八年级数学频数与频率PPT优秀课件

合集下载

初中数学八年级下册《7.3 频数和频率》PPT课件 (2)

初中数学八年级下册《7.3 频数和频率》PPT课件 (2)

.3 频数和频率
在统计数据时,候选对象出现的次数有多有少, 或者说出现的频繁程度不同,
某个对象出现的次数称为频数,
小频组数讨与论总,代次表数回的答:比值称为频率.
1.每个候选人得票的频数指的是什么? 2.每个候选人对象得票的频率指的是什么?
国家环保总局公布的47个重点城市某日的空气质量如下:
城市 郑州 武汉 长沙 广州 深圳 珠海 汕头 湛江 南宁 桂林 北海
初中数学 八年级(下册)
7.3 频数和频率
.3 频数和频率
为了增强环保意识,学校规定每个班级选举1 名学生当“环保卫士”.八年级(1)班有4名同学 参加竞选,由全班同学投票产生,办法如下: 1.每人在选票上写1名自己认为最合适的候选人姓 名,并将选票投入票箱; 2.由全班推选3位同学分别唱票、监票、记录; 3.填写表格,得票最多的同学当选“环保卫士”.
填1写50表格16:4 168 153 158 142 161 157 154 147
脉搏次数x (次/分)
130≤x<140
140≤x<150
150≤x<160
160≤x<170
划记
频数
频率
.3 频数和频率
通过本节课的学习,你有哪些收获?
污染 指数 海口
49
85 成都 114
99 重庆 174
107 贵阳 96
119 昆明 74
94 拉萨 76
78 西安 128
67 兰州 128
51 西宁 97
111 银川 65
52
乌鲁 木齐 205
62 北京 64
天津 石家庄 秦皇岛
81
98
73
太原 125
呼和浩 特

《频数与频率》PPT课件 (共13张PPT)

《频数与频率》PPT课件 (共13张PPT)

则14岁的频数为_____,频率为 ____。 2.一组数据中共有40个数,其中23出现的频率为 0.3,则这40个数中,23出现的频数为____ 。 3.把50个数据分成六组,其中有一组的频数是14, 有两组的频数是10,有两组的频率是0.14,则另一 组的频数是____ ,频率是____。
4.在对某班的一次测验成绩 进行统计中,各分数段的 人数如图所示(分数取正 整数,满分100分). (1)该班有多少名学生. (2)69.5~79.5分这一组 的频数是多少?频率是多 少?
6.2 频数与频率
学习目标
(1)能求出一个事件发生的频数、频率 (2)会列频数、频率分布表
你喜欢看篮球比赛吗?你喜欢的篮球明星是谁? (其中A代表姚明,B代表易建联,C代表科比,D 代表乔丹).
A
B
C
D
小明调查了某班50名 同学最喜欢的篮球明 星,结果如表: (其 中A代表姚明,B代表 易建联,C代表科比, D代表乔丹).
小明调查了某班50名 同学最喜欢的篮球明 星,结果如表: (其 中A代表姚明,B代表 易建联,C代表科比, D代表乔丹).
A B A B C
A A A A B
B A B C A
C C A D A
D B C A C
A C D A C
B A A A D
A A A C A
A B C D A
C C D A C
A B A B C
A A A A B
B A B C A
C C A D A
D B C A C
A C D A C
B A A A D
A A A C A
A B C D A
C C D A C
A
B

频数与频率课堂PPT(1).ppt

频数与频率课堂PPT(1).ppt
15
6
填表:
篮球明星 学生数
频数
频率
A B C D 合计
正正正正 正 正正 正
50
23
0.46
8
0.16
13
0.26
6
0.12
50
1
ห้องสมุดไป่ตู้由上表你有何发现?
频数之和等于总次数,频率之和等于1
7
统计活 动
一次掷两枚硬币,用A,B,C分别代表可能发生的三种情况: A.两枚硬币都是正面朝上 B.两枚硬币都是反面朝上 C.一枚硬币正面朝上,另一枚硬币反面朝上. 每次掷币都发生A,B,C三种情形中的一种,并且只发生一种, 现在全班同学每人各掷两枚硬币一次. 并将掷币统计结果记录下来.
3
(3)众数在__3_,_4_组,中位数在_4__组. 4
4.95—5.45 5.45—5.95 5.95—6.45
频数
1a
2 6
b6
频率 0.05
e0.10 0.30
0.f30
5 6.45—6.95 5c 0.25
合计
20d
g1
12
小结
本节课我们主要学习了频数和频率,并会在具体问题 中计算频数和频率.在计算频数时要认真观察所给数 据,不能漏数;频数无单位;一组数据中所有频数之 和等于数据组中数据的各数总和;频率之和等于1.
在这10次掷币中,“正面朝上”的频数是4,“反面朝上”的频数是 6;“正面朝上”的频率是0.4,“反面朝上”的频率是0.6.
可以发现,“正面朝上”和“反面朝上”的频数之和为试验总次数; 而这两种情况的频率之和为1.
一般地,如果重复进行n次试验,某个试验结果出现的次数m称为 这个试验结果在这n次试验中出现的频数,而频数与试验总次数的 比m/n称为这个试验结果在这n次试验中出现的频率。

《频数与频率》第一课时上课课件

《频数与频率》第一课时上课课件

23 = 0.46 50
频数,频率和总次数之间的公式:
频率=
频数
总次数
频数= 总次数 × 频率 总次数=
频数 频率
填表: 篮球明星 学生数 频数 频率 0.46 0.16 0.26 0.12 1
A B C D 合计
正正正正 正 正正 正 50
23
8 13 6 50
由上表你有何发现? 频数之和等于总次数,频率之和等于1.
其中:A代表姚明,
B代表孙悦,
C代表易建联,D代表王治郅
(1) 根据上面的结果,你能很快说出该班 同学最喜欢的篮球明星吗? (2) 你认为小明的数据表示方式好不好? 你能设计出一个比较好的表示方式吗?
小丽根据小明的结果制成了下面的图表,你 能从中迅速判断出该班同学最喜欢的篮球明 星吗 ?
篮球 明星 A(姚明) 学生数 正正正正 23 8
5.3.1 频数与频率
你喜欢看篮球比赛吗?
你最喜欢的中国篮球明星是谁?
小明调查了八(1)班50位同学最喜欢的 篮球明星,结果如下 : A B A B C A A A A B B A B C A C D C B A C D A A C A C D A C B A A A A B A A C A C D D A A C C D A C
小结 :
频数: 每个数据出现的次数。
频率: 每个数据的次数与总次数的比值。 频数 频率= 总次数
频数之和等于总次数,频率之和等于1。
学生人数 25 20 15 10 5
B(孙悦) 正
C(易建联) 正正
D(王治郅) 正
13
6
0 A B C D
明星
篮球 明星 A B C D 正正正正 正 正正 正

数学:5.3《频数与频率》课件(北师大版八年级下)

数学:5.3《频数与频率》课件(北师大版八年级下)

猜一猜
1

谁的使用频率高一些?
小组活动
2、你能设计一个简单的调查方案,粗略
地估计一下它的使用频率吗?
有时我们可以用部 分的水平来估计整 体的水平,而且当 部分取的越大,所 反映出来的信息也 就越精确,从而也 就更能反映出整体 的水平。
一节课下来: • 我最大的收获是______________ • 我对自己的表现感想如何_____________
• 我对同伴的感想如何________________
• 我从同学身上学到了________________
• 你能用本节课的知识设计一个问题吗?
; 诚信在线
bgk693vgs
那个时候的父亲在他的面前也越发的沉默起来,只问他“你接下来要怎么办?” 他不屑一顾的回道“随便怎样,你看着办吧!”反正从来都不是他说了算的! 父亲难得好脾气地跟不思进取的他说些话,他的话语中总是变得越发的沉寂起来,如同他的人一般“我看,这个书你也别念了,你考的 那些分数我也看过了,也没什么学校能够录取你的,让你在家跟我干农活估计你也干不了,你去学门手艺吧,到时候也能混口饭吃!” 父亲说完这个,便整个的沉寂下去了。 牛爱书在那样的一种时刻,忽然感到有一种心慌的感觉,那种心慌没有缘由也无从知晓,但就是让他感到心慌起来,但是他不愿意承认 那样的一种心慌,仍是无所谓的表示“你说什么就是什么吧!”
义务教育课程标准实验教课书
八年级下册
第五章 第三节
频数与频率
小组活动
你能把刚才的数据用适当 的需要作出判 断和选择的时候,我们 要善于用数学的眼光来 看待它,对它产生的数 据信息能够用整理、统 计的方法处理它,这样 我们才能够作出科学而 合理的评判。
父亲在一个月之后跟他说“我给你找好了,咱们村的一家人在街上开了一家修理汽车的店,男孩子学个修理汽车的也挺好,现在开车的 人也越来越多,你以后混的好便自己去争取开家店,混不好了每个月挣些养活自己的钱也是没问题的。”

8年级数学 苏科版下册课件第7单元 《7.3频数和频率》

8年级数学 苏科版下册课件第7单元 《7.3频数和频率》
1.选举“环保小卫士”用的是哪种调查方法?
2.每位候选人得票的频数指的是什么?
3.每位候选人得票的频率指的是什么?
4.你认为,通过选举产生“环保小卫士”与指定某同学为“环保小卫士”这两种方法,哪种更好?
议一议:
频数是统计出的某一对象出现的次数,而频率则是某一对象的频数与总次数的比值.频率更能直接反映出某一对象出现的频繁程度.
统计中各对象的频率的和是多少?
各统计对象的频数之和等于总数.
各统计对象的频率之和等于1.
候选人
唱票记录
得票数
得票率
王小明
杨丽
方舟
10
18
12
0.25
0.45积为频数
例学校要了解学生每天收看电视的时间,以下为抽样调查28名学生所得的数据: (单位:h)
1
2
2
2
3
苏科版数学八年级下册
第7章 第3节
频数和频率
1、理解频数和频率的概念,会利用频数和频率解决实际问题。
2、能根据数据处理的结果作出合理的判断和预测。
3、体会数形结合思想在统计学中的应用价值。
条形统计图用宽度相同的条形的高度来描述各统计项目的数据; 扇形统计图用圆中各扇形的面积来描述各统计项目占总体的百分比; 折线统计图用折线描述数据的变化过程和趋势。
课本练一练
1、小刚将一个骰子随意抛了10次。出现的点数分别为6、3、1、2、3、4、3、5、3、4。在这10次中“4”出现的频数是_______,3出现频率是 ,
0.4
2
0.6
5
2、某人调查25个人对某种商品是否满意,结果有15人满意,有5人不满意,有5人不好说,则满意的频率为 ,不满意的频数为 。

《频数与频率》课件2(18张PPT)(北师大版八年级下)

《频数与频率》课件2(18张PPT)(北师大版八年级下)
(3)确定分点;
(4)列频数分布表; (5)画频数分布直方图.
2.如图所示,是某晚报“百姓热线”一周内接到热线 电话的统计图,其中有关环境保护问题的电话最多, 共70个,请回答下列问题:
(1)本周“百姓热线”共接到热线电话多少个?
(2)有关道路交通问题的电话有多少个?
奇闻逸事 其他投诉 道路交通 环境保护 房产建筑 表扬建议
绘制连续型频数分布直方图,决定组距和 组数是关键.究竟分多少组,需要视数据 的多少而定,分组时,一般要求各组的组 距相等.分点的小数数位比数据最大小数 位数要多一位.
启东:P105-107
做一做:填 表示写出下来表:,并将上述数据用适当的统计图表
身 141 142 143 144 145 146 147 148 149 150 151 高
学 生 数
身 152 153 154 155 156 157 158 159 160 161 162 高
学 生 数
身 163 164 165 166 167 168 169 170 171 172 高
年收入(万元)
4.8 6 7.2 9 10
被调查的消费者人数(人) 200 500 200 70 30
②将消费者打算购买小车的情况整 人数/ 人 360
理后,作出频数分布直方图的一部
分(如图4).注:每组包含最小值不 200 包含最大值,且车价取整数.请你 120 根据以上信息,回答下列问题: 40
141 165 144 171 145 145 158 150 157 150 154 168 168 155 155 169 157 157 157 158 149 150 150 160 152 152 159 152 159 144 154 155 157 145 160 160 160 158 162 155 162 163 155 163 148 163 168 155 145 172

八年级下频数与频率课件

八年级下频数与频率课件
分析中。
在数据分析中的应用
数据分析是频数与频率应用的重要领域之一。
通过计算频数和频率,可以对数据进行分类、排序和组织,以便更好地理解数据。
频数与频率还可以用于识别数据的异常值和离群点,以及进行数据的可视化呈现, 例如直方图和饼图。
在实际生活中的应用
频数与频率在现实生活中有着广泛的 应用。
在医学研究中,频数与频率可以用于 描述疾病的发病率和分布情况,从而 为预防和治疗提供依据。
频数反映的是数据的客观情况,不受人为因素影 响。
可量化性
频数可以用具体数值表示,如出现次数、占比等 。
可比性
在不同数据集中,相同事件的频数可以进行比较 ,以评估其相对重要性或影响程度。
频率的特性
主观性
频率是人们对数据分布的描述,具有一定的主观性。
连续性
频率可以是连续变化的,表示数据分布的宽窄程度。
数据清洗
去除异常值和重复数据,确保 数据质量。
使用专业软件
采用专业的统计软件进行频数 和频率的计算,以提高准确性

多次测量求平均值
对同一数据多次测量,取平均 值作为最终结果,以减小误差

感谢您的观看
THANKS
频数与频率的关系
01
频数是频率的基础
频数是实际观察到的数据值出现的次数,而频率则是基于频数计算出来
的相对指标。
02
频率是频数的归一化
通过将频数除以总数并乘以100%,可以将频数归一化为频率,以便于
比较不同组数据的相对重要性。
03
频数与频率的关联
在数据分组和计数时,频数和频率是相互关联的,可以通过一个计算另
频数与频率的误差分析
频数误差
01

频数与频率(共13张PPT)

频数与频率(共13张PPT)

频数,频率和总个数之间的公式:
频数 频率= 总次数
频数= 频率 X 总次数
总次数=
频数 频率
第8页,共13页。
练习 :
1.某班60名同学中,身高为1.50米—1.65米的 人数为12人,那么这组数据的频数是___,频率 是____. 2.某班学生参加考试,分数是60-70分的组的人 数20,该组的频率是0.20,则这班有__人.
总体与个体
抽样与样本
A A B C D A B A A C A B 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
e=__,f=__,g=____. 我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率.
(2)该问题的总体是_______;
第3页,共13页。
☞ 领悟新知 频数与频率
例:初二(1)有学你生5喜0人欢,一次看测足试成球绩如比下表赛: 吗?你喜欢的足球明星
是谁? 练习:为了了解某种小麦麦穗的长度,科技人员抽测实验田麦穗 的长度,列表如下:
中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
第2页,共13页。
☞ 回顾与思考
总体与个体 抽样与样本
为了一定的目的而对考察对象进行全面调查,称为普查,其中所
考察对象的全体称为总体,而组成总体的每一个考察对象称为 个体.
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其 中从总体中抽取部分个体叫做总体的一个样本.
收集数据_随机抽样: 广泛性_被调查的对象不得太少; 代表性_被调查的对象随意抽取的,没有人为的因素; 真实性_调查的数据是真实的.

8年级数学苏科版下册课件第7单元 《7.3频数和频率》

8年级数学苏科版下册课件第7单元 《7.3频数和频率》
0.3
题型四 表格中频数与频率的计算
1.某班女生的体温测试被分成了三组,情况如表所示,则
6
表中m的值是_______

第一组
第二组
第三组
频数
6
8
m
频率
p
q
30%
题型四 表格中频数与频率的计算
2.取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”
四个等级进行统计,绘制了如下尚不完整的统计图表.
x/min
频数(通话
次数)
0<x≤5
5<x≤10
10<x≤15
15<x≤20
20
16
9
5
2. 一次数学测试后,某班40名学生的成绩被分为5组,第1~4组
的频数分别为12,10,6,8,则第5组的频率是( A )
A.0.1
B.0.2
C.0.3
D.0.4
3.将数据83,85,87,89,84,85,86,88,87,90
0.2
根据以上信息解答下列问题:
学生孝敬父母情况统计表
选项
频数
频率
A
m
0.15
B
60
p
C
n
0.4
D
48
0.2
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
解:这次被调查的学生有48÷0.2=240(人).
学生孝敬父母情况统计表
选项
频数
频率
A
m
0.15
B
60
p
C
n
0.4
D
48
0.2
96
人. 解:1 600×0.25=400(人).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小组活动
2、你能设计一个简单的调查方案,粗略 地估计一下它的使用频率吗?
有时我们可以用部分的水平来估计整 体的水平,而且当部分取的越大,所 反映出来的信息也就越精确,从而也 就更能反映出整体的水平。
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
义务教育课程标准实验教课书 八年级下册
频数与频率
小组活动
你能把刚才的数据用适当 的形式表示出来吗?
在生活中当我们遇到一 些实际问题需要作出判 断和选择的时候,我们 要善于用数学的眼光来 看待它,对它产生的数 据信息能够用整理、统 计的方法处理它,这样 我们才能够作出科学而 合理的评判。
猜一猜
相关文档
最新文档