浙教版数学七下课件:3.1同底数幂的乘法习题课
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12/30/2016 21
12/30/2016
22
3.若10n×10m×10=1000,则n+m=. 2
12/30/2016
17
动手合作:
在数学活动中,小明为了
1 1 1 1 求 2 3 n 的值, 2 2 2 2 设计如图(1)所示的几何图形。
(1)请你利用这个几何图形求
的值为。
1 1 1 2 3 2 2 2 12/30/2016
同底数幂的乘法习题课
12/30/2016
1
2018/10/5
‹#›
2018/10/5
‹#›
3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再把
所得的幂相乘。(即等于积中各因式乘方的积。) 符号表示:
(ab) n a n b n , (其中n为正整数), (abc) a b c (其中n为正整数)
8
能力挑战你能用简便的方法计算下列各题:
(1)
(3)
(4)
2 5
4
4
(2)
2.5 4
9
8
1 (2 4) 15 2
5
若Xa=2, yb=3, 求(x3a+2b)2的值.
12/30/2016
9
例1 判断下列等式是否成立:
① (-x)2=-x2,
√ ③ (x-y)2=(y-x)2,√
② (-x)3=-x3,
20
知识要点
a.同底数幂的乘法法则: 同底数的幂相乘,底数不变,指数相加.
即
a m· an=am+n (m、n都是正整数)
b.幂的乘方法则: 幂的乘方,底数不变,指数相乘.
即
(am)n=amn
(m、n都是正整数)
c.积的乘方法则 积的乘方,等于把积的每一个因式分别乘方,再把所得 的幂相乘. 即(ab)n= anbn(n为正整数)
8, 2 16, 则 2 x y _____ 128
y
12/30/2016
16
能力挑战:
1.比较大小:
(-2) ×(-2)2× (-2)3×…× (-2)9× (-2)100. < 2.已知,数a=2×103 , b=3×104 , c=5×105. 那么a· b· c的值中,整数部分有位.14
1 n 2
1 2
1 22 1 23
18
ቤተ መጻሕፍቲ ባይዱ
图(1)
(2)请你利用图(2),再设计一个能求 1 1 1 1 2 3 n 的值的几何图形。 2 2 2 2
12/30/2016
(2)
19
(3)请仿照上述方法计算下列式子:
2 2 2 2 3 3 3 3
2 n 3
12/30/2016
(3)(-2 x2 y3)2
4y6 4x =;
(4)(-2 x2 )3 =;-8x6
12/30/2016
6
想一想:
1.下面的计算对吗? 错的请改正:
(1) (43)5=48 ×, 415(2) (-28)3=(-2)24 ×, 224
(3) [(-3)5]3=-315 √ (4) (p2)3.(p5)2
④ (x-y)3=(y-x)3,
⑤ x-a-b=x-(a+b),√
12/30/2016
⑥ x+a-b=x-(b-a). √
10
(a5)2=a7,
5 2 10 a ·a =a . m+n m n a =a +a
12/30/2016
11
am·an=am+n (am)n=amn,
(ab)n=anbn
(a≠0,m、n为正整数),
12/30/2016
12
计算: 1、(-4)2007×0.252008
2、22006-22005-22004-…-2-1
求N=212×58是几位整数.
12/30/2016 13
求7100-1的末尾数字.
比较750与4825的大小.
12/30/2016
14
1、已知10m=4,10n=5.
求103m+2n+1的值.
Zx,xk
4 3 分析:球体体积公式 v R 3 4 解: v (7 10 4 ) 3 3 4 7 3 1012 3 4 3.14 343 1012 3 1436 1012 1.44 1015
12/30/2016
答:木星的体积大约是1.44×1015km3.
n n n n
练习:计算下列各式。
4
zxxk
1 2 3 (2 xyz ) , ( a b) , (2 xy 2 ) 3 , ( a 3b 2 ) 3 2
12/30/2016 4
2018/10/5
‹#›
0 (1) a ·a7- a4 ·a4 =;
(2)(1/10)5 ×(1/10)3 =; (1/10)8
=p6.p10 (
(52)4×5=58
√
2.说出下面每一步计算理由,并将它们填入括号内:
幂的乘方法则
)
=p6+10 ( 同底数幂的乘法法则 )
=p16
12/30/2016 7
例、木星是太阳系九大行星中最大的一 颗,木星可以近似地看作球体.已知木星 的半径大约是7×104km,木星的体积大约 是多少km3(∏取3.14)?
2、已知162×43×26=22a+1, (102)b=1012,求a+b的值。
12/30/2016
15
能力挑战:
若x
m3
2 x x 则m的值为 _____
2 7
y 5
已知 2
x
2 2 , 则正整数 x , y 的值有(D )
(A)1对 (B)2对 (C)3对 (D)4对
已知2 x
12/30/2016
22
3.若10n×10m×10=1000,则n+m=. 2
12/30/2016
17
动手合作:
在数学活动中,小明为了
1 1 1 1 求 2 3 n 的值, 2 2 2 2 设计如图(1)所示的几何图形。
(1)请你利用这个几何图形求
的值为。
1 1 1 2 3 2 2 2 12/30/2016
同底数幂的乘法习题课
12/30/2016
1
2018/10/5
‹#›
2018/10/5
‹#›
3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再把
所得的幂相乘。(即等于积中各因式乘方的积。) 符号表示:
(ab) n a n b n , (其中n为正整数), (abc) a b c (其中n为正整数)
8
能力挑战你能用简便的方法计算下列各题:
(1)
(3)
(4)
2 5
4
4
(2)
2.5 4
9
8
1 (2 4) 15 2
5
若Xa=2, yb=3, 求(x3a+2b)2的值.
12/30/2016
9
例1 判断下列等式是否成立:
① (-x)2=-x2,
√ ③ (x-y)2=(y-x)2,√
② (-x)3=-x3,
20
知识要点
a.同底数幂的乘法法则: 同底数的幂相乘,底数不变,指数相加.
即
a m· an=am+n (m、n都是正整数)
b.幂的乘方法则: 幂的乘方,底数不变,指数相乘.
即
(am)n=amn
(m、n都是正整数)
c.积的乘方法则 积的乘方,等于把积的每一个因式分别乘方,再把所得 的幂相乘. 即(ab)n= anbn(n为正整数)
8, 2 16, 则 2 x y _____ 128
y
12/30/2016
16
能力挑战:
1.比较大小:
(-2) ×(-2)2× (-2)3×…× (-2)9× (-2)100. < 2.已知,数a=2×103 , b=3×104 , c=5×105. 那么a· b· c的值中,整数部分有位.14
1 n 2
1 2
1 22 1 23
18
ቤተ መጻሕፍቲ ባይዱ
图(1)
(2)请你利用图(2),再设计一个能求 1 1 1 1 2 3 n 的值的几何图形。 2 2 2 2
12/30/2016
(2)
19
(3)请仿照上述方法计算下列式子:
2 2 2 2 3 3 3 3
2 n 3
12/30/2016
(3)(-2 x2 y3)2
4y6 4x =;
(4)(-2 x2 )3 =;-8x6
12/30/2016
6
想一想:
1.下面的计算对吗? 错的请改正:
(1) (43)5=48 ×, 415(2) (-28)3=(-2)24 ×, 224
(3) [(-3)5]3=-315 √ (4) (p2)3.(p5)2
④ (x-y)3=(y-x)3,
⑤ x-a-b=x-(a+b),√
12/30/2016
⑥ x+a-b=x-(b-a). √
10
(a5)2=a7,
5 2 10 a ·a =a . m+n m n a =a +a
12/30/2016
11
am·an=am+n (am)n=amn,
(ab)n=anbn
(a≠0,m、n为正整数),
12/30/2016
12
计算: 1、(-4)2007×0.252008
2、22006-22005-22004-…-2-1
求N=212×58是几位整数.
12/30/2016 13
求7100-1的末尾数字.
比较750与4825的大小.
12/30/2016
14
1、已知10m=4,10n=5.
求103m+2n+1的值.
Zx,xk
4 3 分析:球体体积公式 v R 3 4 解: v (7 10 4 ) 3 3 4 7 3 1012 3 4 3.14 343 1012 3 1436 1012 1.44 1015
12/30/2016
答:木星的体积大约是1.44×1015km3.
n n n n
练习:计算下列各式。
4
zxxk
1 2 3 (2 xyz ) , ( a b) , (2 xy 2 ) 3 , ( a 3b 2 ) 3 2
12/30/2016 4
2018/10/5
‹#›
0 (1) a ·a7- a4 ·a4 =;
(2)(1/10)5 ×(1/10)3 =; (1/10)8
=p6.p10 (
(52)4×5=58
√
2.说出下面每一步计算理由,并将它们填入括号内:
幂的乘方法则
)
=p6+10 ( 同底数幂的乘法法则 )
=p16
12/30/2016 7
例、木星是太阳系九大行星中最大的一 颗,木星可以近似地看作球体.已知木星 的半径大约是7×104km,木星的体积大约 是多少km3(∏取3.14)?
2、已知162×43×26=22a+1, (102)b=1012,求a+b的值。
12/30/2016
15
能力挑战:
若x
m3
2 x x 则m的值为 _____
2 7
y 5
已知 2
x
2 2 , 则正整数 x , y 的值有(D )
(A)1对 (B)2对 (C)3对 (D)4对
已知2 x