初中数学非负数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学中的非负数问题
在实数范围内,“非负数”是一个非常重要的数学概念,也是一个使一部分学生头疼的难点之一。
如果能够灵活地运用非负数的有关性质进行变形,那就可以开拓思路,发现解题途径。
其实,非负数并没有想象中的那么可怕,可怕的是有些同学概念不清,也记不住非负数的性质,导致看到题的以后做的一塌糊涂。
一、非负数的概念:
正数和零总称为非负数。
在这里我们要用的最多的也是学生们最容易忘的就是非负数中的“零”。
二、非负数定理:
非负数大于等于0。
非负数的和为零,则每个非负数必等于零。
(有限个非负数的和为零,那么每一个加数也必为零)
非负数的积为零,则至少有一个非负数为零。
非负数的绝对值等于本身。
任何一个非负数乘于-1都会得到一个非正数。
非负数中有有理数也有无理数。
非负数的和或积仍是非负数。
在非负数的性质中我们用的最多的就是:如果有限个非负数的和等于零,则必有每个非负数都同时为零。
三、三种非负数:
实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。
四、表达形式:
非负数的表达形式通常是│a│、a2n等。
那么在我们的初中学习中,所学的哪些数或式子是非负的呢?我们在解题中该注意哪些问
b)。
题呢?在初一时,我们学过的非负数有两个,一个是绝对值,一个是数的偶次方(||a和2n
出现的形式也是非常单一的,共有三种情况:222||||0||00a b a b a b +=⎧⎪+=⎨⎪+=⎩。
在这三种情况中不管出现哪一种,则都会有00a b =⎧⎨=⎩
,当然,我们这里的a 和b 往往不是一个单独的字母,而是一个代数式。
例如:2|3|(2)0a b -+-=,这时就有23a b =⎧⎨
=⎩。
这就是我们初一学的非负数,只要牢记出现的形式,就不难得到答案。
例: (a-3)²+(b+2)²=0,求a 、b 的值?
未完待八年级需增加平方根内容。