21.1 一元二次方程PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.动脑思考,巩固训练
2.根据下列问题,列出关于 x 的方程,并将所列 方程化成一元二次方程的一般形式.
(1)4 个完全相同的正方形的面积之和是 25,求 正方形的边长 x;
(2)一个矩形的长比宽多 2,面积是 100,求矩形 的长 x;
(3)把长为 1 的木条分成两段,使较短一段的长 与全长的积,等于较长一段的长的平方,求较短一段的 长 x.
1.创设情境,导入新知
思考以下问题如何解决: 1.要设计一座高 2 m 的人体雕像,使它的上部 (腰以上)与下部(腰以下)的高度比,等于下部与全 部(全身)的高度比,求雕像的下部应设计为高多少米?
1.创设情境,导入新知
思考以下问题如何解决: 2.有一块矩形铁皮,长 100 cm,宽 50 cm,在它 的四角各切去一个同样的正方形,然后将四周突出部分 折起,就能制作一个无盖方盒,如果要制作的无盖方盒 的底面积为 3 600 cm2,那么铁皮各角应切去多大的正方 形?
4.动脑思考,例题解析
例 将方程 3x(x - 1)= 5(x +2)化成一元二次方程 的一般形式,并写出二次项系数、一次项系数及常数 项.
5.动脑思考,巩固训练
1.将下列方程化成一元二次方程的一般形式,并 写出其中的二次项系数、一次项系数和常数项.
(1)5x2 -1= 4x; (2)4x2 = 81; (3)4x(x + 2 )=25; (4)(3x-2)(x+1)=8x -3.
x 2 + 2x - 4 = 0 x 2 - 75x + 350 = 0 x 2 - x - 56 = 0 等号两边都是整式,只含有一个未知数,并且未知 数的最高次数是 2 的方程,叫做一元二次方程.
3.细心观察,概念辨析
辨别下列各式是否为一元二次方程?
4x2 = 81
√
2(x2 -1)= 3y
×
6.归纳小结
(1)本节课学了哪些主要内容? (2)一元二次方程的概念是什么? (3)如何将一元二次方程转化为一般形式,一般形 式包括哪些项?
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
3x(x - 1)= 5(x +2)
√
2x2 + 3x - 1
×
关于 x 的方程 mx2 - 3x + 2 = 0 (m≠0) √
3.细心观察,概念辨析
一般地,任何一个关于 x 的一元二次方程,经过整 理,都ห้องสมุดไป่ตู้化成如下形式:
ax2 + bx + c = 0 (a≠0) 这种形式叫做一元二次方程的一般形式.其中 ax2 是二 次项,a 是二次项系数;bx 是一次项,b 是一次项系 数;c 是常数项.
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
1.创设情境,导入新知
思考以下问题如何解决: 3.要组织一次排球邀请赛,参赛的每两队之间都 要比赛一场,根据场地和时间等条件,赛程计划安排 7 天,每天安排 4 场比赛,比赛组织者应邀请多少个队参 加比赛?
2.细心观察,归纳定义
思考:观察上述三个方程,它们与一元一次方程有 什么共同点?有什么不同点?
九年级 上册
21.1 一元二次方程
课件说明
• 本课是在学生已经学习一元一次方程、分式方程的基 础上,进一步学习一元二次方程的有关概念.
课件说明
• 学习目标: 1.理解一元二次方程的概念; 2.掌握一元二次方程的一般形式,正确认识二次项 系数、一次项系数及常数项.
• 学习重点: 一元二次方程的概念.