sift算法详解及应用 特别详细版

合集下载

SIFT算法的介绍和应用

SIFT算法的介绍和应用

SIFT算法的介绍和应用SIFT(Scale-Invariant Feature Transform)算法是一种用于图像特征提取和匹配的算法,由David Lowe于1999年首次提出。

SIFT算法具有尺度不变性和旋转不变性,能够在不同尺度和旋转角度下检测并描述图像中的局部特征。

因此,SIFT算法在计算机视觉领域广泛应用于图像拼接、目标识别、图像检索、三维重建等任务。

尺度空间极值点检测是SIFT算法的关键步骤之一、该步骤通过在不同的尺度下使用高斯差分金字塔来检测图像中的关键点。

SIFT算法使用了DoG(Difference of Gaussians)来近似尺度空间的Laplacian of Gaussian(LoG)金字塔。

通过对高斯金字塔中不同尺度上的图像之间进行差分操作,我们可以得到一组差分图像。

SIFT算法通过在这些差分图像中找到局部最小值和最大值,来检测图像中的关键点。

关键点精确定位是SIFT算法的另一个重要步骤。

在粗略检测到的关键点位置附近,SIFT算法利用高斯曲率空间来精确定位关键点。

具体做法是,在检测到的关键点位置处通过Taylor展开近似曲线,并通过求解偏导数为零的方程来计算关键点的位置。

方向分配是SIFT算法的下一个步骤。

该步骤用于给每个关键点分配一个主方向,以增强特征的旋转不变性。

SIFT算法在关键点周围的像素中计算梯度幅值和方向,然后生成一个梯度方向直方图。

直方图中最大的值对应于关键点的主方向。

特征描述是SIFT算法的另一个核心步骤。

在这个步骤中,SIFT算法根据关键点周围的梯度方向直方图构建一个128维的特征向量,该特征向量描述了关键点的局部特征。

具体做法是,将关键点附近的像素划分为若干个子区域,并计算每个子区域内的梯度幅值和方向,然后将这些信息组合成一个128维的向量。

特征匹配是SIFT算法的最后一步。

在这个步骤中,SIFT算法通过比较特征向量之间的欧氏距离来进行特征匹配。

图像识别中的SIFT算法实现与优化

图像识别中的SIFT算法实现与优化

图像识别中的SIFT算法实现与优化一、SIFT算法介绍SIFT算法(Scale-Invariant Feature Transform)是一种用于图像对比和匹配的局部特征提取算法,由David Lowe于1999年开发提出并持续改良。

SIFT算法可以检测出具有旋转、缩放、光照变化等不变性的图像特征点,被广泛应用于计算机视觉领域,如图像匹配、图像检索、物体识别等。

SIFT算法主要分为四步:尺度空间极值检测、关键点定位、关键点方向确定和描述子生成。

尺度空间极值检测:SIFT算法通过构建高斯金字塔来检测尺度下的极值点。

在高斯金字塔中,首先对原始图像进行下采样,生成一组不同尺度的图像。

然后在每个尺度上利用高斯差分来检测极值点,满足以下条件的点即为极值点:周围像素点中的最大值或最小值与当前像素点的差值达到一定阈值,而且是在尺度空间上达到极值。

关键点定位:对于极值点的定位,SIFT算法采用了一种基于拟合精细的方法来定位真实的关键点。

SIFT算法通过在尺度空间中计算极值点的DoG(高斯差分)的Hessian矩阵,来估计关键点的尺度和位置。

如果Hessian矩阵的行列式和迹符号都满足一定的条件,则认为该点为关键点。

关键点方向确定:在确定关键点的位置和尺度之后,SIFT算法还需要确定关键点的主方向。

该方向是通过计算关键点周围像素点的梯度方向和大小,并在组合后的梯度图像上寻找最大梯度方向得到的。

这个方向是在许多方向中确定的,而描述符是相对于主方向定义的。

描述子生成:最后,SIFT算法采用一个高维向量来描述关键点,并且具有不变性。

该向量的计算是在相对于关键点的周围图像区域内,采集图像梯度方向的统计信息来完成的。

描述符向量包含了关键点的位置、主方向,以及相对于主方向的相对性质。

二、SIFT算法优化思路尽管SIFT算法已经被广泛使用,但是由于算法复杂度和内存消耗等问题,使得在大数据和实时应用场景下,SIFT算法的运行速度和效果表现都有巨大限制。

(完整版)SIFT算法原理

(完整版)SIFT算法原理

3.1.1尺度空间极值检测尺度空间理论最早出现于计算机视觉领域,当时其目的是模拟图像数据的多尺度特征。

随后Koendetink利用扩散方程来描述尺度空间滤波过程,并由此证明高斯核是实现尺度变换的唯一变换核。

Lindeberg ,Babaud 等人通过不同的推导进一步证明高斯核是唯一的线性核。

因此,尺度空间理论的主要思想是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,对这些序列进行尺度空间特征提取。

二维高斯函数定义如下:222()/221(,,)2x y G x y e (5)一幅二维图像,在不同尺度下的尺度空间表示可由图像与高斯核卷积得到:(,,(,,)*(,)L x y G x y I x y (6)其中(x,y )为图像点的像素坐标,I(x,y )为图像数据, L代表了图像的尺度空间。

σ称为尺度空间因子,它也是高斯正态分布的方差,其反映了图像被平滑的程度,其值越小表征图像被平滑程度越小,相应尺度越小。

大尺度对应于图像的概貌特征,小尺度对应于图像的细节特征。

因此,选择合适的尺度因子平滑是建立尺度空间的关键。

在这一步里面,主要是建立高斯金字塔和DOG(Difference of Gaussian)金字塔,然后在DOG 金字塔里面进行极值检测,以初步确定特征点的位置和所在尺度。

(1)建立高斯金字塔为了得到在不同尺度空间下的稳定特征点,将图像(,)I x y 与不同尺度因子下的高斯核(,,)G x y 进行卷积操作,构成高斯金字塔。

高斯金字塔有o 阶,一般选择4阶,每一阶有s 层尺度图像,s 一般选择5层。

在高斯金字塔的构成中要注意,第1阶的第l 层是放大2倍的原始图像,其目的是为了得到更多的特征点;在同一阶中相邻两层的尺度因子比例系数是k ,则第1阶第2层的尺度因子是k ,然后其它层以此类推则可;第2阶的第l 层由第一阶的中间层尺度图像进行子抽样获得,其尺度因子是2k ,然后第2阶的第2层的尺度因子是第1层的k 倍即3k 。

SIFT特征提取算法总结

SIFT特征提取算法总结

SIFT特征提取算法总结⼀、综述Scale-invariant feature transform(简称SIFT)是⼀种图像特征提取与匹配算法。

SIFT算法由David.G.Lowe于1999年提出,2004年完善总结,后来Y.Ke(2004)将其描述⼦部分⽤PCA代替直⽅图的⽅式,对其进⾏改进。

SIFT算法可以处理两幅图像之间发⽣平移、旋转、尺度变化、光照变化情况下的特征匹配问题,并能在⼀定程度上对视⾓变化、仿射变化也具备较为稳定的特征匹配能⼒。

⼆、SIFT特征提取算法SIFT算法⾸先在尺度空间进⾏特征检测,并确定关键点的位置和关键点所处的尺度,然后使⽤关键点邻域梯度的主⽅向作为该点的⽅向特征,以实现算⼦对尺度和⽅向的⽆关性。

SIFT算法提取的SIFT特征向量具有如下特性:a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视⾓变化、仿射变换、噪声也保持⼀定程度的稳定性。

b) 独特性好,信息量丰富,适⽤于在海量特征数据库中进⾏快速、准确的匹配。

c) 多量性,即使少数的⼏个物体也可以产⽣⼤量SIFT特征向量。

d) ⾼速性,经优化的SIFT匹配算法甚⾄可以达到实时的要求。

e) 可扩展性,可以很⽅便的与其他形式的特征向量进⾏联合。

⼀幅图像SIFT特征向量的⽣成算法总共包括4步:尺度空间极值检测、关键点位置及尺度确定、关键点⽅向确定、特征向量⽣成。

最后通过特征向量完成特征点的匹配。

2.1尺度空间极值检测机器⼈在环境中⾛动时,摄像机和环境中物体的相对位置会发⽣变化,导致图像上物体的特征的尺度发⽣变换。

我们希望特征具有尺度不变性,即当特征尺度变化时,特征点检测器仍然能够准确的检测出特征点及其尺度。

为满⾜以上条件,特征检测需要在多尺度空间的框架下进⾏。

尺度空间理论是检测不变特征的基础。

Witkin(1983)提出了尺度空间理论,他主要讨论了⼀维信号平滑处理的问题。

Koenderink(1984)把这种理论扩展到⼆维图像,并证明⾼斯卷积核是实现尺度变换的唯⼀变换核。

SIFT算法详解及应用

SIFT算法详解及应用

SIFT算法详解及应用SIFT(Scale-Invariant Feature Transform)是一种图像处理算法,它能够在不同尺度、旋转、光照条件下进行特征点匹配。

SIFT算法是计算机视觉领域的一个重要算法,广泛应用于目标识别、图像拼接、图像检索等方面。

首先,尺度空间极值检测是指在不同尺度上检测图像中的极值点,即图像中的局部最大值或最小值。

这样可以使特征点能够对应不同尺度的目标,使算法对尺度变化有鲁棒性。

为了实现这一步骤,SIFT算法使用了高斯差分金字塔来检测尺度空间中的极值点。

接下来是关键点定位,即确定在尺度空间极值点的位置以及对应的尺度。

SIFT算法通过比较每个极值点与其周围点的响应值大小来判断其是否为关键点。

同时,为了提高关键点的稳定性和准确性,算法还会对关键点位置进行亚像素精确化。

然后是关键点方向的确定,即为每个关键点分配一个主方向。

SIFT算法使用图像梯度方向的直方图来确定关键点的方向。

这样可以使得特征描述子具有旋转不变性,使算法在目标旋转的情况下仍能进行匹配。

最后是关键点的描述。

SIFT算法使用局部图像的梯度信息来描述关键点,即构建关键点的特征向量。

特征向量的构建过程主要包括将关键点周围的图像划分为若干个子区域,计算每个子区域的梯度直方图,并将所有子区域的直方图拼接成一个特征向量。

这样可以使得特征向量具有局部不变性和对光照变化的鲁棒性。

SIFT算法的应用非常广泛。

首先,在目标识别领域,SIFT算法能够检测和匹配图像中的关键点,从而实现目标的识别和定位。

其次,在图像拼接方面,SIFT算法能够提取图像中的特征点,并通过匹配这些特征点来完成图像的拼接。

此外,SIFT算法还可以应用于图像检索、三维重建、行人检测等领域。

总结起来,SIFT算法是一种具有尺度不变性和旋转不变性的图像处理算法。

它通过提取图像中的关键点,并构建关键点的描述子,实现了对不同尺度、旋转、光照条件下的目标识别和图像匹配。

(完整word版)SIFT算法分析

(完整word版)SIFT算法分析

SIFT算法分析1 SIFT主要思想SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。

2 SIFT算法的主要特点:a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。

b)独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配.c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。

d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。

e) 可扩展性,可以很方便的与其他形式的特征向量进行联合.3 SIFT算法流程图:4 SIFT 算法详细1)尺度空间的生成尺度空间理论目的是模拟图像数据的多尺度特征。

高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为: ),(),,(),,(y x I y x G y x L *=σσ 其中 ),,(σy x G 是尺度可变高斯函数,2)(22/21),,(22σπσσy xe y x G +-=(x,y )是空间坐标,σ是尺度坐标。

σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。

大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。

为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale —space )。

利用不同尺度的高斯差分核与图像卷积生成。

),,(),,(),()),,(),,((),,(σσσσσy x L k y x L y x I y x G k y x G y x D -=*-= DOG 算子计算简单,是尺度归一化的LoG 算子的近似。

图像金字塔的构建:图像金字塔共O 组,每组有S 层,下一组的图像由上一组图像降采样得到。

图1由两组高斯尺度空间图像示例金字塔的构建, 第二组的第一副图像由第一组的第一副到最后一副图像由一个因子2降采样得到.图2 DoG算子的构建:图1 Two octaves of a Gaussian scale-space image pyramid with s =2 intervals. The first image in the second octave is created by down sampling to last image in the previous图2 The difference of two adjacent intervals in the Gaussian scale—space pyramid create an interval in the difference—of—Gaussian pyramid (shown in green)。

SIFT算法原理:SIFT算法详细介绍

SIFT算法原理:SIFT算法详细介绍

前面们介绍了Harris和Shi-Tomasi角检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角,但图像被放后,在使用同样的窗口,就检测不到角了。

所以,们来介绍一种计算机视觉的算法,尺度不变特征转换即SIFT(Scale-invariantfeaturetransform)。

它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值,并提取出其位置、尺度、旋转不变量,此算法由DavidLowe在1999年所发表,2004年完善总结。

应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等领域。

SIFT算法的实质在不同的尺度空间上查找关键(特征),并计算出关键的方向。

SIFT 所查找到的关键一些十分突出,不会因光照,仿变换和噪音等因素而变化的,如角、边缘、暗区的亮及亮区的暗等。

1.1基本流程Lowe将SIFT算法分解为如下四步:尺度空间极值检测:搜索所有尺度上的图像位置。

通过高斯差分函数来识别潜在的对于尺度和旋转不变的关键。

关键定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。

关键的选择依据于它们的稳定程度。

关键方向确定:基于图像局部的梯度方向,分配给每个关键位置一个或多个方向。

所有后面的对图像数据的操作都相对于关键的方向、尺度和位置进行变换,从而保证了对于这些变换的不变性。

关键描述:在每个关键周围的邻域内,在选定的尺度上测量图像局部的梯度。

这些梯度作为关键的描述符,它允许比较的局部形状的变形或光照变化。

们就沿着Lowe的步骤,对SIFT算法的实现过程进行介绍:1.2尺度空间极值检测在不同的尺度空间不能使用相同的窗口检测极值,对小的关键使用小的窗口,对的关键使用的窗口,为了达到上述目的,们使用尺度空间滤波器。

高斯核可以产生多尺度空间的核函数。

-《Scale-spacetheory:Abasictoolforanalysingstructuresatdifferentscales》。

SIFT特征提取算法

SIFT特征提取算法

SIFT特征提取算法SIFT(Scale-Invariant Feature Transform)特征提取算法是一种用于图像的局部特征分析的算法。

它能够提取出图像中的关键点,并对这些关键点进行描述,从而可以用于图像匹配、物体识别等应用领域。

本文将详细介绍SIFT算法的原理和过程。

1.尺度空间构建SIFT算法首先通过使用高斯滤波器来构建图像的尺度空间,以便在不同尺度下检测关键点。

高斯滤波器可以通过一系列的高斯卷积操作实现,每次卷积之后对图像进行下采样(降低分辨率),得到不同尺度的图像。

2.关键点检测在尺度空间构建完成后,SIFT算法使用差分运算来检测关键点。

差分运算可以通过对图像进行高斯平滑操作来实现,然后计算相邻尺度之间的差分图像。

对差分图像进行极值检测,即寻找局部最大和最小值的像素点,这些像素点就是图像中的关键点。

3.关键点精确定位关键点的精确定位是通过拟合关键点周围的局部图像来实现的。

SIFT算法使用了一种高度鲁棒的方法,即利用关键点周围梯度的方向和大小来进行拟合。

具体来说,SIFT算法在关键点周围计算图像的梯度幅值和方向,并构建梯度直方图。

然后通过在梯度直方图中寻找局部极值来确定关键点的方向。

4.关键点描述关键点的描述是为了提取关键点周围的特征向量,用于后续的匹配和识别。

SIFT算法使用了一种局部特征描述算法,即将关键点周围的图像区域划分为小的子区域,并计算每个子区域的梯度方向直方图。

然后将这些直方图组合起来,构成一个维度较高的特征向量。

5.特征向量匹配在完成关键点描述之后,SIFT算法使用一种近似的最近邻方法来进行特征向量的匹配。

具体来说,使用KD树或者暴力匹配的方法来寻找两幅图像中最相似的特征向量。

通过计算特征向量之间的距离,可以找到最相似的匹配对。

6.尺度不变性SIFT算法具有尺度不变性的特点,即对于图像的缩放、旋转和视角变化等变换具有较好的鲁棒性。

这是因为在特征提取的过程中,SIFT算法对图像进行了多尺度的分析,并利用了关键点周围的梯度信息进行描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117
0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292
2016/11/9
16
4. 高斯金字塔
• 高斯金子塔的构建过程可分为 两步:
(1)对图像做高斯平滑; (2)对图像做降采样。
为了让尺度体现其连续性,在简单 下采样的基础上加上了高斯滤波。 一幅图像可以产生几组(octave) 图像,一组图像包括几层 (interval)图像。
2016/11/9
SIFT
Scale Invariant Feature Transform 17
• 高斯图像金字塔共o组、s层, 则有:
(s) 0
s
2S
σ——尺度空间坐标; s——sub-level层坐标; σ0——初始尺度; S——每组层数(一般为3~5)。
2016/11/9
SIFT
Scale Invariant Feature Transform 18
E-mail: lowe@cs.ubc.ca
• 1999年British Columbia大学大卫.劳伊(David G.Lowe)教授总结了现有 的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对 图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SIFT (尺度不变特征变换),这种算法在2004年被加以完善。
尺度空间理论最早在1962年提出,其主要思想是通过对原始图像进 行尺度变换,获得图像多尺度下的尺度空间表示序列,对这些序列进行 尺度空间主轮廓的提取,并以该主轮廓作为一种特征向量,实现边缘、 角点检测和不同分辨率上的特征提取等。
尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目 标由近到远时目标在视网膜上的形成过程。
2016/11/9
3
l SIFT提出的目的和意义
SIFT
Scale Invariant Feature Transform
David G. Lowe Computer Science Department
2ritish Columbia
Vancouver, B.C., V6T 1Z4, Canada
s1
s
1
2S
组间尺度是指不同组直接的尺度关
系,相邻组的尺度可化为:
o1(s) o
sS
2S
o
sS
2S
2 o
s
2S
由此可见,相邻两组的同一层尺度为2倍的关系
2016/11/9
20
• 最后可将组内和组间尺度 归为:
2i1( , k , k 2 , k n1 )
k
1
2S
i——金字塔组数 n——每一组的层数
2016/11/9
5
SIFT
Scale Invariant Feature Transform
l SIFT算法特点
• SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化 保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳 定性。 • 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征 数据库中进行快速、准确的匹配。 • 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。 • 经过优化的SIFT算法可满足一定的速度需求。 • 可扩展性,可以很方便的与其他形式的特征向量进行联合。
SIFT
Scale Invariant Feature Transform
通过研究Lowe教授的论文发现,所有特征点的检测都是基于了尺度不 变的特性,特征点的检测占据了论文的大部分的篇章,具有十分重要的 意义!
Lindeberg在文献《Scale-space theory: A basic tool for analysing structures at different scales》指出尺度规范化的LoG算子具有真正 的尺度不变性。
2016/11/9
SIFT
Scale Invariant Feature Transform 21
?? 为啥?
• 上一组图像的底层是由前 一组图像的倒数第二层图 像隔点采样生成的。 这样可以保持尺度的连续 性。
2016/11/9
SIFT
Scale Invariant Feature Transform 22
特征向量的关键点)的两两比较找出相互匹配的若干对特征点,也就建立了
景2物01间6/1的1/对9 应关系。
8
l SIFT算法实现步骤
SIFT
Scale Invariant Feature Transform
1. 关键点检测 2. 关键点描述 3. 关键点匹配 4. 消除错配点
2016/11/9
9
SIFT
• 高斯金字塔的初始尺度
当图像通过相机拍摄时,相机的镜 头已经对图像进行了一次初始的模 糊,所以根据高斯模糊的性质:
0 init init pre pre init ——第0层尺度 pre ——被相机镜头模糊后的尺度
• 高斯金字塔的组数
O log2 min M , N 3
M、N分别为图像的行数和列数
0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067
• 在实际应用中,在计算高斯函数的离散近似时,在大概3σ距离之外 的像素都可以看作不起作用,这些像素的计算也就可以忽略。
• 通常,图像处理程序只需要计算 (6 1) (6 1)
2016/11/9
6
l SIFT算法可以解决的问题
SIFT
Scale Invariant Feature Transform
目标的自身状态、场景所处的环境和成像器材的成像特性等因素 影响图像配准/目标识别跟踪的性能。而SIFT算法在一定程度上可解决:
• 目标的旋转、缩放、平移(RST) • 图像仿射/投影变换(视点viewpoint) • 光照影响(illumination) • 目标遮挡(occlusion) • 杂物场景(clutter) • 噪声
尺度越大图像越模糊。
2016/11/9
11
SIFT
Scale Invariant Feature Transform
根据文献《Scale-space theory: A basic tool for analysing structures at different scales》我们可知,高斯核是唯一可以产生 多尺度空间的核,一个图像的尺度空间,L(x,y,σ) ,定义为原始图像 I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ) 卷积运算。
0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117
0.00038771 0.01330373 0.11098164 0.22508352 0.11098164 0.01330373 0.00038771
2016/11/9
2
l 传统的特征提取方法
SIFT
Scale Invariant Feature Transform
• 成像匹配的核心问题是将同一目标在不同时间、不同 分辨率、不同光照、不同位姿情况下所成的像相对应。 传统的匹配算法往往是直接提取角点或边缘,对环境的 适应能力较差,急需提出一种鲁棒性强、能够适应不同 光照、不同位姿等情况下能够有效识别目标的方法。
所谓关键点,就是在不同尺度空间的图像下检测出的具有方向 信息的局部极值点。 根据归纳,我们可以看出特征点具有的三个特征:
尺度
方向
大小
2016/11/9
10
SIFT
Scale Invariant Feature Transform
2. 什么是尺度空间(scale space )?
我们要精确表示的物体都是通过一定的尺度来反映的。现实世界的 物体也总是通过不同尺度的观察而得到不同的变化。
2016/11/9
SIFT
Scale Invariant Feature Transform 19
SIFT
Scale Invariant Feature Transform
• 高斯金字塔的组内尺度与组间尺度
(s) 0
s
2S
组内尺度是指同一组(octave)内的 尺度关系,组内相邻层尺度化简为:
BEIJING INSTITUTE OF TECHNOLOGY
尺度不变特征变换匹配算法 Scale Invariant Feature Transform (SIFT)
宋丹
10905056
2016/11/9
1/60
SIFT
Scale Invariant Feature Transform
1. SIFT简介 2. SIFT算法实现细节 3. SIFT算法的应用领域 4. SIFT算法的扩展与改进
Back
2016/11/9
7
SIFT
Scale Invariant Feature Transform
l SIFT算法实现步骤简述
SIFT算法的实质可以归为在不同尺度空间上查找特征点(关键点)的问题。
SIFT算法实现物体识别主要有三大工序,1、提取关键点;2、对关键点附加
详细的信息(局部特征)也就是所谓的描述器;3、通过两方特征点(附带上
高斯模板大小的选择
高斯模板
0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067
相关文档
最新文档