控制系统的能控性和能观性 (I)

合集下载

控制系统的能控性和能观性课件

控制系统的能控性和能观性课件

唯一的,因为我们关心的只是它能否将
驱动到
,而不计较
的轨迹如何。
2. 线性连续时变系统的能控性定义
线性连续时变系统:
3. 离散时间系统 这里只考虑单输入的n阶线性定常离散系统:
3
3.2 线性定常系统的能控性判别
线性定常系统能控性判别准则有两种形式,一种是先将系统进行状态变
换,把状态方程化为约旦标准型
3.1 能控性的定义 3.2 线性定常系统的能控性判别 3.3 线性连续定常系统的能观性 3.4 离散时间系统的能控性与能观性 3.5 时变系统的能控性与能观性 3.6 能控性与能观性的对偶关系 3.7 状态空间表达式的能控标准型与能观标准型 3.8 线性系统的结构分解 3.9 传递函数阵的实现问题 3.10 传递函数中零极点对消与状态能控性和能观
一地确定任意初始状态矢量
,则系统是完全能观的,现根据此定义推
导能观性条件。从式(1),有:
(3)
若系统能观,那么在知道
时,应能确定


,现从式(7)可得:
写成矩阵形式:
16
(4) 有唯一解的充要条件是其系数矩阵的秩等于 。这个系数矩阵称为 能观性矩阵。仿连续时间系统,记为N。即
(5)
17
3.5 时变系统的能控性与能观性
3.5.1 能控性判别 1.有关线性时变系统能控性的几点说明 1)定义中的允许控制 ,在数学上要求其元在 绝对平方可积的,即
区间是
这个限制条件是为了保证系统状态方程的解存在且唯一。 2)定义中的 ,是系统在允许控制作用下,由初始状态 目标状态(原点)的时刻。
转移到
3)根据能控性定义, 可以导出能控状态和控制作用之问的关系式。 4)非奇异变换不改变系统的能控性。

能控性与能观性

能控性与能观性
c11 c12 c c22 21 y (t ) c m1 cm 2 c1n e1t x10 c2 n e2t x20 nt cmn e xn 0
假使输出矩阵C中有某一列全为零,譬如说第2列中c12, c22, …, cm2均为零,则在 t y(t)中将不包含 e 2 x20这个自由分量,亦即不包含 x2(t)这个状态变量,很明显,这 个x2(t)不可能从y(t)的测量值中推算出来,即x2(t)是不能观的状态。
系统是状态完全能控的
x 2 1 x2 b2u y c1 c2 x
1 1 b1 x x u; 0 0 1
对于式(3-5)的系统
x 1 1 x1 x2 b1u x 2 1 x2
x2不受u(t)的控制,而为不能控的系统。
对式(3-3)的系统,系统矩阵A为对角线型,其标量微分方程形式为
x 1 1 x1
x 2 2 x2 b2u
x 2
x 1
1 1 0 x x u; 0 1 b2
对于式(3-4)的系统
y c1 c2 x
x 1 1 x1 x2
c13 c23 c33
1 2 1t 1t 1t e x10 te x20 t e x30 2! x1 (t ) 1t 1t e x20 te x30 这时,状态方程的解为 x(t ) x2 (t ) x ( t ) 3 1t e x 30
从而
y1 (t ) c11 c12 y (t ) y2 (t ) c21 c22 y3 (t ) c31 c32

《现代控制理论》第三版课件_第4章

《现代控制理论》第三版课件_第4章

e λ1t z10 λ2t e z 20 z (t ) = λnt e z n0
ˆ C11 ˆ C 21 y (t ) = ˆ C m1 ˆ C12 ˆ C
λt ˆ C1n e 1 z10 ˆ e λ2t z 20 C2n ˆ e λnt z n 0 C mn
J = diag{λ1 , λ2 , , λn }
[ p1
p2
λ1 0 pn ] 0
0 λ2 0
0 0 = A [p 1 λn
p2 pn ]
J1 0 J = P −1 AP = 0
0 J2 0
λ j 0 0 0
零空间(核空间)
n
4-5 状态向量的线性变换
x = Ax + Bu y = Cx + Du
x = Pz
ˆ ˆ = P −1 APz + P −1 Bu = Az + Bu z ˆ y = CPz + Du = Cz + Du
状态向量的线性变换不影响系统的状态能控 性、能观性和传递函数阵,也不影响系统矩 阵的特征值和系统平衡状态的稳定性。
[
p j 2 p jq
]
( λ j I − A) p j1 = 0
Pj = p j1
[
p j2
p jq
]
( λ j I − A) p j 2 = − p j1 ( λ j I − A) p j 3 = − p j 2 ( λ j I − A) p jq = − p j ( q −1)
( λ j I − A) p j1 = 0 ( λ j I − A) p j 2 = − p j1 ( λ j I − A) p j 3 = − p j 2

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。

能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。

能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。

但是⼀般没有特别指明时,指的都是状态的可控性。

所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。

4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。

反之,只要有⼀个状态不可控,我们就称系统不可控。

对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。

4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。

控制系统的能控性和能观性

控制系统的能控性和能观性

第4章 控制系统的能控性和能观性第1节 能控性和能观性的定义◆设线性连续时变系统为()()x A t x B t u =+ ()y C t x =如果在[f t t ,0]上,对任意初始状态00)(x t x =,必能找到控制作用()u t ,能使)(t x 由0x 转移到0)(=f t x ,则称系统在0t 时刻是状态完全能控的,简称系统能控。

如果由[f t t ,0]上的)t y (,能惟一地确定0t 时刻的初始状态00)(x t x =,则称系统在0t 时刻是状态完全能观的,简称系统能观。

注意:能控性描述入)(t u 支配状态)(t x 的能力,能观性描述)(t y 反映)(t x 的能力。

能控性和能观性的定义要求初始状态的任意性。

◆线性定常连续系统x Ax Bu =+ y Cx =的能控性和能观性与0t 无关,常取00=t 。

对线性定常系统,能控性实质上是描述)(t u 支配模态(1,2,,)i te i n λ=的能力,若有任一模态不受输入的控制,系统便不能控;能观性实质上是)(t y 反映模态(1,2,,)i te i n λ=的能力,若有任一模态在输出中得不到反映,系统便不能观。

第2节 线性时变系统的能控性能观性判据1、格拉姆矩阵判据n 阶线性时变连续系统((),(),())S A t B t C t 在0t 时刻能控的充要条件是能控性格拉姆(Gramian )矩阵000(,)(,)()()(,)d ft t tC f t W t t t t B t B t t t t =ΦΦ⎰满秩;在0t 时刻能观的充要条件是能观性格拉姆矩阵000(,)(,)()()(,)d ft t tO f t W t t t t C t C t t t t =ΦΦ⎰满秩。

证明:1)能控性判据证明◆充分性证明。

假设),(0f C t t W 满秩,则),(01f ct t W -存在。

用构造法。

对任意的初始状态0()x t ,系统的状态解为00()()(,)(,)(()d tt x t t B u t t x t ττττ=-Φ+Φ⎰)]d )((),()()[,(0000ττττu B t t x t t tt )⎰Φ+Φ-=选择0100((),)(,))ttCf u t B t t t t W t x t -=-Φ()(代入系统状态解式并令f t t =,则有1000000()(,)[()(,)()()(,)(,)()d ]ft t tf f Cf t x t t t x t t t B t B t t t W t t x t t -=-Φ-ΦΦ⎰)()],(),()[,(00100t x t t W t t W I t t f Cf C f --Φ-=0)(])[,(00=-Φ-=t x I I t t f充分性得证。

现代控制理论第三章PPT

现代控制理论第三章PPT

( A
c1
,bc1 ) 的能控性,其中
1 0 0 0 A c1 0 0 2 5
解:
0 0 1 0 0 1 1 10
0 0 b c1 0 1
0 1 0 0 0 0 1 10 A3 c1b c1 0 1 10 101 1 10 101 1025
若取
u( t ) B( t )T ΦT ( t0 ,t )Wc1( t0 ,t f )x( t0 )
tf t0
x( t f ) Φ( t f ,t0 )[ x( t0 )
Φ( t0 ,t )B( t )B( t )T ΦT ( t0 ,t )Wc1( t0 ,t f )x( t0 )dt ]
( k 1,2, , n 1 )
假设 F( t ) Φ( t0 ,t )B( t ) 对上式关于时间t求一阶、二阶、直至n-1阶导数 ,可得
(t ) Φ (t , t )B(t ) Φ(t , t )B (t ) F 0 0
(t ) Φ(t0 , t )A(t )B(t ) Φ(t0 , t )B
实现最优控制和最优估值及其它系统综合
与校正的必要条件。
4.1 系统的能控性
[定义]设系统的状态方程为
(t ) A(t )x(t ) B(t )u(t ) x
对于任意非零初始状态 x(t0 ) ,如果存在容许控制u(t ) ,在有限时区
t [t0 , t f ] 将其转移到状态空间原点,即 x(t f ) 0 ,则称系统在
(t )] Φ(t0 , t )[A(t )B(t ) B
Φ(t0 , t )B1 (t )

现代控制理论第三章

现代控制理论第三章
方法一: 直接根据状态方程的A阵和B阵
方法二:
转化为约旦标准形 ( Aˆ, Bˆ ) ,再根据 Bˆ 判断
方法三: 传递函数
3.2 线性连续系统的能控性
方法一:线性定常连续系统(A,B), 其状态完全能控的 充要条件是其能控性矩阵的秩为n,即:
rankQc = n Qc = [ B AB A2B … An 1B ]
0 0 2
3
4 1 0
4 2
(2)
x (t)
0
4
0 x(t) 0 0u(t)
0 0 2
3 0
3.2 线性连续系统的能控性 方法三:
3.2 线性连续系统的能控性 例:从输入和状态矢量间的传递函数确定其能控性?
3.2 线性连续系统的能控性 例:判断线性连续系统能控性?
解:
3.2 线性连续系统的能控性
3.3 线性系统的能观测性
例:判断能观测性?
x (t)
2 1
1 3
x(t
)
1
1
u(t)
y(t
)
1 1
0 0 x(t)
解:
C Q0 CA
10 1 0
2 1 2 1
rankQo = 2 = n
系统能观测
3.3 线性系统的能观测性
例: 若系统的状态空间表达式为
x (t)
a d
5
x(t
)
1
7
(2)
x (t)
5
x(t)
1
y(t) 0 4 5x(t)
3 2 0 y(t) 0 3 1 x(t)
(3)
3 1 0
0 3 1
x (t) 0 0 3
x(t)
2

现代控制理论第三章

现代控制理论第三章

B
AB
0 1 An 1B n 1
如果系统是能控的,对于任意给定的初始状态x(0)都 能解出 i , i 0, , n 1,其有解的充分必要条件为
rank B AB An 1 B n
判断下面系统的能控性
输出能控性定义:如果系统的输入信号能在有限的 时间区间[t0,tf]内,将系统的任意初始输出转移到y(tf), 那么该系统为输出完全能控的。
输出能控性判据:考虑系统
x ' Ax Bu y Cx Du
状态完全能控的充分必要条件是
rank CB CAB CAn 1 B D m
上式表明,根据在[0,tf]时间的量测值y(t),能够 将初始状态x(0)唯一地确定下来的充要条件是
C CA n rank n 1 CA
(1)在能观测性定义中之所以把其规定为对初始 状态的确定,是因为一旦确定了初始状态,便可以 根据给定的输入信号u(t),利用状态转移方程求出系 统在各个瞬时的状态。 (2)能观测性表示的是y(t)反映状态向量x(t)的能 力,考虑到输入信号u(t)所引起的输出是可计算的, 所以在分析能观测性问题时,常令u(t)=0。
S1的能控性等价于S2的能观性
S1的能观性等价于S2的能控性
四、能控标准型和能观标准型(单变量系统线性系统) 1 、能控标准型 若系统的状态空间表达式为:
x ' Ac x bcu y Cc x
0 Ac 0 an
1 0 an 1
0 1 a1
能控性判据:考虑系统
x ' Ax Bu
状态完全能控的充分必要条件是
rank B AB An 1 B n

(整理)控制系统的能控性和能观测性

(整理)控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。

可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。

二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。

判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。

对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。

系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析1. 能控性(Controllability)能控性是指系统输出能否通过适当的输入方式对系统进行控制。

如果一个系统是能控的,意味着通过控制器的输入信号,我们能够将系统的输出发展到我们所期望的状态。

对于一个线性时不变(LTI)系统,能控性可以通过判断其控制矩阵的秩来确定。

控制矩阵(也称为控制可达矩阵)是由系统的状态方程和控制器的输入方程组成的。

如果控制矩阵的秩等于系统的状态数量,则系统是能控的;否则,系统是无法被完全控制的。

能控性的分析可以帮助我们选择合适的控制策略和控制器设计。

当系统的能控性差时,我们可能需要通过增加或修改系统的状态变量或控制器的输入方式来提高系统的能控性。

2. 能观测性(Observability)能观测性是指系统的内部状态能否通过系统的输出信号来判断。

一个能观测的系统意味着我们可以通过观测系统的输出来估计系统的状态。

对于一个线性时不变系统,能观测性可以通过判断其观测矩阵的秩来确定。

观测矩阵(也称为观测可达矩阵)是由系统的状态方程和输出方程组成的。

如果观测矩阵的秩等于系统的状态数量,则系统是能观测的;否则,系统的一些状态是无法通过输出来观测到的。

能观测性的分析可以帮助我们选择合适的观测器设计,以实现对系统状态的估计。

当系统的能观测性差时,我们可能需要增加或改变系统的输出方程来提高系统的能观测性。

3. 稳定性(Stability)稳定性是指系统在受到扰动后是否会逐渐恢复到原来的状态。

对于线性时不变系统,稳定性可以分为几种类型:零状态稳定、有限状态稳定和无限状态稳定。

零状态稳定(Zero-state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到零。

有限状态稳定(Finite state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到一些有限值。

无限状态稳定(Infinite state stability)是指当系统受到初始条件扰动时,输出信号会在无限时间内收敛到一些有限值。

第3章_线性控制系统的能控性和能观性

第3章_线性控制系统的能控性和能观性

证明 定理3.3-1
y(t1) 0(t1)Im 1(t1)Im n1(t1)Im C
y(t2) 0(t2)Im
1(t2)Im
n1(t2)ImC
A x(0)
y(tf)
0(tf)Im
1(tf)Im
n1(tf)ImCnA 1
上式表明,根据在(0,tf)时间间隔的测量值 y(t1),y(t2),…,y(tf),能将初始状态x(0)唯一地 确定下来的充要条件是能观测性矩阵N满秩。
4)不可控
18
3.1.2 线性定常系统的能控性判别
3.可控性约当型判据
J1

x AxBu
J2
xu
Jk
若 A为约当型,则状态完全可控的充要条件是:
每一个约当块的最后一行相应的 阵中所有的行 元素不全为零。(若两个约当块有相同特征值,此
结论不成立。)
精选可编辑ppt
19
3.1.2 线性定常系统的能控性判别
➢本章结构
• 第3章 线性控制系统的能控性和能观性 ✓3.1 能控性 ✓3.2 能观性 ✓3.3 能控性与能观性的对偶关系 ✓3.4 零极点对消与能控性和能观性的关系
精选可编辑ppt
1
引言
状态空间模型建立了输入、状态、输出之间的关系
u
x
y x Ax Bu
y Cx Du
状态方程反映了控制输入对状态的影响;输出方程 反映系统输出对控制输入和状态的依赖
10
3.1 能控性
3.1.2 线性定常系统的能控性判别
证明 定理3.1-1
n1
x(0) AkBk B AB A2B k0
0
An1B1
n1
若系统是能控的,那么对于任意给定的初始状态x(0)都

第4章(3) 线性控制系统的能控性和能观性

第4章(3) 线性控制系统的能控性和能观性

4-6线性系统的结构分解能控子空间+不能控子空间能观子空间+不能观子空间4-6-1按能控性分解设线性定常系统⎩⎨⎧=+=CxyBuAxx是状态不完全能控的,其能控性判矩阵:[]BAABBM n1-=的秩()nnMrank<=1则存在非奇异变换zRxc=变换为⎩⎨⎧=+=zCyuBzAz其中()1121nnnzzz-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=()()11112212111nnnnnnAAAARRAcc--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-,()11110nnnBBRBc-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-[]()1121nnnCCCRCc-==[]n n c R R R R R 121=前1n 个列矢量为M 中1n 个线性无关的列,另外1n n -个列矢量,在确保c R 非奇异的条件下,完全是任意的。

分解为能控的1n 维子系统:21211111z A u B z A z++= 和不能控的1n n -维子系统:2222z A z =例:设线性定常系统如下,判别其能控性,若不是完全能控的,试将该系统按能控性分解。

u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=011310301100 []x y 210-=解:(1)判别能控性[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==2103111012b A Ab bM因为 ()n M rank =<=32,所以,系统是不完全能控的。

(1) 构造非奇异变换阵c R⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001c R (第三列的元素任意选取,确保c R 为非奇异)非奇异变换 z R x c =u z u z bu R z AR R zc c c ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=----0011002211100111100110011100110013103011001100110011111[]z z CR y c 211--==分解为二维能控子系统:能控标准Ⅱ型u z z z ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡--=01212110211 和一维不能控子系统:[]221z z-= 4-6-2按能观性分解设线性定常系统 ⎩⎨⎧=+=Cxy Bu Ax x是状态不完全能观的,其能控性判矩阵:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=-1n CA CA C N 的秩 ()n n N rank <=1 则存在非奇异变换 z R x 0=变换为 ⎩⎨⎧=+=z C y uB z A z其中 ()1121n n n z z z -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=()()11112221110100n n n n n n A A A AR R A --⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==- , ()112110n n n B B B R B -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-[]()111n n n C CR C c -== , ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-''12'110'n n R R R R R前1n 个行矢量为N 中个1n 个线性无关的行,另外1n n -个行矢量,在确保1-R 非奇异的条件下,完全是任意的。

第三章线性控制系统的能控性和能观性

第三章线性控制系统的能控性和能观性

1
1

1
1 1
0

0
1
m
1
0 1
m m m1
0
0 0
0 0 0 n
(m-l)个1重根, l个m重根,其余为互异根。
13
b b1 b2 bn
T
为简明起见,下面举三个具有上述类型的二 阶系统,对能控性加以剖析。
1
在现代控制理论中,能控性和能观性是两个重 要的概念,是卡尔曼 (Kalman) 在 1960 年首先提出 来的,它是最优控制和最优估计的设计基础。
现代控制理论是建立在用状态空间描述的基 础上的。状态方程描述了输入 u(t) 引起状态 x(t) 的 变化过程;输出方程则描述了由状态变化引起的 输出y(t)的变化。 能控性和能观性正是分别分析 u(t) 对状态 x(t) 的控制能力以及输出y(t)对状态x(t)的反映能力。
3
§3-1 能控性的定义
能控性所考察的只是系统在控制作用u(t)的控 制下,状态矢量 x(t) 的转移情况,与输出 y(t) 无关, 所以只需从系统的状态方程研究出发即可。
4
一、线性连续定常系统的能控性定义 线性连续定常系统
x Ax Bu
如果存在一个分段连续的输入 u(t) ,能在有 限时间区间[t0, tf]内,使系统由某一初始状态x(t0), 转移到指定的任一终端状态 x(tf),则称此状态是 能控的。若系统的所有状态都是能控的,则称此 系统是状态完全能控的,或简称系统是能控的。
可以看出,系统中某一状态的能控和系统的 状态完全能控在含义上性定常系统中,为简便计,可以假定初始 时刻 t0=0 ,初始状态为 x(0) ,而任意终端状态就 指定为零状态,即 x(t f ) 0 2) 也可以假定 x(t0)=0,而 x(tf)为任意终端状态, 换句话说,若存在一个无约束控制作用 u(t) ,在 有限时间 [t0, tf]能将 x(t)由零状态驱动到任意 x(tf) 。 在这种情况下,称为状态的能达性。

控制系统的能控性和能观测性

控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。

可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。

二:线性定常系统能控性判据 设系统动态方程为:设初始时刻为t 0=0,对于任意的初始状态x(t 0),有:根据系统能控性定义,令x(t f )=0,得:x 2不能控y22则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x ⎰-+=ft ff f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。

判据1:线性定常系统状态完全能控的充分必要条件是: 能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。

对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b]如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。

判据2:对于线性定常系统,若B 的秩为r ,则系统完全能控的充要条件是:rank[B ,AB ,A 2B ,…A n-r B]=n⎰--=ftd Bu x 0)()()0(τττφ∑-=-==-1)()(n k kkA Aeτατφτ∑⎰⎰∑-=-=-=-=110)()()()()0(n k tk ktn k kkffd u B A d Bu A x ττταττταktku d u f=⎰0)()(ττταUQ u u u u B A B A AB B BuA x c k n n k kk-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(例:设试判断系统的能控性解:系统是不完全能控的。

第三章线性控制系统的能控性和能观性

第三章线性控制系统的能控性和能观性

第三章 线性控制系统的能控性和能观性在现代控制理论中,能控性和能观性是卡尔曼(Kalman )在1960年首先提出来的,它是最优控制和最优估值的设计基础。

能控性和能观性是分别分析)(t u 对状态)(t x 的控制能力以及输出)(t y 对状态)(t x 的反映能力。

§3-1 能控性的定义能控性所研究的只是系统在控制作用)(t u 的作用下,状态矢量)(t x 的转移情况,而与输出)(t y 无关。

矢量的线性无关与线性相关:如果0x x x x 332211=++++n n C C C C 式中的常数n C C C 21,满足0321====n C C C C ,则把向量n x x ,x 21 叫做线性无关。

例如向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0102x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1003x 便是线性无关。

若向量n x x ,x 21 中有一个向量i X 为其余向量的线性组合,即:∑≠==nij j jj i C 1x x 则称向量n x x ,x 21 为线性相关。

例如向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3211x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1012x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4223x 便是线性相关。

又例如在式中213x x x +=,0x 3x x 321=++式中系数并不全为零。

故为线性相关。

具有约旦标准型系统的能控性判据 1.单输入系统先将线性定常系统进行状态变换,把状态方程的A 阵和B 阵化为约旦标准型)ˆ,ˆ(B A,再根据B 阵确定系统的能控性。

具有约旦标准型系统矩阵的单输入系统,状态方程为bu x x+=λ ,或bu Jx x+= 。

其中:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n λλλλλ 00321,各根互异。

其中:(特征值有重根的)⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=++n m m J λλλλλλ010010121111 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n b b b b 21 下面列举两个二阶系统,对其能控性加以剖析。

现代控制理论线性控制系统的能控与能观性

现代控制理论线性控制系统的能控与能观性

判断线性控制系统稳定性的方法有多 种,如劳斯判据、赫尔维茨判据等。
03
能控性与能观性概念
能控性概念
能控性是指对于一个线性控制系统,如果存在一个控 制输入,使得状态变量从任意初始状态能够被驱动到
任意目标状态,则称该系统是能控的。
能控性的判断依据是系统的能控性矩阵,如果该矩阵 非奇异,则系统是能控的,否则系统不能控。
线性控制系统是控制系统的一种重要 类型,其能控性和能观性是评价系统 性能的重要指标。
研究意义
能控性和能观性是现代控制理论中的基本概念,对线性控制系统的分析和设计具有重要意义。
研究线性控制系统的能控性和能观性有助于深入了解系统的动态行为,为优化控制策略和控制系统的 稳定性提供理论支持。
02
线性控制系统基础
04
线性控制系统的能控性分析
能控性的判断方法
矩阵判据
通过判断线性系统的状态矩阵是否满足能控性矩阵的 条件,从而判断系统的能控性。
传递函数判据
根据线性系统的传递函数,通过分析其极点和零点, 判断系统的能控性。
状态方程判据
通过分析线性系统的状态方程,判断其是否具有能控 性。
能控性的改善方法
增加控制输入
能观性分析
能观性分析在智能交通系统中同样重要,它 有助于确定交通系统的状态是否能被其传感 器完全监测。这涉及到对传感器精度、道路 条件以及传感器布局等因素的考虑。
07
结论与展望
研究结论
1
线性控制系统能控性与能观性是现代控制理论中 的重要概念,对于系统的分析和设计具有重要意 义。
2
通过研究线性控制系统的能控性和能观性,可以 深入了解系统的动态特性和行为,为控制系统设 计和优化提供理论支持。

控制系统的能控性与能观性

控制系统的能控性与能观性
▪ A为约当阵情况下,若B阵对应最后一行全为0,则 系统为不完全能控;
▪ 不能控的状态,在方块图中表现为存在与u(t)无关 的独立块;
▪ 若系统状态方程为能控标准型,系统一定是完全能 控的。
3.2 线性连续定常系统的能观性
▪ 一、能观性的定义
▪ 对于任意给定的输入 u(t) ,在有限观测时
间 t f t0 ,使得根据 [t0 ,t f ] 期间的输出 y(t)能 唯一地确定系统在初始时刻的状态 x(t0) ,则 称状态 x(t0) 是能观测的。若系统的每一个状 态都是能观测的,则称系统是状态完全能观测 的,简称系统能观。
x1
c1
1
y
y c1 c2 x
显然,只有 c1 0 时,系统才可观,
b2
否则系统不可观。也就是说输出矩
阵C中,对应每个约旦块开头的一列
的元素不全为零,系统可观。
x2 c 2
1
▪ 3、直接从A、C判别系统的能观性
线性定常系统能控的充要条件是由A、C构成的能观矩

C
N
CA M
CT
CAn1
▪ 解:(1)判别系统的能控性
2 4 16
M B
AB
A2B 1
6
8
1 2 12
2 4 16 2 4 16 2 4 16
1 6
8
~
0
8
0
~
0
4
4
1 2 12 0 4 4 0 0 8
▪ rankM 3 满秩,所以系统能控。 ▪ (2)计算系统的特征多项式 I A 2 9 2
▪ 得: a2 0,a1 9,a0 2
▪ 一个系统的传递函数阵所表示的是该系统 既能控又能观的那一部分子系统(卡尔曼吉伯特定理)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)如果在有限时间区间[t0 , t1 ] 内,存在容许控制 u(t) ,使系统从
状态空间坐标原点推向预先指定的状态 x(t1,) 则称系统是状态能
达的;由于连续系统的状态转移矩阵是非奇异的,因此系统的能控 性和能达性是等价的。
3)当系统中存在不依赖于 u(t) 的确定性干扰 f (t) 时,f (t)不会改变 系统的能控性。
y(t) C eAt x(0) [x1(0) x2 (0)] e3t
从上式可知,不论初始状态为什么数值,输出 仅仅取决于其差 值[x1(0) x2(0)] 。当 x1(0) x2(0) ,则输出恒等于零。显然,无法通过对 输出的观测去确定初始状态,称这样的系统是不能观测的。
一般情况下,系统
1
1 1 2 x 1u
y Cx 0 1x
系统状态转移矩阵为
如果初始状态为
x(0)
0 0
e At
1 2
et e3t et e3t
et e3t
et
e3t
系统状态方程的解为
x(t)
1 1
t 0
e(tτ)u(τ) d τ
可见,不论加入什么样的
输入信号,总是有 x1 x2
例 电路如下图所示。选取 u(t)为输入量,y(t)为输出量,两个电
x Ax Bu f (t)
二、状态能控性判别准则
1、判据一(能控性判别矩阵)
定理1:对于线性连续定常系统:x Ax Bu 状态完全能控的
充分必要条件是其能控性判别矩阵: Qc [BABA2B An1B] 满秩
即:rankQc rank[BABA2B An1B] n
[证明]: 证明目标:
状态能控与否,不仅取决于B 阵(直接关系),还取决于 A 阵(间接关系)。
状态能观测与否,不仅取决于C 阵(直接关系),还取决 于A阵(间接关系)。对于不能观测的系统,其不能观测的 状态分量与y 既无直接关系,又无间接关系。
3.1 线性连续系统的能控性与能观性
3.1.1 线性系统的能控y
2
3
显然输出 y 中只有 x2 ,而无 x1 ,所以从 y 中不能确定 ,
只能x1确定 。我们x2称 是可观x2测的, 是不可x1观测的。
例 电路如下图所示。如果选取电容两端的电压 uC 为状 态变量,即: x uC 。 电桥平衡时,不论输入电压 u(t)如
何改变,x(t) uC 不随着 u(t)的变化而改变,或者说状态变
一、状态能控性定义
如果存在一个分段连续的输入u(t),能在[t0 , t f ]的有限时间内 使得系统的某一初始状态 x(t0 ) 转移到任一终端状态 x(t f ),则
称此状态是能控的。如果系统的所有状态都是能控的,则称 系统是状态能控的。 对线性定常连续系统,为简便计,可以设初始状态为状态空间 任意非零有限点,终端状态为状态空间原点,即零态。
第三章 线性控制系统 的能控性与能观测性
舒欣梅 西华大学电气信息学院
第三章 线性控制系统的能控性与能观测性
3.1 线性连续系统的能控性与能观性 3.2 线性离散时间系统的能控性与能观性 3.4 能控性、能观测性与传递函数的关系 3.5 实现问题 3.6 线性定常系统的结构分解 3.7 MATLAB在系统能控性和能观性分析
t0)x(t0 )
tf t0
(
t
f
)Bu( )d
量不受 u(t) 的控制。即:该电路的状态是不能控的。
显然,当 电桥不平衡时, 该电路的状态 是能控的。
例 电路如下图所示,如果选择电容C1、 C2两端的电压为状态 变量,即:x1 uC1 , x2 uC2 ,电路的输出 y 为C2上的电压, 即 y x2 ,则电路的系统方程为
x
Ax
bu
2
中的应用
[背景]:
能控性和能观测性基本概念:
20世纪60年代初,由卡尔曼提出,与状态空间描述相对应。
状态空间描述的两段性: 状态方程:描述了输入引起的状态变化
输入能够控制状态 输出方程:描述了状态变化引起的输出改变
状态能否由输出反映
▪ 能控性:
指外输入u(t) 对系统状态变量x(t)和输出变量y(t)的支配能力, 它回答了u(t)能否使x(t)和y(t)作任意转移的问题。
可控的,则该系统是状态不可控的。
▪ 能观测性:
指由系统的输出y(t)识别状态变量x(t)的能力,它回答了状态变 量能否由输出反映出来。
有些状态能够通过输出y(t)确定下来,有些状态则不能
能通过y(t)确定下来的状态称为能观状态,
不能通过y(t)确定下来的状态称为不能观状态。
直观概念: 系统结构图如下
如果存在一个分段连续的输入u(t),能在[t0 , t f ]的有限时间内 使得系统的某一初始状态 x(t0 ) 转移到零态 x(t f ) 0 ,则称系
统是状态能控的。
说明:
1) 初始状态 是状态空间中的任意非零有限点,控制的目标是 状态空间的坐标原点。(如果控制目标不是坐标原点,可以通过坐 标平移,使其在新的坐标系下是坐标原点。)
感上的电流分别作为状态变量,则系统方程为
x
Ax
Bu
-2
1
1 -2
x
10u
y Cx 1 1x
系统状态转移矩阵为
e At
1 2
et e3t et e3t
et e3t
et
e3t
系统状态方程的解为
x(t) e At x(0) t e A(tτ) bu(t τ) d τ 0
为了简便起见,令 u(t) 0 则 x(t) eAt x(0)
对系统的任意的初始状态 x(t0 ) ,能否找到输入u(t),使之在 [t0 , t f ] 的有限时间内转移到零 x(t f ) 0 。则系统状态能控。
已知:线性定常非齐次状态方程的解为:
t
x(t) (t t0 )x(t0 )
(t )Bu( )d
t0
将 t t f 代入上式:
x(tf ) (tf
有些状态分量能受输入u(t)的控制,有些则可能不受u(t)的控制。 受u(t)控制的状态称为能控状态,不受u(t)控制的状态称不能控 状态。
直观概念:系统的结构图如下
s1 x2
2
u
s1 x1 y
3
显然,u 只能控制 x1 而不能影响 x2 ,我们称状态变量 x1是
可控的,而 x2 是不可控的。只要系统中有一个状态变量是不
相关文档
最新文档