高中数学三角恒等变换习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 三角恒等变换

一、选择题

1.函数y =sin +cos ⎪⎭⎫ ⎝

2π < < 0α的值域为( ).

A .(0,1)

B .(-1,1)

C .(1,2]

D .(-1,2)

2.若0<<<4

π

,sin +cos =a ,sin +cos =b ,则( ). A .a <b

B .a >b

C .ab <1

D .ab >2

3.若θθtan +2tan 1-=1,则θθ

2sin +12cos 的值为( ).

A .3

B .-3

C .-2

D .-

2

1

4.已知 ∈⎪⎭⎫

⎛2π3 ,π,并且sin =-

2524,则tan 2α等于( ). A .

3

4 B .43 C .-43 D .-3

4

5.已知tan(+)=3,tan(-)=5,则tan 2=( ). A .-

4

7

B .

4

7 C .-

7

4 D .

7

4 6.在△ABC 中,若cos A cos B >sin A sin B ,则该三角形是( ). A .锐角三角形 B .直角三角形 C .钝角三角形

D .锐角或直角三角形

7.若0<<2π<<,且cos =-31,sin(+)=97

,则sin 的值是( ). A .

271

B .

27

5

C .3

1

D .

27

23 8.若cos(+)·cos(-)=31

,则cos 2 -sin 2

的值是( ). A .-

3

2

B .31

C .-31

D .

3

2 9.锐角三角形的内角A ,B 满足tan A -

A

2sin 1

=tan B ,则有( ). >

A .sin 2A -cos

B =0 B .sin 2A +cos B =0

C .sin 2A -sin B =0

D .sin 2A +sin B =0

10.函数f (x )=sin 2⎪⎭⎫ ⎝⎛4π+x -sin 2⎪⎭⎫ ⎝

⎛4π-x 是( ).

A .周期为 的偶函数

B .周期为的奇函数

C .周期为2的偶函数

D .周期为2的奇函数

二、填空题

11.已知设∈⎪⎭⎫ ⎝

⎛2π,

0,若sin =53,则2cos ⎪⎭⎫ ⎝

+4πα= .

12.sin 50°(1+3tan 10°)的值为 . 13.已知cos ⎪⎭⎫ ⎝

⎛-

6πα+sin =534,则sin ⎪⎭

⎫ ⎝⎛

+6π7α的值是 . 14.已知tan ⎪⎭⎫ ⎝⎛α + 4π=2

1

,则ααα2cos +1cos -2sin 2

的值为 .

&

15.已知tan =2,则cos ⎪⎭

2π3+ 2α的值等于 . 16.sin ⎪⎭⎫ ⎝⎛α + 4πsin ⎪⎭⎫ ⎝⎛α - 4π=6

1

∈⎪⎭

⎫ ⎝⎛ π,2π,则sin 4的值为 .

三、解答题

17.求cos 43°cos 77°+sin 43°cos 167°的值.

18.求值:①(tan10°-3)︒

50sin 10cos ; ②

︒20cos 20sin -10cos 2.

19.已知cos ⎪⎭

⎫ ⎝⎛x + 4π=53

,127π<x <47π,求x x x tan -1sin 2+2sin 2的值.

20.若sin =55,sin =10

10

,且,均为钝角,求+的值.

@

参考答案

一、选择题 1.C

解析:∵ sin +cos =2sin(+

4

π

),又 ∈(0,

2

π

),∴ 值域为(1,2]. 2.A

解析:∵ a =2sin(+

4π),b =2sin(+4π),又4π<+4π<+4π<2

π. 而y =sin x 在[0,2

π]上单调递增,∴ sin(+4π)<sin(+4π

).即a <b .

3.A 解析:由

θ

θtan +2tan 1-=1,解得tan θ=-21

∴ θθ2sin +12cos =22

2

sin + cos sin - cos )(θθθθ=θθθθsin + cos sin - cos =θθ tan + 1 tan - 1=

⎝⎛⎪

⎭⎫

⎝⎛21 - + 121 - - 1=3. 、

4.D

解析:sin =-

2524,∈(π,2

π3),∴ cos =-257

,可知tan =724. 又tan =

2

tan - 12

tan

22

α

α

7

24

. 即12 tan 22α+7 tan 2α

-12=0. 又 2α∈⎪⎭

⎫ ⎝⎛4π ,

2π,可解得 tan 2α

=-34. 5.C

解析:tan 2=tan[(+)+(-)]=)-()+(-)

-()++(βαβαβαβαtan tan 1tan tan =-7

4.

6.C

解析:由cos A cos B >sin A sin B ,得cos(A +B )>0⇒cos C <0, ∴ △ABC 为钝角三角形.

$

相关文档
最新文档