案知识体系梳理问题1:一次二次反比例问题2:任意一个唯一确定y=f(x),x∈A 自变量定义域函数值值域问题3:(1)①非空数集②唯一确定定义域对应法则值域(2)定义城对应法则定义域对应法则问题4:①0②非负③0④实际意义重点难点探究探究一:【解析】(1)①由x2+y2=2,得y=±-,每给一个定义域内的x值可能有两个y 值与之对应,因此它不能确定y是x的函数.②由-+-=1,得y=(1--)2+1,所以当x在{x|x≥1}中任取一个数时,有唯一确定的y值与之对应,故由它可确定y是x的函数.③由--得x∈⌀,故由它不能确定y是x的函数.(2)①、③选项中定义域与y=x+1不同;④项中对应关系不同.对于②,尽管自变量不一样,但定义域、对应关系均相同,二者表示相等函数.【答案】(1)②(2)②【小结】(1)紧扣函数的定义知函数的定义域非空,对于定义域内的任意一个x有唯一的元素y与x对应;(2)当且仅当定义域和对应关系完全相同时,两个函数才相等.探究二:【解析】f(1)=13+2×1+3=6;f(t)=t3+2t+3;f(2a-1)=(2a-1)3+2(2a-1)+3=8a3-12a2+10a;f[f(-1)]=f[(-1)3+2×(-1)+3]=f(0)=3.【小结】求函数的值只需将自变量的值代入函数的解析式化简即可.探究三:【解析】(1)要使函数有意义,需满足x-2≠0,故函数的定义域为x≠2.(2)要使函数有意义,需满足ax-3≥0,故函数的定义域为{x|x≥}.[问题]上面两个题目的解答正确吗?[结论](1)中的定义域应用集合来表示;(2)中含有参数,解该不等式时要对参数进行讨论.于是,正确解答如下:(1)要使函数有意义,需满足x-2≠0,即x≠2.故函数的定义域为{x|x≠2}.(2)要使函数有意义,需满足ax-3≥0.当a>0时,函数的定义域为{x|x≥};当a<0时,函数的定义域为{x|x≤}.【小结】在求函数的定义域时,列出使函数有意义的自变量所满足的不等关系式,求解即可求得函数的定义域.其依据有①分式的分母不为0;②偶次根式中被开方数不小于0;③零次幂的底数不等于零等.当一个函数是由两个或两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的取值集合.全新视角拓展【解析】由题意f(2)=1+-=1,则a=4,f(x)=-+-,所以f(1)=-+-=3.【答案】3思维导图构建唯一定义域、值域、对应法则定义域对应法则。
函数的概念-导学案
1.2.1函数的概念(第一课时)[预习内容]:认真阅读教材 P 15—18页。
深入理解本节的学习目标及重难点,认真独立完成本节的题目。
一.教学目标:1. 进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2. 了解构成函数的要素;3. 能够正确使用“区间”的符号表示某些集合。
重点:函数的概念;难点:对抽象符号()x f 的理解。
二.自学引入;1、初中学过函数的概念----你能叙述吗?函数有哪几种表示方法?初中学过哪些具体函数?例如:思考(1)1=y 是函数吗?(2)函数x y =与xx y 2=是同一个函数吗? 现在从集合的对应关系进一步学习函数及其构成。
2、阅读教材15-16页三个函数实例完成填空由实例一可知:对于数集 任一时间t 按照对应关系 在数集 中都有唯一确定的高度h 和它对应.由实例二可知:对于数集 每一时刻t 按照对应关系 在数集 中都有唯一确定的臭氧洞面积s 和它对应.由实例三可知:对于数集 每一时刻按照按对应关系 在 数集 中都有唯一确定的恩格尔系数和它对应.以上三个实例有什么不同点 其共同点是:3、从集合的观点叙述函数的概念。
一般地,设A ,B 是__________数集,如果按照__________________________,使对于集合中A __________________,在集合B 中都有________________________,那么就称B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈=其中,x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合})({A x x f ∈叫做函数的 .显然,值域是集合B 的子集.4、概念理解概念巩固(1)1=y 是函数吗?(2)函数x y =与xx y 2=是同一个函数吗? (3)一次函数的定义域 值域反比例的定义域 值域 值域(4)要使函数y ,∴此函数的定义域为________. (5)还要有实际意义;一种练习本的单价为0.6元,买本子的个数x 与应付钱数y 之间的函数关系为________,其中x 的允许取值范围是________. 5、函数相等如果两个函数的定义域相同,并且对应关系完全一致,那么就称这两个函数相等.(1)只要两个函数的定义域相同,对应法则相同,其值域就 故判断两个函数是否相等时,一看定义域,二看对应法则.如y =1与y =x x不是相等函数,因为 y =3t +4与y =3x +4是相等函数,因为(2)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.6.阅读教材P17填表.上是数轴上某一线段或射线上的所有点所对应的实数的取值集合,如{x |a <x ≤b }=(a ,b ],{x |x ≤b }=(-∞,b ].(1)实数a ,b 都叫相应区间的 。
高中数学《函数的概念》导学案
第一章 集合与函数概集合 1.2.1 函数的概念一、学习目标1.理解函数的概念,了解构成函数的三要素;2.会判断给出的两个函数是否是同一函数;3.能正确使用区间表示数集,会求函数定义域、值域及函数相等的判断。
【重点、难点】重点:理解函数的概念,用区间符号正确表示数的集合;难点:对函数概念及符号y=f(x)的理解,求函数定义域和值域。
二、学习过程【情景创设】初中的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。
【导入新课】问题1:对教科书中第15页的实例(1),你能得出炮弹飞行1s,5s,10s,20s 时距地面多高吗?其中t 的取值范围是什么?(点拨:用解析式刻画变量之间的对应关系,关注t 和h 的范围)解:h(1)= ,h(5)= , h(10)= , h(20)= 炮弹飞行时间t 的变化范围是数集{026}A x x =≤≤,炮弹距地面的高度h 的变化范围是数集{0845}B h h =≤≤,对应关系21305h t t =- (*)。
从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(*),在数集B 中都有唯一确定的高度h 和它对应。
问题2:对教科书中第15页的实例(2),你能从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞面积大约为2000万平方千米?其中t 的取值范围是什么?(点拨:用图像刻画变量之间的对应关系)。
例子(2)中数集{19792001}A t t =≤≤,{026}B S S =≤≤,并且对于数集A 中的任意一个时间t ,按图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应。
3.1.1 函数的概念第一课时-【新教材】人教A版(2019)高中数学必修第一册导学案
§3.1.1 函数的概念导学目标:1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。
2.了解构成函数的要素,能求简单函数的定义域.(预习教材P59~ P66,回答下列问题)回忆:初中学习的函数概念是什么?设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,则称x是自变量,y是x的函数;其中自变量x的取值的集合叫做函数的定义域,和自变量x的值对应的y的值叫做函数的值域。
情景:请同学们考虑以下两个问题:①1y=是函数吗?②y x=和2xyx=是同一个函数吗?为了得到函数更准确的定义,我们一起看下面几个函数,回答相应的问题:问题一:某“复兴号”高速列车加速到350km后保持匀速运行半小时,这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为350S t=.①思考1:有人说:“根据对应关系350S t=,这趟列车加速到50/km t后,运行1h就前进了350km.”你认为这个说法正确吗?本题中,t和S是两个变量,而且对于t的每一个确定的值,S都有唯一确定的值与之对应,所以S是t的函数.第二章 一元二次函数、方程和不等式- 2 -问题二:某电气维修公司要求工人每周工作至少1天,至多不超过6天如果公司确定的工资标准是每人每天350元,而且每周付一次工资。
显然,工人一周的工资w (元)和他一周工作天数d (天)的关系可表示为350w d .②思考2:问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?问题三:下图是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻t 的空气质量指数的值I ?思考3:本题中变量I 是变量t 的函数吗?问题四:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。
北师大版必修一数学2.1函数的概念导学案
数学 学科导学稿 执笔人:王广青 总第
学生:
课时
包级领导签字: 集体备课
上课时间:2013.9 个人空间
一、课题:2.1
函数的概念
二、学习目标 1. 进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础 上学习用集合与对应的语言来刻画函数, 体会对应关系在刻画函数概念中的 作用; 2. 了解构成函数的要素; 3. 能够正确使用“区间”的符号表示某些集合 三、教学过程 【温故知新】 问题 1、你初中学习过哪些函数,试着写在下面。 问题 2.什么是函数?从集合的观点叙述函数的概念。 问题 3.什么叫定义域,值域?
{ f ( x ) x A} 叫做函数的
2、 函数的本质: f : A B (在对应关系 f 下,集合 A 到集合 B 的一种对应). 3、函数的构成要素:_________________________________ 4.区间的概念(看课本理解填空) 定义 名称 符号 几何表示 {x|a≤x≤b} {x|a<x<b} {x|a≤x<b} {x|a<x≤b}
反 思 栏
2
x - 3 1 x
【检测反馈】 1.求下列函数的值; (1) f x 5x 3 ,求 f 3 ;
3 2
(2) g t 4t 2t 7 ,求 g 2
(3) F u u , M u 6u u 3 ,求 F(3)+M(2) 2.求下列函数的定义域; (1) y
1 5 ;(2) y x 2 ;(3) y . x3 1 x 2
3、 某山海拔 7500m,海平面温度为 25℃,气温是海拔高度的函数,而且 高度每升高 100m,气温下降 0.6℃.请你用解析表达式表示出气温 T 随海拔高 度 x 变化的函数关系,并指出函数的定义域和值域.
【新导学案】高中数学人教版必修一:121《函数的概念》(1)(2).doc
2. 已知 y = f ⑴ =&- 2 , t ( 1) 求 r( 0) 的值 ; ( 2) 求/ ⑴的定义域; ( 3) 试用 x 表示 y.
A.
-2 B. -1 C. 1
D. 2
4. 函数 y = x 2 ,XG {-2,-1,0,1,2} 的值域是 __________.
2
5. 函数 y =-- 的定义域是 __________________________, 值域是 _______________
( 用区间表示 )
心…丄拓展提升】
关系?三个实例
归纳:三个实例变量之间的关系都可以描述为,对于数集力屮的每一个
定的 y 和它对应,记作: £ATB.
x,按照某种对应关系在 数集〃屮都与唯一确
新知:函数定义 . 设儿〃是非空数集,如果按照某种确定的对应关系使对于集合 / 中的任意一个数兀,在集 合 B中都有唯一确定
的数 /( x) 和它对应,那么称 f ATB 为从集合 A到集合 B的一个函数 ( /unction) ,记作: y = /'( x), XG A. 其中, x 叫自变量,无的取值范围力叫作定义域 ( domain) ,与兀的值对应的 y 值叫函数值,函数 值的集合
(2) { 无| 兀 vO 弧>1}= __________.
(3) 函数 y=旅的定义域 _____________,
值域是 ___________ .( 观察法 ) 探典型例题
例 1 已知函数 f ( X ) = Vx + 1 . (1) 求于⑶的值 ; (2) 求函数的定义域 ( 用区间表示 ) ; (3) 求 f(a 2-}) 的值 .
导数的四则运算法则高效课堂导学案
导数的四则运算法则高效课堂导学案本资料为woRD文档,请点击下载地址下载全文下载地址www.5ykj.com 三大段一中心五环节高效课堂—导学案制作人:张平安修改人:审核人:班级:姓名:组名:课题第十课时导数的加法与减法法则学习目标、了解两个函数的和、差的求导公式;2、会运用上述公式,求含有和、差综合运算的函数的导数;3、能运用导数的几何意义,求过曲线上一点的切线学习重点函数和、差导数公式的应用学习难点函数和、差导数公式的应用学法指导探析归纳,讲练结合学习过程一自主学习复习:导函数的概念和导数公式表。
.导数的定义:设函数在处附近有定义,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即2.导数的几何意义:是曲线上点()处的切线的斜率因此,如果在点可导,则曲线在点()处的切线方程为3.导函数:如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数,称这个函数为函数在开区间内的导函数,简称导数,4.求函数的导数的一般方法:(1)求函数的改变量(2)求平均变化率(3)取极限,得导数=5.常见函数的导数公式:;探析新课两个函数和(差)的导数等于这两个函数导数的和(差),即证明:令,,∴,即.二师生互动例1:求下列函数的导数:(1);(2);(3);(4)。
例2:求曲线上点(1,0)处的切线方程。
三、自我检测课本练习:1、2.补充题:1、求y=x3+sinx的导数.2、求y=x4-x2-x+3的导数.四、课堂反思、这节课我们学到哪些知识?学到什么新的方法?2、你觉得哪些知识,哪些知识还需要课后继续加深理解?五、拓展提高课本习题2-4:A组2、3B组2www.5ykj.com。
高中数学 第二章 函数概念与基本初等函数I 2.1 函数的概念 2.1.4 函数的表示方法课堂导学案
2.1.4 函数的表示方法课堂导学三点剖析一、用适当方法表示函数及分段函数【例1】 已知f(x)=⎩⎨⎧<+≥+.012,012x x x x(1)求f(1),f(-2),f(a 2+1),f [f(0)]的值;(2)画出f(x)的图象.思路分析:(1)先确定自变量的取值属于哪一段,再用该段的解析式求函数值.(2)分两段作函数的图象,每一段一般都先作出端点.解析:(1)f(1)=12+1=2,f(-2)=2×(-2)+1=-3,f(a 2+1)=(a 2+1)2+1=a 4+2a 2+2,f [f(0)]=f(1)=12+1=2.(2)f(x)的图象如下图所示.温馨提示(1)关键是理解分段函数的意义,即自变量在不同范围内取值时,相应的函数解析式不同.(2)f [g(x)]是g(x)作为自变量执行“f ”这个对应法则,求f [f(x 0)]的值应从里向外求.二、求函数解析式【例2】 (1)已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x);(2)已知f(x +4)=x+8x ,求f(x 2).思路分析:(1)可设出二次函数,根据已知条件,确定待定系数.(2)中应先求出f(x),再求f(x 2).解析:(1)∵f(x)是二次函数,设f(x)=ax 2+bx+c(a ≠0).由f(0)=1得c=1.由f(x+1)-f(x)=2x,得a(x+1)2+b(x+1)+1-(ax 2+bx+1)=2x.左端展开整理得2ax+(a+b)=2x.由恒等式原理知⎩⎨⎧=+=,0,22b a a ∴⎩⎨⎧-==.1,1b a ∴f(x)=x 2-x+1.(2)设t=x +4.∴x =t-4(t ≥4).由f(x +4)=x+8x 可得f(t)=(t-4)2+8(t-4)=t 2-16(t ≥4).∴f(x)=x 2-16(x ≥4).∴f(x 2)=x 4-16(x ≥2或x ≤-2).温馨提示在(2)中求f(x 2),千万不能直接代入f(x +4)=x+8x ,得f(x 2)=x 2+8|x|,这是没明白x 2与x +4有同等地位,都执行“f ”这个对应法则导致的.三、利用分段函数解决实际问题【例3】 在国内投寄外埠平信,每封信不超过20克付邮资80分,超过20克不超过40克付邮资160分,超过40克不超过60克付邮资240分,依此类推,每封x 克(0<x ≤100)的信应付多少分邮资?写出函数的表达式,作出函数的图象,并求函数的值域.解析:设每封信的邮资为y ,则y 是信件重量x 的函数.这个函数关系的表达式为f(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈∈∈∈],100,80(,400],80,60(,320],60,40(,240],40,20(,160],20,0(,80x x x x x函数值域为{80,160,240,320,400}.在直角坐标系中描点作图,函数图象如下图.温馨提示用函数知识解实际问题,一要注意自变量的取值范围;二要注意自变量x 和函数y 的取值是否具有实际意义.各个击破类题演练 1已知函数y=f(x),f(0)=1,且当n∈N *时,有f(n)=nf(n-1),求f(0),f(1),f(2),f(3),f(4),f(5).解析:f(0)=1;f(1)=1·f(1-1)=1·f(0)=1;f(2)=2·f(2-1)=2·f(1)=2×1=2;f(3)=3·f(3-1)=3·f(2)=3×2=6;f(4)=4·f(4-1)=4·f(3)=4×6=24;f(5)=5·f(5-1)=5·f(4)=5×24=120;变式提升 1已知x∈N *,f(x)=⎩⎨⎧<+≥-),6()2(),6(5x x f x x 则f(3)=__________. 解析:∵f(x)= ⎩⎨⎧<+≥-),6()2(),6(5x x f x x∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2,故f(3)=2.答案:2类题演练 2(2004湖北卷高考理,3)已知f(x x +-11)=2211xx +-,则f(x)的解析式可取为( ) A.21x x + B.-212x x + C.212x x + D.-21xx + 解析:设x x +-11=t ,则x=tt +-11. ∴f(t)=)11(1)11(12tt t t +-++--=2224t t +=212tt + 即f(x)=212x x +,故选C. 答案:C变式提升 2已知函数φ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且φ(31)=16,φ(1)=8,求φ(x)的表达式. 解析:设f(x)=k 1x,g(x)=x k 2,则φ(x)=k 1x+xk 2, ∵φ(31)=16,φ(1)=8, ∴⎪⎩⎪⎨⎧+=+=,8,33162121k k k k 解得⎩⎨⎧==,5,321k k ∴φ(x )=3x+x5. 类题演练 3某地出租车的出租费为4千米以内(含4千米),按起步费收10元,超过4千米按每千米加收2元,超过20千米(不含20千米)每千米再加收0.2元,若将出租车费设为y ,所走千米数设为x ,试写出y=f(x)的表示式.解析:当0<x ≤4,y=10.当4<x ≤20时,y=10+(x-4)×2=2x+2.当x>20时,y=10+32+(x-20)×2.2=2.2x-2.综上所述,y 与x 的函数关系为y=⎪⎩⎪⎨⎧>-≤<+≤<).20(22.2),204(22),40(10x x x x x变式提升 3如下图,在边长为4的正方形ABCD 上有一点P ,沿着折线BC 、CD 、DA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x,△ABP 的面积为y=f(x).(1)求△ABP 的面积与P 移动的路程间的函数关系式;(2)作出函数的图象,并根据图象求y 的最大值.解析:函数定义域为(0,12).当0<x ≤4时,S=f(x)=21×4×x=2x ; 当4<x ≤8时,S=f(x)=8; 当8<x<12时,S=f(x)=21×4×(12-x)=24-2x, ∴函数解析式为f(x)=⎪⎩⎪⎨⎧∈-∈∈].12,8(224],8,4(8(0,4],x 2x x x x(2)作出f(x)的图象(下图).由图象看出[f(x)]max =8.。
苏教版数学高一《函数的概念与图像》名师导学案
(4)若 ,则 的大小关系是_______________.
3.画出函数 的图像.
【教学反思】
(1)比较 的大小;
(2)若 (或 ,或
)比较 与 的大小;
(3)分别写出函数 ( ),
( )的值域.
例2.已知函数 =
(1)画出函数图象;
(2)求 的值
(3)求当 时,求 的值;
例3作出下列函数的图像;
(1) (2)
【课堂检测】
1.函数 的定义域为 ,则 的图像与直线 的交点个数为.
2.函数 的图象如图所示,填空:
2.函数 的图象与其定义域、值域的对应关系:函数 的图象在 轴上的射影构成的集合对应着函数的,在 轴上的射影构成的集合对应着函数的.
3.函数 与 的图象相同吗?并画出函数 的图像.
4.画出下列函数的图象:
(1) ;(2) ;
(3) , ;(4) .
【例题讲解】
例1.画出函数 的图象,并根据图象回答下列问题:
§2.1.1函数的概念与图像(3)
【教学目】
1.理解函数图象的意义;
2.能正确画出一些常见函数的图象;
3.会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势;
4.从“形”的角度加深对函数的理解.
【课前导学】
1.函数的图象:将函数 自变量的一个值 作为坐标,相应的函数值作为坐标,就得到坐标平面上的一个点 ,当自变量,所有这些点组成的图形就是函数 的图象.
1.2.1函数的概念导学案
x ,输入“加工器” f (对 x 实行加工程序 f )后,生产出来产品 y 。 y f x 的
意义是: y 就是 x 在关系 f 下的对应值,而 f 是“对应”得以实现的方法和途径。 如 f x 2 x 6, f 表示 2 倍的自变量再加上 6,如 f 3 2 3 6 12 。“定义 域”就是一堆待加工的原材料,“对应法则”就是加工的程序(方法)。将每一个 原材料 x 经过加工的到相应的产品, 将所有的原材料经过加工得到的全部产品 收集起来,所形成的集合就是函数的值域,“值域”是产品,是被动生成的。函 数的定义域、对应法则、、值域被称为函数的三要素,其实起决定作用的只是 函数的定义域和对应法则。 对于“原料→加工→产品”的生产流程,显然“原料”是重要的。巧妇难为无 米之炊, “米”一定是要有的, 即函数的定义域不能是空集。 而且有什么样的“米”, 有多少“米”,一般都会影响整个加工过程。由此可见,对于函数而言,“米”是 重要的。故要研究函数先看“米”,有人甚至说:“定义域是函数的灵魂!” 从产品的角度来看,既要有“米”,还要看加工的流程工艺(方法)。不
,与 x 值相对应的 y 值叫做 .
2. y x ( x 0) 是函数吗?
3. y
x - 3 1 x 是函数吗?
1
4. 问题 1:下列给出的四个图形中,是函数图象的是: (
)
A、①
B、①③④
B、①②③
D、③④
5.下列对应是否是 A 到 B 的函数 A:A=Z,B= N ,f:x→y=|x| B:A={0,1,2,4},B={0,1,4,9,64},f:x→y=(x-1) C:A=B=R,f:x→y=
【强调】①值域由_________和______________唯一确定;f(x)是函数符号,f 表示对应 关系,f(x)表示 x 对应的函数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等.函数除了可用符号 f(x)表示外, 还可用 g(x),F(x)等表示. ②常见函数的定义域与值域. 函数 一次函数 二次函数 解析式 定义域 值域
函数的概念导学案
课题函数的概念课型新授课课时 1学习目标1.在初中函数概念的基础上,能够通过观察、辨析几个实际的例子,得出“函数的概念”,并能用准确的数学语言进行描述。
2. 通过多个具体函数的例子,弄懂函数的三要素,学会确定一个函数的方法。
3. 通过对实例的自主学习,感受自主学习的乐趣合作探究随堂手记【课前预习区】同学们请先精读一遍教材P15-P16,用红色笔对重点内容及有疑问的地方进行勾画;再针对导学案二次阅读并解决课前预习区中的问题问题1.阅读教科书第15页实例1后回答:(1)你能得出炮弹飞行1s,5s,10s,20s时距地面多高吗?(2)t和h的范围分别是什么?试把其范围用描述法表示分别记成集合A和B。
A= ,B=(3)集合A和B中的元素存在着什么样的对应关系?试将其描述出来写在下面。
问题2.阅读课本P15实例(2)并观察图1.2-1后思考:(1)你能从图中看出哪一年臭氧层空洞面积最大吗?最大面积是多少?(2)t和s的范围分别是什么?试把其范围用描述法表示分别记成集合A和B。
A= ,B=(3)集合A和B中的元素存在着什么样的对应关系?试将其描述出来写在下面。
问题3.阅读课本P16实例(3)并观察表1-1后思考:恩格尔系数和时间(年)之间的关系是否和前两个实例中的两个变量之间的关系相似?如何描述这一关系?问题4.以上三个实例的共同特点是什么?概括后写在下面:【新知探究区】一、概念生成函数的概念:问题5.在函数的概念中,你认为哪些是关键词?怎样理解这个概念?概念理解: 判断下列对应是否构成函数?二、函数概念的应用例1 下列图象具有函数关系的是_____.A B CD E F变式训练已知A ={x|0≤x≤4},B ={y|1≤y≤2},下列图形中不能表示从A 到B 的函数的是( )A B C D 思考:以上图形中表示以A 为定义域,以B 为值域的函数的是( )三、函数符号f(x)的理解和应用 2(3) ,()3f f -(1)求的值;的值时,求)当()1-()(0a 2a f a f >变式训练我的收获:,213)(2+++=x x x f 、已知例(4),0()(1)(-3),(1).(4),0x x x f x f f f a x x x +≥⎧=+⎨-<⎩已知函数(分段函数)求:,的值当堂检测:(1)已知2()23f x x x =-+,求()()()()1,a ,1,0-a f f f f 的值。
函数的概念导学案
函数的概念导学案(总3页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--函数的概念导学案【使用说明与学法指导】预习教材第44、45页,对比初中所学的函数概念,找出本节新学到函数概念的相同与不同之处,并对新学到的定义与规定仔细分析,并且熟记与掌握。
【学习目标】1、理解函数的概念;2、理解函数的定义域和值域。
3、理解函数的两个要素。
4、了解表示函数的一些记号。
预习案一、知识回顾初中阶段,我们学到的函数概念:_____________________________________________________________________________________________________________________ _____________________________________________________________________ __________________。
二、函数概念1、学习了集合的定义之后,对函数做出了如下定义:_____________________________________________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _______________________________________。
3.1.2函数的概念及表示导学案
即墨二中高一数学导学案 时间:2019.10 编写人:大师兄 审核人: 编号: 课题:函数的表示法【学习目标】(1)掌握函数的三种表示方法:解析法、图象法、列表法;(2)会根据不同的需要选择恰当的方法表示函数;(3)(3)会画简单的函数图象;(4)了解分段函数的概念,能画分段函数的图象。
【学习重难点】重点:掌握函数的三种表示方法:解析法、图象法、列表法 难点:会求简单的函数解析式,会画简单的函数图象课前预习案函数的表示方法解析法,就是用____________表示两个变量之间的对应关系, 图象法,就是用____________表示两个变量之间的对应关系, 列表法,就是用____________表示两个变量之间的对应关系,课堂探究案例1:某种笔记本的单价是5元,买{}()5,4,3,2,1∈x x 个笔记本需要y 元。
试用函数的三种表示法表示函数()x f y =思考1:结合例4比较函数的三种方法,它们各自的优点是什么? 解析法:列表法:图象法:例2:作出下列函数的图象并求出函数的定义域、值域(1)x y 8= (2)1+-=x y (3)762+-=x x y变式1:作出下列函数的图象并根据图象求出值域(1)[)+∞∈=,2,2x x y (2)[)2,2,22-∈+=x x x y例3:画出函数x y =的图象分段函数:有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数。
思考2:结合例3思考,分段函数是一个函数还是几个函数?思考3:分段函数的定义域、值域是各段函数定义域、值域的并集吗? 注意:分段函数的书写方式。
变式2:画出函数2-=x y 的图象例4:给定函数()()()R x x x g x x f ∈+=+=,1,12(1)在同一直角坐标系中画出函数()()x g x f ,的图象;(2)R x ∈∀,用()x M 表示()()x g x f ,中的较大者,记为()()(){}x g x f x M ,m ax =,请分别用图象法和解析法表示函数()x M变式3:给定函数()()()R x x x g x x f ∈-=+-=,1,12(1)在同一直角坐标系中画出函数()()x g x f ,的图象;(2)R x ∈∀,用()x m 表示()()x g x f ,中的较小者,记为()()(){}x g x f x x m ,m in =,请分别用图象法和解析法表示函数()x m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C D .已知函数一个面积为2
100cm的等腰梯形,上底长为cm
x,下底长为上底长的3倍,则把它的高的函数为( ).
()()()) >>>
50
0;(B) y=100;(C) y=0; (D) y=.
x x x x x
第 3 页 共 4 页 第 4页 共4页
类型2.由原函数求复合函数,即由()f x 求(())f g x . 例3.已知 2()1f x x =-,求2()f x x + 、1
()f x .
类型3.由复合函数求原函数即由(())f g x 求()f x 例4
.21)f x =+()f x .
类型4.对于变量出现互为相反数,倒数的情况时,常用解方程组法. 例5.()f x 满足.()2()32f x f x x --=+,求()f x . 探究三 图象法
问题1. 图象法的优点有哪些? 问题2. 说出你对分段函数的理解 例6. 设22, (41)(), (12)2, (24)x x f x x x x x +-≤-⎧⎪
=-<<⎨⎪≤≤⎩
≤
(1)((1))f f -=_______________ ;
(2)若()3f x =则x =_________;
(3)求函数()f x 的定义域,值域,并画出函数图象.
探究四 常见含有绝对值的函数的图象的画法 例7.画出函数()f x x =的图象.
变式1.画出函数()1f x x =-的图象.
变式2.画出函数()12f x x x =-++的图象.
变式3.画出函数2()23f x x x =--的图象. 变式4.画出函数2()23f x x x =--的图象. 探究五 映射
问题1.映射的概念是什么?
问题2.函数与映射有哪些区别与联系?
例8.从集合A 到集合B 一些对应法则,哪些是映射?
(1)A ={P | P 是数轴上的点},B =R ; 对应关系f :数轴上的点与它所代表的实数对应 (2)A ={三角形},B ={圆};对应关系f :每个三角形都有对应它的内切圆;
(3)A ={ P | P 是平面直角体系中的点},{(,)|,}B x y x R y R =∈∈;对应关系f :平面直角坐标系中的点与它的坐标对应;
(4)A ={建始一中高一班级},B = {建始一中高一学生}.对应关系f :每个班级都对应班里的学生;
巩固案
A 级
1 某商场新进了10台彩电,每台售价3000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.
2. 已知一次函数)(x f y =满足()46f f x x ⎡⎤⎣⎦=+,则()f x =________.
3.下列曲线中,能表示函数)(x f y =的有 个
.
B 级
4.已知二次函数()f x 满足(0)=0f ,且对任意x ∈R 总有(+1)=()++1f x f x x ,求()f x . C
级
5. 动点P 从单位正方形ABCD 顶点A 开始运动一周,设沿正方形ABCD 的运动路程为自变量x ,写出P 点与A 点距离y 与x 的函数关系式.。