第8章梁地强度与刚度
建筑力学第8章杆件的变形和刚度校核

9
8.3 平面弯曲梁的变形计算———叠加法(查表法) 从上一节例题可以看出,由于梁的变形微小, 而且梁的材料是在线弹性范围内工作的,因此梁的 挠度和转角均与梁上的荷载成线性关系。这样,梁 上某一荷载所引起的变形,不受同时作用的其他荷 载的影响,即各荷载对弯曲变形的影响是各自独立 的。因此,梁在几项荷载(集中力、集中力偶或分 布力)同时作用下某一截面的挠度和转角,就分别 等于每一项荷载单独作用下给截面的挠度和转角的 叠加。当每一项荷载所引起的转角在同一平面内( 例如均在 xy平面内),其挠度都在同一方向上( 例如均在 y轴方向)时,叠加就是代数和。
12
小结 本章主要研究扭转轴和平面弯曲梁的变形计算 和刚度校核问题。 1)扭转轴的变形计算及刚度条件为
13
2)平面弯曲梁的变形计算可用积分法和叠加 法进行。用积分法求解梁变形就是正确列出各段梁 的弯矩方程,代入挠曲线近似微分方程,积分一次 得到转角方程,再积分一次得到挠曲线方程,然后 正确应用边界条件和连续条件确定积分常数。积分 法是求梁变形的基本方法,虽然计算比较烦琐,但 在理论上是比较重要的。
14
2
图 8.2
3
图 8.3
4
5
6
7
8
正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文
第8章 杆件的变形和刚度校核
为了避免受扭的轴产生过大的变形,除了要 保证强度条件以外,还要满足刚度要求。工程中 ,通常是用单位长度扭转角 θ 来限制轴的扭转变 形。因此,其刚度条件为
第8章 梁的强度与刚度

《工程力学》——沙市大学建筑工程系
解:画出梁的弯矩图如图,最大弯矩在梁中
点。 由
矩形截面弯曲截面系数:
h=2b=0.238m 最后取h=240mm,b=120mm
《工程力学》——沙市大学建筑工程系
第二十六讲 弯曲正应力强度计算(二)
目的要求:掌握脆性材料的弯曲正应力强度
计算。
教学重点:脆性材料的弯曲正应力强度计算。
《工程力学》——沙市大学建筑工程系
解:(1)求出梁的支座反力为 FA=0.75kN,FB=3.75kN (2)作梁的弯矩图如图(b) (3)分别校核B、C截面 B截面
可见最大拉应力发生在C截面的下边缘。 以上校核知:梁的正应力强度满足。 C截面
可见最大拉应力发生在C截 的下边缘。 以上校核知:梁的正应力强度满足。
《工程力学》——沙市大学建筑工程系
二、纯弯曲时梁的正应力:
1、中性层和中性轴的概念: 中性层:纯弯曲时梁的纤维层有的变长, 有的变短。其中有一层既不伸长也不缩短, 这一层称为中性层。 中性轴:中性层与横截面的交线称为中性轴。
《工程力学》——沙市大学建筑工程系
《工程力学》——沙市大学建筑工程系
《工程力学》——沙市大学建筑工程系
三、 选择合理的截面:
1、截面的布置应该尽可能远离中性轴。 工字形、槽形和箱形截面都是很好的选择。 2、脆性材料的抗拉能力和抗压能力不等, 应选择上下不对称的截面,例如T字形截面。
教学难点:脆性材料的正应力分布规律及
弯曲正应力强度条件的建立。
《工程力学》——沙市大学建筑工程系
一、 脆性材料梁的弯曲正应力分析
1、脆性材料的弯曲梁其截面一般上下不对称,例如T字形截
面梁。
08第八章 弯曲变形

二、梁计算简图 1支座形式与支反力 作用在梁上的外力,包括载荷和支座反力 载荷和支座反力。工程中常见支座有以下 载荷和支座反力 三种形式: (1)固定铰支座。如图8-3(a)所示,固定铰支座限制梁在支承处 固定铰支座。 固定铰支座 任何方向的线位移,其支座反力可用2个正交分量表示,沿梁轴线方 向的XA和垂直于梁轴线方向的YA。 (2)活动铰支座。如图8-3(b)所示,活动铰支座只能限制梁在支 活动铰支座。 活动铰支座 承处垂直于支承面的线位移,支座反力可用一个分量FRA表示。 (3)固定端。如图8-3(c)所示,固定端支座限制梁在支承处的任 固定端。 固定端 何方向线位移和角位移,其支座反力可用3个分量表示,沿梁轴线方 向的XA和垂直于梁轴线方向的YA,以及位于梁轴平面内的反力偶 MA。
解:(1)列弯矩方程 选取A为坐标原点,坐标轴如图8-13所示。在截 面x处切开,取左段为研究对象,列平衡方程: (2)作弯矩图 由弯矩方程可知,弯矩M为x的一次函数,所以 弯矩图为一条斜直线。(由两点可画出一条直线)
例8-7图8-14(a)所示悬臂梁,在全梁上受集度 为q的均布载荷作用。作该梁的弯矩图。
例8-1:如图8-8所示悬臂梁,求图中1-1和2-2截 面上的剪力和弯矩。
解: (1) 计算1-1上的剪力和弯矩。 假想在1-1截面处把梁截开,考虑左段梁的平衡, 剪力和弯矩按正方向假设。
得:
(2) 计算2-2上的剪力和弯矩。假想在2-2截面 处把梁截开,考虑左段梁的平衡,剪力和弯矩按 正方向假设。
弯矩图如图8-11(b)所示,由于在C点处有集中力 偶Mo作用,C点左侧与C点右侧弯矩不变,有突变, 突变值即为集中力偶Me。如b>a,则最大弯矩发生 在集中力偶作用处右侧横截面上 。
例8-5:图8-12(a)所示简支梁,在全梁上受集 度为q的均布载荷,作此梁的弯矩图。
周建方版材料力学习题解答[第八章9]分析
![周建方版材料力学习题解答[第八章9]分析](https://img.taocdn.com/s3/m/cbb06210a417866fb94a8e07.png)
8-49现用某种黄铜材料制成的标准圆柱形试件做拉伸试验。
已知临近破坏时,颈缩中心部位的主应力比值为113321::::=σσσ;并已知这种材料当最大拉应力达到770MPa 时发生脆性断裂,最大切应力达到313MPa 时发生塑性破坏。
若对塑性破坏采用第三强度理论,试问现在试件将发生何种形式的破坏?并给出破坏时各主应力之值。
解: 令主应力分别为:σσ31=,σσσ==32脆性断裂时,由第一强度理论=1r σσσ31==770MPa所以,塑性破坏时,由第三强度理论 所以故,试件将发生脆性断裂。
破坏时MPa 7701=σ,MPa 25732==σσ8-50 钢制圆柱形薄壁压力容器(参见图8-13),其平均直径mm d 800=,壁厚mm 4=δ,材料的M P a ][120=σ,试根据强度理论确定容器的许可内压p 。
解:在压力容器壁上取一单元体,其应力状态为二向应力状态。
p pd 504'==δσ ,p pd1002"==δσ 其三个主应力为p 100"1==σσ, p 50'2==σσ,03=σ据第三强度理论所以 ,MPa p 2.13≤,许可内压MPa p 2.13= 据第四强度理论所以,MPa p 39.14≤,许可内压MPa p 39.14=8-51 空心薄壁钢球,其平均内径mm d 200=,承受内压MPa p 15=,钢的MPa ][160=σ。
试根据第三强度理论确定钢球的壁厚δ。
解:钢球上任一点应力状态如图示 其三个主应力为:σσσ==21,03=σ而 MPa MPa d p R R p δδδδππσ4342.0152222=⨯=⋅=⋅⋅=据第三强度理论 所以 mm m 69.41069.41601433=⨯=⨯≥-δ 8-52 图8-77所示两端封闭的铸铁圆筒,其直径mm d 100=,壁厚mm 10=δ,承受内压MPa p 5=,且在两端受压力kN F 100=和外扭矩m kN T ⋅=3作用,材料的许用拉应力MPa ][40=+σ,许用压应力MPa ][160=-σ,泊松比250.=ν,试用莫尔强度理论校核其强度。
工程力学第8章 变形及刚度计算

39
40
解 (1)静力方面 取结点 A为研究对象,分析其受 力如图 8.15(b)所示,列出平衡方程:
(2)几何方面
(3)物理方面 由胡克定律,有:
41
(4)补充方程 式(u)代入式(t),得:
再积分一次,得挠度方程
15
16
17
18
例8.5 图8.7所示等截面简支梁受集中力F作用,已 知梁的抗弯刚度为EI,试求C截面处的挠度yC和A截面 的转角θA。
19
解 取坐标系如图所示,设左、右两段任一横截面 形心的坐标、挠度和转角分别为x1,y1,θ1和x2,y2, θ2。梁的支反力为
20
2
3
8.1.2 横向变形及泊松比 定义
4
5
8.2 圆轴扭转时的变形和刚度计算
8.2.1 圆轴扭转时的变形 在7.6节中提到,圆轴扭转时的变形可用相对扭转角 φ来表示,而扭转变形程度可用单位长度扭转角θ来表示。 由7.6.2节中的式(d),即
6
8.2.2 刚度计算 有些轴,除了满足强度条件外,还需要对其变形加 以限制,如机械工程中受力较大的主轴。工程中常限制 单位长度扭转角θ不超过其许用值,刚度条件表述为
(3)物理方面 由胡克定律,可得:
37
(4)补充方程 将式(q)代入式(p),可得:
(5)求解 联立求解方程(o)和(r),可得:
38
由上例可以看出解超静定问题的一般步骤为: (1)选取基本体系,列静力平衡方程; (2)列出变形谐调条件; (3)物理方面,将杆件的变形用力表示; (4)将物理关系式代入变形谐调条件,得到补充 方程; (5)联立平衡方程和补充方程,求解未知量。
34
(1)静力方面 选取右端约束为多余约束,去掉该约束并代之以多 余支反力FB,如图8.14(b)所示,称为原超静定问题 的基本体系。所谓基本体系,是指去掉原超静定结构的 所有多余约束并代之以相应的多余支反力而得到的静定 结构。列出其平衡方程为:
梁的强度和刚度计算

Sz;
dT 'bdx;
x 0, N1 N2 dT 0;
' dMSz , dM Q, ' ;
dxI zb dx
QS z ;
I zb
返回 下一张 上一张 小结
矩形截面剪应力计算公式:
QS
* z
式中:Q—横截面上的剪力;
Izb
Iz—横截面对其中性轴的惯性矩; b—所求剪应力作用点处的截面宽度;
763 5.2
146 .7cm3;W2
z y2
763 8.8
86.7cm3;
(3)C截面的正应力强度校核:
max
W2 Mc
86.7 10
6
310
34.7MPa ; max
W1 MD
146.7 10
6
310
20.5MPa ;
3
3
(4)D截面的正应力强度校核:
max
W1 MD
146.7 10
6
4.810
32.7MPa ; max
W2 MD
86.7 10 6 4.810
55.3MPa ;
3
3
(5)最大拉应力发生在C截面的下边缘处,最大压应力发生在D
截面的下边缘处,其值分别为: max 34.7MPa; max 55.3MPa;
令Wz
Iz ; ymax
Wz ___ 抗弯截面系数(模量),反映截面抵抗弯曲变形的能力;单位:m3, mm3.
矩形截面:Wz
bh2 6
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度

课
后 答
案
网
解:由挠度表查得:
FP al 180° × 3 EI π Wal 180° = ⋅ 3 EI π 20000 × 1 × 2 × 64 180° = ⋅ 3 × 200 × 109 × π d 4 π ≤ 0 .5 ° d ≥ 0.1117 m,取 d = 112mm。
θB =
ww w
6 ( 246 + 48) ×10 × 200 ×10 × π × 32 × 10−12
2
co
m
8—3 具有中间铰的梁受力如图所示。试画出挠度曲线的大致形状,并说明需要分几段 建立微分方程,积分常数有几个,确定积分常数的条件是什么?(不要求详细解答)
习题 8-3 图
后 答
案
网
习题 8-4 图
课
习题 8-4a 解图
解: (a)题 1.
wA = wA1 + wA 2
wA1 =
⎛l⎞ q⎜ ⎟ ⎝2⎠
87图示承受集中力的细长简支梁在弯矩最大截面上沿加载方向开一小孔若不考虑应力集中影响时关于小孔对梁强度和刚度的影响有如下论述试判断哪一种是正确的
eBook
工程力学
(静力学与材料力学)
习题详细解答
(第 8 章) 范钦珊 唐静静
课
后 答
案
网
2006-12-18
ww w
1
.k hd
aw .
co
m
(教师用书)
−3 9 4
(
.k hd
解:由挠度表查得 F ba 2 wC = P l − a 2 − b2 6lEI
(
)
习题 8-9 图
8
aw .
)
9第八章 杆件变形分析与刚度

2, 由强度条件可得: 由强度条件可得:
由刚度条件可得: 由刚度条件可得:
所以,空心轴的外径应不小于 所以,空心轴的外径应不小于147mm. .
8.5.2 杆件的刚度设计 从挠曲线的近似微分方程及其积分可以看出, 从挠曲线的近似微分方程及其积分可以看出, 弯曲变形与弯矩大小,跨度长短,支座条件, 弯曲变形与弯矩大小,跨度长短,支座条件,梁 有关. 截面的惯性矩 ,材料的弹性模量 有关.故提高 梁刚度的措施为: 梁刚度的措施为: 1) 改善结构受力形式,减小弯矩 ; 改善结构受力形式, 2) 增加支承,减小跨度 ; 增加支承, 3) 选用合适的材料,增加弹性模量 .但因各 选用合适的材料, 种钢材的弹性模量基本相同, 种钢材的弹性模量基本相同,所以为 提高梁的刚 度而采用高强度钢,效果并不显著; 度而采用高强度钢,效果并不显著; 4) 选择合理的截面形状,提高惯性矩 ,如工字形 形状,
4,由于实际无变形,所以: ,由于实际无变形,所以:
解得: 解得:
已知α=30.,杆长 杆长L=2m,直径 直径d=25mm, 【例8.3 】已知 直径 , E=210GPa,P=100kN,求节点 的位移. 求节点A的位移 , 求节点 的位移.
【解】
§8.2 圆轴的扭转变形
圆截面直杆在扭转时,小变形情况下, 圆截面直杆在扭转时,小变形情况下,可认为各 横截面之间的距离保持不变,仅绕轴线作相对转动, 横截面之间的距离保持不变 , 仅绕轴线作相对转动 , 表示. 两横截面间相对转过的角度称为 扭转角 , 用 φ表示 . 表示 取一微段dx研究,设徽段d 的相对扭转角为dφ, 取一微段 x研究,设徽段dx的相对扭转角为 ,沿 轴线方向的变化率为dφ/dx . 在线弹性范围内 , 由 轴线方向的变化率为 x 在线弹性范围内, 5-22) 式(5-22)可知 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章梁的强度与刚度
1. 矩形截面简支梁受载如图所示,试分别求出梁竖放和平放时产生的最大正应
力。
2. 外伸梁用№16a号槽钢制成,如图所示。
试求梁内最大拉应力和最大压应力,
并指出其作用的截面和位置。
3.求图示各图形对形心轴z的截面二次矩。
4. 求图示各图形对形心轴z的截面二次矩。
5.求图示截面对水平形心轴z的截面二次矩。
6. 外伸梁受均布荷载作用,q=12kN/m,[σ]=160MPa。
试选择此梁的工字钢
型号。
7. 空心管梁受载如图所示。
已知[σ]=150MPa,管外径D=60mm,在保证安全
的条件下,求内经d的最大值。
8. 铸铁梁的荷载及横截面尺寸如图所示,已知I z=7.63×10-6m4,[σt]=30MPa,
[σc]=60MPa,试校核此梁的强度。
9. 简支梁受载如图所示,已知F=10kN,q=10kN/m,l=4m,a=1m,
[σ]=160MPa。
试设计正方形截面和矩形截面(h=2b),并比较它们截面面积的大小。
10.由№20b工字钢制成的外伸梁,在外伸端C处作用集中力F,已知
[σ]=160MPa,尺寸如图所示,求最大许可荷载[F]。
11. 压板的尺寸和荷载情况如图所示,材料系钢制,σs=380MPa,取安全系数
n=1.5。
试校核压板的强度。
12. 试计算图示矩形截面简支梁1-1截面上a点和b点的正应力和切应力。
13. 图示外伸梁采用№16号工字钢制成,求梁内最大正应力和切应力。
14.一单梁桥式行车如图所示。
梁为№28b号工字钢制成,电动葫芦和起重重
量总重F=30kN,材料的[σ]=140MPa,[τ]=100MPa。
试校核梁的强度。
15.工字钢外伸梁,如图所示。
已知[σ]=160MPa,[τ]=90MPa,试选择合适的
工字钢型号。
16. 用叠加法求图示各梁中指定截面的挠度和转角,设梁的抗弯刚度EI z为常量。
17. 用叠加法求图示各梁中指定截面的挠度和转角,设梁的抗弯刚度EI z为常量。
18. 用叠加法求图示各梁中指定截面的挠度和转角,设梁的抗弯刚度EI z为常量。
19. 用叠加法求图示各梁中指定截面的挠度和转角,设梁的抗弯刚度EI z为常量。
20. 简化后的电机轴受荷载及尺寸如图所示。
轴材料的E=200GPa,直径
d=130mm,定子与转子间的空隙(即轴的许用挠度)δ=0.35mm,试校核轴的刚度。
21. 工字钢悬臂梁如图所示。
已知q=15kN/m,l=2m,E=200GPa,
[σ]=160MPa,最大许用挠度[ω]=4mm,试选取工字钢型号。
22. 试求图示超静定梁的支座反力,并画弯矩图,设EI z为已知常数。
23.试求图示超静定梁的支座反力,并画弯矩图,设EI z为已知常数。