三角形内角和综合习题精选(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.

..

三角形内角和综合习题精选

一.解答题(共12小题)

1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.

(1).若∠C=80°,∠B=50°,求∠DAE的度数.

(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).

(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?

2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,

(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;

(2)在△BED中作BD边上的高;

(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?

4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.

(1)若∠B=35°,∠ACB=85°,求∠E的度数;

(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.

5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _________ ,∠XBC+∠XCB= _________ .

(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.

6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.

(1)求∠P的度数;

(2)猜想∠P与∠A有怎样的大小关系?

(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.

(1)若|x+2y﹣5|+|2x﹣

y|=0,试分别求出1秒钟后A、B两点的坐标;

(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,

问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;

(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.

9.如图所示,点E 在AB 上,CE ,DE 分别平分∠BCD ,∠ADC ,∠1+∠2=90°,∠B=75°,求∠A 的度数.

10.如图,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F

. (1)当∠OCD=50°(图1),试求∠F .

(2)当C 、D 在射线OA 、OB 上任意移动时(不与点O 重合)(图2),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F .

11.如图,△ABC 中,AE 、BF 是角平分线,它们相交于点O .(∠ABC >∠C ), (1)试说明∠BOA=90°+∠C

(2)当AD 是高,判断∠DAE 与∠C 、∠ABC 的关系,并说明理由.

12.已知△ABC 中,∠BAC=100°.

(1)若∠ABC 和∠ACB 的角平分线交于点O ,如图1所示,试求∠BOC 的大小;

(2)若∠ABC 和∠ACB 的三等分线(即将一个角平均分成三等分的射线)相交于O ,O 1,如图2所示,试求∠BOC 的大小;

(3)如此类推,若∠ABC 和∠ACB 的n 等分线自下而上依次相交于O ,O 1,O 2…,如图3所示,试探求∠BOC 的大小与n 的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.

答案与评分标准

一.解答题(共12小题)

1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.

(1).若∠C=80°,∠B=50°,求∠DAE的度数.

(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).

(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的

结论还正确吗?为什么?

考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

专题:动点型。

分析:(1)先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求得的度数,在△ADC 中,利用三角形内角和求出∠ADC的度数,从而可得∠DAE的度数.

(2)结合第(1)小题的计算过程进行证明即可.

(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B和∠C表示出∠A′DE,再根据三角形的内角和定理可证明∠DA′E=(∠C﹣∠B).

解答:解:(1)在△ABC中,∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣80°=50°;

∵AD是角平分线,

∴∠DAC=∠BAC=25°;

在△ADC中,∠ADC=180°﹣∠C﹣∠DAC=75°;

在△ADE中,∠DAE=180°﹣∠ADC﹣AED=15°.

(2)∠DAE=180°﹣∠ADC﹣AED=180°﹣∠ADC ﹣90°=90°﹣∠ADC=90°﹣(180°﹣∠C﹣∠DAC)=90°﹣(180°﹣∠C﹣∠BAC )=90°﹣[180°﹣∠C﹣(180°﹣∠B﹣∠C)]=(∠C﹣∠B).

(3)(2)中的结论仍正确.

∠A′DE=∠B+∠BAD=∠B+∠BAC=∠B+(180°﹣∠B﹣∠C)=90°+∠B﹣∠C;

在△DA′E中,∠DA′E=180°﹣∠A′ED﹣∠A′DE=180°﹣90°﹣(90°+∠B﹣∠C)=(∠C﹣∠B).

点评:本题考查了三角形的角平分线和高,三角形的内角和定理,垂线等知识,注意综合运用三角形的有关概念是解题关键.2.如图,AD为△ABC的中线,BE为三角形ABD中线,

(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;

(2)在△BED中作BD边上的高;

(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?

考点:三角形的角平分线、中线和高;三角形的面积;三角形内角和定理。

分析:(1)利用三角形的外角等于与它不相邻的两个内角之和即可求∠BED的度数;

(2)△BED是钝角三角形,所以BD边上的高在BD的延长线上;

(3)先根据三角形的中线把三角形分成面积相等的两个小三角形,结合题意可求得△BED的面积,再直接求点E到BC边的距离即可.

解答:解:(1)∵∠BED是△ABE的一个外角,

∴∠BED=∠ABE+∠BAD=15°+35°=50°.

(2)如图所示,EF即是△BED中BD边上的高.

(3)∵AD为△ABC的中线,BE为三角形ABD中线,

∴S△BED=S△ABC=×60=15;

∵BD=5,

∴EF=2S△BED÷BD=2×15÷5=6,

即点E到BC边的距离为6.

点评:本题主要考查了三角形的高、中线、角平分线,三角形的面积和三角形的内角和等知识,注意全面考虑问题,熟记三角形的中线把三角形分成的两个小三角形面积一定相等.

3.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.

相关文档
最新文档