药剂学--脂质体介绍
脂质体的介绍
![脂质体的介绍](https://img.taocdn.com/s3/m/81c3ceb1760bf78a6529647d27284b73f3423660.png)
– 被动(天然)靶向性:天然靶向性是脂质体静脉给药是的基本特征。是由于脂质 体被巨噬细胞作为体外异物吞噬而产生的体内分布特征。脂质体的这种特征被广 泛应用于肝肿瘤等的治疗和防止淋巴系统肿瘤等的扩散和转移。
– 隔室靶向性:隔室靶向性指的是脂质体通过不同给药方式进入人体之后可以对不 同部位具有靶向性。
– 物理靶向性:在脂质体的设计过程中,利用作用部位的物理因素或化学因素的改 变而改变脂膜的通透性,引起脂质体选择性释放药物,从而达到靶向给药之目的。 这种物理或化学的因素包括局部pH变化,病变部位温度变化,磁场的变化等。目 前物理靶向脂质体设计最为成功的例子是温度敏感脂质体。
•.
脂质体在应用中存在的问题
• 脂质体作为药物载体的应用虽然具备了许 多优点和特点,但就目前来看,也还存在 一定的局限性,首先表现在其制备技术给 工业化生产带来了一定难度;此外对于某 些水溶性药物包封率较低,药物易从脂质 体中渗漏;稳定性差亦是脂质体商品化过 程急需解决的问题,目前的冻干方法可能 是延长脂质体的贮存期的有效途径。
从而延长药物作用时间。 • 减低药物毒性 • 脂质体能选择性地分布于某些组织和器官,药物,能使之选择性地 杀伤癌细胞或抑制癌细胞,对正常组织、细胞的毒性明显降低或无损害 作用。对脂质体表面性质进行改变,如粒径大小、表面电荷、组织特异 性抗体等,可提高药物对靶区的选择性,从而也降低了毒性,减少了不良 反应。 • 提高药物稳定性 • 将一些不稳定的易氧化的药物制成脂质体之后,由于药物包封在脂质 体中,受到类脂双分子层膜的保护,可以显著提高其稳定性。同时在 进入体内之后,由于脂质体膜的保护,药物可以免受机体酶系统和免 疫系统的降解。
脂质体的定义
磷脂在水溶液中形成脂质体 • 脂质体(英语:Liposome)也称为微脂粒,是一种具有
脂质体的介绍PPT课件
![脂质体的介绍PPT课件](https://img.taocdn.com/s3/m/65b73c816037ee06eff9aef8941ea76e58fa4aae.png)
基因沉默研究
利用脂质体传递小干扰 RNA等分子,实现基因的 沉默和功能抑制。
基因编辑技术研究
利用脂质体传递基因编辑 工具,如CRISPR-Cas9系 统,实现基因的精确编辑 和修复。
05பைடு நூலகம்
脂质体的挑战与前景
稳定性问题
储存稳定性
脂质体在储存过程中容易发生聚 集和融合,影响其药物传递效果。
逆向蒸发法
逆向蒸发法的优点
逆向蒸发法可以制备出粒径较小 、粒度分布较窄的脂质体,且制 备过程中可以加入多种药物,制 备过程简单、快速。
逆向蒸发法的缺点
由于需要使用有机溶剂,可能对 药物产生影响,且制备过程中需 要控制温度和压力等参数,操作 难度较大。
其他制备方法
微射流技术
通过高压水射流将药物和脂质材料混 合在一起,形成脂质体。该方法可以 制备出粒径较小、粒度分布较窄的脂 质体,且制备过程快速、高效。
新材料与新技术的应用
新材料
新型脂质材料如聚乙二醇脂质体、胆固醇脂质体等,具有更好的稳定性和生物 相容性,提高了药物的包封率和靶向性。
新技术
纳米技术、超声波技术、微流控技术等在脂质体制备中的应用,提高了脂质体 的制备效率和均一性,同时为脂质体的功能化提供了更多可能性。
脂质体作为药物传递系统的研究进展
工艺成本
脂质体的制备工艺复杂,需要精密的 设备和专业的技术人员,增加了生产 成本。
市场前景与展望
药物传递领域
化妆品领域
脂质体作为药物传递系统在肿瘤、感染等 疾病治疗领域具有广阔的应用前景。
脂质体在化妆品领域的应用逐渐增多,可 提高皮肤对营养成分的吸收,改善皮肤状 况。
药剂学脂质体介绍ppt课件
![药剂学脂质体介绍ppt课件](https://img.taocdn.com/s3/m/05ba98a3846a561252d380eb6294dd88d0d23db6.png)
ABCD
制备方法
不同的制备方法可能导致脂质体具有不同的粒径、 电位和药物包封率,从而影响其稳定性。
介质性质
介质中的离子强度、pH值等因素可能影响脂质 体的稳定性。
提高稳定性策略
优化脂质组成
通过调整磷脂种类、胆固醇含量等脂质组成,提高脂质体的稳定性。
改进制备方法
采用更先进的制备方法,如高压均质、超声等,以获得更稳定的脂质体。
控制储存条件
在低温、避光、适宜pH值等条件下储存脂质体,以提高其稳定性。
添加稳定剂
向脂质体中添加适量的稳定剂,如表面活性剂、聚合物等,以提高其稳定性。
05
脂质体在药物研发中作用 与挑战
药物研发中作用
提高药物稳定性
脂质体作为药物载体,能够保护 药物免受外部环境(如pH值、温 度)的影响,从而提高药物的稳
超临界流体技术
利用超临界流体(如CO2)的高扩散性和低粘度特性,将 药物、磷脂、胆固醇等溶解于超临界流体中,然后通过减 压或升温的方式使脂质体析出。
04
脂质体稳定性评价与影响 因素
稳定性评价方法
粒径分布测定
通过动态光散射等方法测定脂质体的粒径及 其分布,以评估其稳定性。
电位测定
利用电位测定仪测定脂质体的电位,以判断 其稳定性及可能发生聚集的倾向。
制备过程演示
01
减压蒸发除去有机溶剂,得到胶态脂质体。
02
通过凝胶色谱法或超速离心法进行纯化。
3. pH梯度法
03
制备过程演示
利用药物在不同pH值下溶解度的差异, 将药物包载入脂质体内。
通常先将药物溶于酸性水溶液中,再 与碱性脂质体混合,通过pH梯度促使 药物包载。
结果观察与数据分析
药剂学第十八章制剂新技讲义术(第5节脂质体)-2024鲜版
![药剂学第十八章制剂新技讲义术(第5节脂质体)-2024鲜版](https://img.taocdn.com/s3/m/b5b5ed8d0d22590102020740be1e650e53eacf52.png)
2024/3/28
改进制备工艺
优化脂质体的制备工艺参数,如控制粒径 分布、提高包封率等,有助于提高脂质体 的稳定性和安全性。
加强质量控制
建立严格的质量控制标准和方法,对脂质 体的物理、化学及生物学特性进行全面检 测和控制,确保产品的稳定性和安全性。
22
06 脂质体未来发展 趋势与挑战
2024/3/28
23
创新制备技术
超声制备技术
利用超声波的空化作用,使脂质体在溶液中均匀分散,提高包封率和稳定性。
薄膜分散法
将脂质膜材料溶解在有机溶剂中,然后通过蒸发去除溶剂,形成脂质薄膜,再加入水相 进行分散,得到脂质体。
2024/3/28
逆向蒸发法
将药物与有机溶剂的混合液注入到含有脂质材料的水相中,蒸发去除有机溶剂,形成脂 质体。
14
04 脂质体在药物传 递系统中的应用
2024/3/28
15
靶向给药系统
01
脂质体的被动靶向 性
利用脂质体在体内的自然分布, 将药物选择性地传递至特定组织 或器官。
02
脂质体的主动靶向 性
通过修饰脂质体表面,使其具有 与特定细胞或组织结合的能力, 实现药物的精准传递。
03
脂质体的物理靶向 性
利用外部物理因素(如磁场、超 声波等)引导脂质体至目标部位 ,提高药物的局部浓度。
利用数学模型描述脂质体的稳定性变化过程,预测其有效期和储存 条件。
20
安全性评价策略
急性毒性试验
通过给动物注射不同剂量的脂质体,观察其急性毒性反应 ,评估脂质体的安全性。
01
长期毒性试验
长期给动物注射脂质体,观察其毒性反 应和靶器官的损伤情况,评估脂质体的 长期安全性。
药剂学--脂质体素材
![药剂学--脂质体素材](https://img.taocdn.com/s3/m/6bf73e3fdd36a32d73758162.png)
H
+
NH3
H O O P O O
O
C O
COO
HO
O
O
P O O
O
O
P O O
O
O
O O
O O
O
O O
R
R
R
R
R
R
磷脂酸 (phosphatidic acid,PA)
磷脂酰肌醇 (phosphatidyl inositol,PI)
磷脂酰丝氨酸 (phosphatidyl serine, PS)
脂质体材料
负电荷磷脂 (酸性磷脂)
磷脂酸(PA) 磷脂酰甘油(PG) 磷脂酰肌醇 (PI) 磷脂酰丝氨酸(PS)
硬脂酰胺(SA)
正电荷脂质
胆固醇衍生物
大豆甾醇葡萄糖苷(SG) 大豆甾醇SS
大豆甾醇及其葡萄糖苷 胆固醇(Ch)
脂质体的组成(中性磷脂)
1、中性磷脂 ⑴磷脂酰胆碱(phosphatidyl choline,PC,) ①天然的PC a. 脂质体的主要组成部分 b. 从蛋黄、大豆、牛心脏和脊髓提取 c.是一种混合物,每一种PC具有不同长度、不同饱和度的脂肪链。 植物性PC的脂肪链具有高度不饱和性 动物性PC的脂肪链大部分是饱和的 ②合成的PC 二棕榈酰胆碱(DPPC)、二硬脂酰胆碱(DSPC) 二肉豆蔻酰磷脂酰胆碱(DMPC)
脂质体的组成
3、胆固醇(cholesterol, Ch)膜的另一类重要组成成分。
存在:动物细胞的质膜中含量较高,植物中含量较少。 性质:为中性脂质,亦属于双亲性分子,但亲油性大于亲水性。
在脂质体中的状态:作为两性分子,能嵌镶入膜,羟基团朝向亲水面, 脂肪族的链朝向并平行于磷脂双层中心的烃链。胆固醇本身不形成脂 质双层结构,但它能以高浓度方式掺入磷脂膜。 在脂质体中的作用:主要与磷脂相结合,阻止磷脂凝集成晶体结构。 减弱膜中类脂与蛋白质复合体之间的连接,像“缓冲剂”一样起着调 节膜结构“流动性”的作用。
药剂学课件-脂质体
![药剂学课件-脂质体](https://img.taocdn.com/s3/m/a6d210f81b37f111f18583d049649b6648d709ae.png)
脂质体的发展将推动药物研究的进步,改善药物的治疗效果。
今后研究的动力
未来的研究将聚焦于提高脂质体的稳定性、探索新的应用领域以及改进制备方法。
脂质体的应用
药物递送
脂质体可用于传递药物给特定 组织或器官,提高药物的生物 利用度和治疗效果。
护肤品
脂质体在护肤品中能为皮肤提 供保湿、滋养和抗氧化的效果, 改善肌肤质量。
营养保健品
脂质体可以包封营养成分,提 高其稳定性和吸收性,用于制 备营养保健品。
脂质体的优点与局限性
1 优点
良好的生物相容性、可控释放性、药物稳定性增强、生物利用度提高。
药剂学课件-脂质体
脂质体是一种重要的药物递送系统,具有许多优点和广泛的应用。本课件将 介绍脂质体的概念、制备方法、表征手段、应用领域以及未来发展趋势。
脂质体的概念
定义
脂质体是由单层或多层脂质构成的微小球体结构,能够包封和释放药物。
特点
脂质体具有良好的生物相容性、可控释放性,且能增强药物的稳定性和生物利用度。
利用超声波的作用力,将脂质和药物分 散在水中,形成脂质体。
脂质质体的形态、大小和 形状。
稳定性表征
通过稳定性试验,如离心沉积试验、尘埃压力 试验等,评估脂质体的稳定性。
粒径分布
通过动态光散射仪等仪器测量脂质体的粒径分 布,以评估其分散性。
药物包封效率
通过分析方法测定药物在脂质体中的包封效率, 评估脂质体的药物载量。
分类
根据组成和结构的不同,脂质体可以分为多种类型,如固体脂质体、透明脂质体等。
脂质体的制备
1
热法制备
通过高温熔融和冷却结晶的方法制备脂
溶剂挥发法制备
2
药剂学脂质体介绍
![药剂学脂质体介绍](https://img.taocdn.com/s3/m/4314ff65b5daa58da0116c175f0e7cd1842518d3.png)
新型磷脂材料
具有更好的生物相容性和 稳定性,能够提高脂质体 的疗效和安全性。
纳米技术
纳米脂质体具有更小的粒 径和更高的靶向性,能够 实现对病变组织的精准治 疗。
智能化技术
利用智能化技术实现对脂 质体制备过程的精准控制, 提高生产效率和产品质量。
个性化医疗需求下创新发展方向
定制化脂质体
根据不同患者的需求和病情,定制具有特定功能和疗效的脂质体。
03
典型药物脂质体制剂案例分析
抗肿瘤药物脂质体制剂
阿霉素脂质体
将阿霉素包裹在脂质体内,可降低药物毒性,提高疗效,广泛用于 治疗多种恶性肿瘤。
顺铂脂质体
顺铂是一种常用的抗肿瘤药物,但其肾毒性较大。通过脂质体包裹, 可降低肾毒性,提高药物在肿瘤组织的分布。
米托蒽醌脂质体
米托蒽醌是一种拓扑异构酶抑制剂,具有广谱抗肿瘤活性。脂质体剂 型可提高其水溶性,降低心脏毒性。
05
挑战、发展趋势及未来展望
当前面临挑战和问题剖析
01
02
03
稳定性问题
脂质体在储存和运输过程 中容易发生聚集、融合和 泄漏等现象,影响其稳定 性和疗效。
靶向性问题
传统脂质体缺乏主动靶向 性,难以实现对病变组织 的精准治疗。
规模化生产难题
脂质体的制备工艺复杂, 难以实现大规模、高效的 生产。
新型材料和技术在脂质体领域应用前景
广泛应用前景。脂质体型剂可提高生长因子的稳定性和靶向性。
ห้องสมุดไป่ตู้
04
脂质体在化妆品和食品领域拓 展应用
化妆品中作为包裹活性成分载体
保护活性成分
脂质体能够包裹化妆品中的活性成分,如维生素C、维生素E等, 防止其氧化和降解,从而保持其稳定性和生物活性。
药剂学实验脂质体的制备及包封率的测定
![药剂学实验脂质体的制备及包封率的测定](https://img.taocdn.com/s3/m/b6b2bd7386c24028915f804d2b160b4e767f81d0.png)
06
实验注意事项与改进建议
实验安全注意事项
实验室安全
01
确保实验室通风良好,佩戴适当的防护装备,如实验服、手套
和护目镜。
化学品安全
02
熟悉并遵守所有化学品的安全数据表(SDS)指南,特别注意
有毒、易燃或腐蚀性物质的正确处理和存储。
设备安全
03
正确使用实验设备,遵循制造商的操作指南,确保设备维护和
其他制备方法
复乳法
将药物水溶液与磷脂等膜材制成W/O型乳剂 后,再分散到外水相中形成W/O/W型复乳 ,除去有机溶剂后可得脂质体
熔融法
将磷脂等膜材在高于相变温度条件下熔融成液晶态 ,加入药物溶液进行搅拌,然后冷却固化得到脂质 体
超声波分散法
利用超声波的空化作用将磷脂膜材分散成脂 质体
03
包封率测定原理及方法
02
直至形成稳定的W/O型乳剂,减压蒸发除去有机溶 剂
03
形成脂质体,加入缓冲液,通过凝胶色谱法或超速 离心法除去未包封的药物
注入法
1
将类脂质和脂溶性药物溶于有机溶剂中,然后把 此药液经注射器缓缓注入加热至相变温度以上的 磷酸盐或醋酸盐等缓冲液
2
类脂质排列成整齐的脂质双分子层而形成脂质体
3
该方法可制备粒径较大且粒径分布均匀的脂质体
包封率定义及意义
包封率定义
包封率是指脂质体中药物包裹量与投 药量之比,是评价脂质体制备工艺和 药物包裹效果的重要指标。
包封率意义
高包封率意味着更多的药物被有效地 包裹在脂质体内,有利于提高药物的 稳定性和生物利用度,减少用药剂量 和副作用。
测定原理
分离原理
通过物理或化学方法将脂质体中的游 离药物与包裹药物分离,然后分别测 定两者的含量,计算包封率。
脂质体的名词解释
![脂质体的名词解释](https://img.taocdn.com/s3/m/64c31361a4e9856a561252d380eb6294dc882213.png)
脂质体的名词解释
脂质体(liposome)是一种人工膜,是由磷脂和鞘脂等两性分子分散于水相时形成的具有双分子层结构的封闭囊泡。
脂质体的双分子层结构与皮肤细胞膜结构相同,因此具有优良的保湿作用。
同时,利用脂质体可以和细胞膜融合的特点,脂质体可以作为药物载体,将药物送入细胞内部。
在药剂学中,脂质体是将药物包封于类脂质双分子层内而形成的微型泡囊体。
脂质体的直径通常在nm之间。
以上信息仅供参考,如需获取更多详细信息,建议查阅相关书籍或咨询专业人士。
脂质体在药剂学中的应用
![脂质体在药剂学中的应用](https://img.taocdn.com/s3/m/4119eb8c87c24028905fc357.png)
脂质体在药剂学中的应用81050420王景脂质体?。
脂质体(Liposomes)是由类月旨(卵磷脂、磷脂酰胆碱、神经鞘磷脂等)双层分子组成的空心球。
直径范围一般为25nm~5|jm,肉眼看不见的小球状物。
磷脂是双极性的,一头亲水,一头亲脂,亲水极朝外头,亲脂极朝内尾,2个磷脂分子“尾” 部相对构成了一个双层分子笛广州普婷生物科技有限公司推出的化妆品脂质体洁面嗜腥脂质体真皮活肤祛皱面膜适合油性皮肤,彻底清洁污垢及化妆品残留物。
重组胶原纤维、弹力纤维和网状纤维,活肤除皱。
脂质体bFGF再生霜激发细胞再生活性,修复受损细胞,预防肌肤过敏脂质体阳光隔离素防尘防紫外线,透气防水,抵御自由基。
南落性O 掰负0爭元旳r旨质体药物作用机理曲脂质体对细胞的作用机理由于脂质体与细胞膜(生物膜)结构相似,脂质体的主要成份磷脂等类脂活性师层亠物也是细胞膜的主要成份,所以脂质体与细胞膜之间有很强的亲合力。
/脂质体的膜与生物膜熔合,脂质体所包含的活性成份(例如EGF, BFGF, SOD, Vc等等)被释放而进入细胞内,或者整个脂质体被细胞吞噬,活性成份在细胞内被吸收(1) Lipo-E:细胞生长肽作用机理:修复、生长、快速渗透能够促进细胞再生、修复受损、萎缩细胞,促进其脂肪细胞生成和长,提高肌肤的抵御机能。
超细小的活性分子,能够迅速渗透皮下组织,增加巨噬细胞吞噬作用及生长、修复的效应。
(2)KGF-2角质细胞生长因子具有调节、修复、再生帮助愈合伤口及加强表皮细胞的代谢和更新,避免色素沉积。
促进组织细胞再生,增强细胞代谢活力,对换肤、纹眉、漂唇及烧伤、烫伤、疤痕修复凹洞补平等,都具有显著疗效。
(3)EGF (表皮细胞生长因子):是一种多功能细胞生长因子,也是多种细胞致裂源,促进多种细胞的合成代谢,快速修复皮肤的损伤(如纹眉、换肤等),促进血管内皮细胞和平滑肌细胞生长,增强微细血管韧度,可以使皮肤红润、健康,提高皮肤的抵御能力。
脂质体
![脂质体](https://img.taocdn.com/s3/m/e3ee779684868762caaed5b3.png)
抗肿瘤 药物载 体 抗寄生 虫药载 体
激素类 药物载 体
抗菌药 物载体
(抗炎甾体类激素)脂质 体可富集于炎症部位,在 较低剂量下发挥疗效,从 而减少副作用。防止激素 口服失效
脂质体可迅速被网状内皮细胞 摄取,利用这一特点,可用含 药脂质体治疗RES系统疾病, 如利什曼氏病和痢疾是某种寄 生虫侵入网状内皮细胞引起病 变
脂质体
Liposomes
临床药学:吕亚青
起源
1965年英国学者Banyhanm和 Standish提出,将磷脂分散在水中 进行电镜观察时发现的。 磷脂分散在水中自然形成多层囊泡, 每层均为脂质双分子层,囊泡中央 和各层之间被水隔开。 1971年英国有人开始将脂质体用 于药物载体。
定义
脂质体:也称为微脂粒,是一种具有靶向给药功能的新型药物制剂,是利用 磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。
脂质体的理化性质
相变温度(Tc): 磷脂都有特定的相变温度Tc,决定Tc的因素: 磷脂种类;极性基团的性质;酰基侧链的长 度和不饱和度,侧链长Tc高,链的饱和度高 Tc高。Tc以下为“胶晶态”,以上为“液晶态”; 磷脂发生相变时,“胶晶态”、“液晶态”和“液态” 共存,出现相分离,使膜的流动性增加,易 导致内容为泄露。
胆固醇
制备普通载药脂质体,胆固醇是必须的 添加物,用量一般为CHO:PC=0.3~1
(摩尔比)。胆固醇与PC和药物的不
同,存在最佳用量。在一定范围内,脂 质体的粒径、氧化稳定性、物理稳定性 与胆固醇添加量成正相关,超出范围时, 超过膜负荷,会造成部分脂质体破裂。
磷脂和胆固醇的组合
1,3 亲油基团;2亲水基团;4季铵盐型阳离子部分;5磷酸酯型阴离子部 分 结构特点: 双分子结构:磷脂分子的亲水端呈弯曲的弧形,形似“手杖”,与胆固醇分 子的亲水基团相结合,形成“U”形结构,两个“U”形结构相对排列,则形成 双分子结构。
药剂学课件-脂质体
![药剂学课件-脂质体](https://img.taocdn.com/s3/m/c32e89d150e79b89680203d8ce2f0066f53364f1.png)
热敏脂质体的敏感温度取决 于所使用的材料和制备方法 ,一般在人体正常温度以上 。
热敏脂质体的制备方法包括 物理混合法、超声波法、反 溶剂法等。
热敏脂质体的研究已经取得 了很多进展,已经在癌症治 疗、感染治疗等领域得到广 泛应用。
pH敏感脂质体
01
02
pH敏感脂质体是指在不同 pH值环境下可以发生结构变 化的脂质体,其在pH值较低 的环境下容易发生相变,导 致药物释放。这种脂质体可 以在酸性环境下实现药物的 快速释放和靶向传输。
新型脂质体的应用研究
随着科技的发展,研究者们不断探索 新的制备方法,以提高脂质体的稳定 性、靶向性和载药量。
新型脂质体在肿瘤、心血管、神经系 统等疾病的治疗、诊断和药物输送方 面展现出广阔的应用前景。
新型脂质体的材料研究
新型材料如生物可降解高分子材料、 聚合物胶束等被用于制备脂质体,以 提高其生物相容性和降低毒性。
随着对病变组织特异性识别分子的深入研究,未来将开发出更多 具有高靶向性的新型脂质体。
智能化脂质体的研究
利用纳米技术、生物技术等手段,开发具有自适应能力的智能化脂 质体,实现药物的精准输送。
联合治疗策略的探索
将脂质体与光热治疗、放射治疗等联合应用,实现多模式协同治疗, 提高疾病的治疗效果。
05
实例分析-药物与脂质体的结 合应用
域得到了广泛应用。
脂质体的应用领域
总结词
脂质体在药物传递、基因治疗、疫苗研 制等领域具有广泛的应用价值。
VS
详细描述
1. 药物传递:脂质体作为药物载体,能 够将药物包裹在其内部,实现药物的靶向 传递和控释给药,提高药物的疗效和降低 副作用。2. 基因治疗:脂质体可以用于 基因转染,将目的基因导入到细胞内,用 于治疗遗传性疾病和肿瘤等疾病。3. 疫 苗研制:脂质体可以作为疫苗的载体,将 抗原物质包裹在脂质体中,诱导机体产生 免疫反应,用于预防和治疗疾病。此外, 脂质体还可用于诊断试剂、组织工程和纳 米反应器等领域。
药剂学第十八章制剂新技术(第5节脂质体)
![药剂学第十八章制剂新技术(第5节脂质体)](https://img.taocdn.com/s3/m/cae4dbceed3a87c24028915f804d2b160a4e8664.png)
脂质体可以作为基因治疗的载体,将基因药物准确地传递到靶细胞或组织中,实现基因治疗的目 的,如治疗遗传性疾病、癌症等。
免疫治疗
脂质体可以作为免疫治疗的载体,将免疫药物准确地传递到免疫系统中,激活或抑制免疫反应, 对于治疗自身免疫性疾病、移植排斥反应等疾病具有重要意义。
05
脂质体药物制剂的评价与优化
脂质体的成分与生物膜相似,具有良好的生物 相容性,不易引起免疫反应。
低毒性
脂质体本身毒性低,且在体内可被代谢清除, 安全性较高。
临床应用
脂质体作为药物载体已广泛应用于临床,如抗肿瘤药物、基因治疗等领域。
04
脂质体在药物传递系统中的应用
局部给药系统
皮肤给药
脂质体作为药物载体,可以增加 药物在皮肤中的滞留时间和渗透 深度,提高治疗效果,如治疗皮 炎、银屑病等皮肤疾病。
体外评价方法
粒径分布与形态观察
通过激光粒度分析仪、透射电镜等手 段,观察脂质体的粒径分布、形态和
表面特征。
包封率与载药量测定
采用超速离心、透析等方法分离脂质 体和游离药物,计算包封率和载药量。
稳定性考察
在不同温度、pH值、离子强度等条 件下,考察脂质体的稳定性,包括粒
径变化、药物泄漏等。
体内评价方法
眼部给药
脂质体可以增加药物在眼部的滞 留时间和生物利用度,降低刺激 性,对于治疗角膜炎、结膜炎等 眼部疾病具有显著效果。
鼻腔给药
脂质体作为鼻腔给药的载体,可 以提高药物的生物利用度和治疗 效果,如治疗鼻炎、鼻窦炎等疾 病。
全身给药系统
静脉注射
脂质体可以作为静脉注射的药物载体,具有缓释、长效、降低毒性和 提高治疗效果等优点,特别适用于抗癌药物、抗生素等药物的传递。
脂质体技术在药物制剂中的应用
![脂质体技术在药物制剂中的应用](https://img.taocdn.com/s3/m/65789f653d1ec5da50e2524de518964bcf84d2f7.png)
脂质体技术在药物制剂中的应用随着现代医学的不断发展,药物制剂技术也日益成熟。
脂质体技术是近年来药物制剂领域中的一个热门话题,脂质体作为一种重要的药物载体,已经广泛应用于药物、化妆品等领域。
本文将从脂质体的概念、特性、应用等方面探讨脂质体技术在药物制剂中的应用。
一、脂质体的概念和特性脂质体是由一种或多种脂质分子聚集形成的小球状结构,其外表面和内部都是疏水性的,内部水含量为10-80%左右。
脂质体的结构和组成取决于其制备方法、所用材料等因素。
脂质体可分为阳离子脂质体、阴离子脂质体、非离子脂质体等。
其中,阴离子脂质体常用于制备药物制剂,因为它具有较好的稳定性和生物相容性。
脂质体的特性有以下几个方面:1.具有多样的制备方法。
脂质体可以通过膜法、胶束法、反高斯乳化等方法制备而成。
2.可用于药物负载。
脂质体中的脂质分子可以亲和某些药物分子,从而起到药物负载和传递的作用。
3.良好的生物相容性。
由于脂质体的疏水性,它不会与生物系统产生不良反应。
二、目前,脂质体技术已经被广泛应用于药物制剂领域,尤其是在靶向药物输送、缓释制剂等方面具有广阔的应用前景。
1.靶向药物输送。
脂质体可以在体内针对性地向特定的细胞或组织输送药物,从而发挥针对性治疗作用,提高治疗效果。
例如,将靶向修饰的脂质体作为载体,可以有效地将药物输送至肿瘤组织处,避免药物流失和对正常细胞产生不良影响。
2.缓释制剂。
脂质体制备的缓释药物制剂在体内可以长时间释放药物,具有持续的治疗效果,从而减少用药频率和剂量。
例如,通过调整脂质体的结构和组成,可以制备出不同释放速率的缓释制剂,从而满足不同治疗需要。
3.提高生物利用度。
脂质体可以增加药物在体内的稳定性和生物利用度,提高药物的生物利用效率。
例如,通过脂质体包裹药物,可以减少药物在体内的代谢和消失,从而改善药物的生物利用度。
4.增强药效。
脂质体中的药物可以更好地和细胞相互作用,增强药物的药效。
例如,在肝癌治疗中,将多种药物负载到脂质体中,可以提高药物的药效,从而更好地抑制肝癌的生长和蔓延。
脂质体简介
![脂质体简介](https://img.taocdn.com/s3/m/58fa96602f3f5727a5e9856a561252d380eb20a8.png)
脂质体简介目录•1拼音•2英文参考•3概述•4脂质体的分类1拼音zhī zhì tǐ2英文参考Liposome3概述脂质体亦称类脂小球、液晶微囊。
是一种类似微型胶囊的剂型。
1971年英国莱门(Rymen)等人开始将脂质体作药物载体。
脂质体是将药物包封于类脂质双分子层形成的薄膜中间而制成的超微型球状载体制剂。
所谓载体可以是一组分子,包蔽于药物外,通过渗透或被巨噬细胞吞噬后,载体被酶类分解而释放药物,从而发挥作用。
脂质体作为药物的载体可产生药物的定向作用,提高药物的疗效,降低药物的毒副作用。
该剂型在抗癌药物中应用比较广泛。
4脂质体的分类根据脂质体的结构不同,脂质体可分为三类:(1)单室脂质体(Unilamellar or Single Compartment Liposomes)。
球径约为≤25μm,水溶性药物的溶液只被一层类脂双分子层所包封,脂溶性药物则分散于双分子层中。
凡经超声波分散的脂质体混悬液,绝大部分为单室脂质体。
(2)多室脂质体(Multilamellar or Multiple Compartment Liposomes)。
球径约为≤100μm,有几层脂质双分子层将被包含的药物(水溶性药物)的水膜隔开,形成不均匀的聚合体,脂溶性药物则分散于几层双分子层中。
(3)大多孔脂质体(Macrovesicle)。
球径约0.13±0.06μm,单层状,比单室脂质体可多包蔽10倍的药物。
我国应用唐松草堿,鹤草酚、喜树堿等中药有效成分制成脂质体,在提高疗效、降低副作用方面,取得了良好效果。
尤其是脂质体双分子层中包裹脂溶性药物,脂质体双分子包围的中心室包蔽水溶性药物,可制备中西医结合的处方。
如将5氟脲嘧啶与猪苓多糖组成处方,包成脂质体,由于猪苓多糖可显著提高机体的免疫力,增加吞噬细胞的吞噬力,5氟脲嘧啶能从细胞增殖周期的某一环节对癌细胞予以打击,中西药同时发挥作用,使药物疗效显著提高,由于载体的定向作用使毒性也显若降低。
药剂学第十八章制剂新技术第5节脂质体-2024鲜版
![药剂学第十八章制剂新技术第5节脂质体-2024鲜版](https://img.taocdn.com/s3/m/6318969e48649b6648d7c1c708a1284ac85005ba.png)
将脂质体悬液冷冻干燥后,再分散到水相中,可提高脂质体的稳定 性和包封率。
10
新型制备方法
01
超声分散法
利用超声波的空化作用,使磷脂 等膜材在水相中分散并形成脂质 体。
微流控技术
02
03
3D打印技术
通过微流控芯片控制流体流动, 实现磷脂等膜材的精确控制和高 效制备脂质体。
利用3D打印技术制备具有特定形 状和结构的脂质体,为个性化医 疗和精准用药提供可能。
特点
脂质体具有良好的生物相容性和靶向性,能够降低药物毒性,提高药物疗效;同时,脂质体还具有一定的缓释作 用,可以延长药物在体内的滞留时间。
2024/3/28
5
制备方法简介
2024/3/28
薄膜分散法
将磷脂和胆固醇溶于有机溶剂中,通过旋转蒸发或真空干燥等方法去除有机溶剂,形成磷脂薄膜;然后加入 含药溶液,通过超声或震荡等方法使磷脂薄膜分散成脂质体。
2024/3/28
11
制备过程中注意事项
磷脂等膜材的选择
应根据药物的性质和治疗需求选择合适的磷脂等 膜材。
制备条件的优化
应对制备条件如温度、pH值、搅拌速度等进行 优化,以提高脂质体的包封率和稳定性。
ABCD
2024/3/28
有机溶剂的残留
制备过程中应严格控制有机溶剂的残留量,以确 保脂质体的安全性和有效性。
其他领域
此外,脂质体还可以应用于抗菌药物、抗炎药物、抗病毒 药物等领域的研究和开发中。
7
2024/3/28
02
CATALOGUE
脂质体制备技术
8
传统制备方法
薄膜分散法
将磷脂等膜材溶于有机溶剂后制 膜,再经超声或振荡等方式制成 脂质体悬液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄膜分散法
逆相蒸发法
冷冻干燥法 制备方法
溶剂注入法
pH梯度法 前体脂质体法
乙醚注入法
脂质体的制备方法
一.薄膜分散法
膜材
有机溶剂(氯仿等) (脂溶性药物)
膜材溶液
减压旋转蒸发除去溶剂
器壁上形成薄膜
加入缓冲液(水溶性药物) 振摇
大多层脂质体
脂质体材料
负电荷磷脂 (酸性磷脂)
磷脂酸(PA) 磷脂酰甘油(PG) 磷脂酰肌醇 (PI) 磷脂酰丝氨酸(PS)
硬脂酰胺(SA)
正电荷脂质
胆固醇衍生物
大豆甾醇葡萄糖苷(SG) 大豆甾醇SS
大豆甾醇及其葡萄糖苷 胆固醇(Ch)
脂质体的组成(中性磷脂)
1、中性磷脂 ⑴磷脂酰胆碱(phosphatidyl choline,PC,) ①天然的PC a. 脂质体的主要组成部分 b. 从蛋黄、大豆、牛心脏和脊髓提取 c.是一种混合物,每一种PC具有不同长度、不同饱和度的脂肪链。 植物性PC的脂肪链具有高度不饱和性 动物性PC的脂肪链大部分是饱和的 ②合成的PC 二棕榈酰胆碱(DPPC)、二硬脂酰胆碱(DSPC) 二肉豆蔻酰磷脂酰胆碱(DMPC)
脂质体的组成(中性磷脂)
CH3
+
CH3
N
CH3
O O P O O O
(a)全饱和磷脂 (紧密排列)
(b)非饱和磷脂 (不能紧密列)
O
O O
磷脂脂肪链的饱和度对磷脂膜排列的影响
R
R
磷脂酰胆碱(PC)
脂质体的组成(中性磷脂)
⑵ 磷脂酰乙醇胺 (phosphatid ethanolamine, PE) 特性; 头部基团小; 非饱和的PE容易形成非双层结构型 — 形成六角相(制备特殊脂质体)
脂质体的理化性质(相变温度)
Tc以下时,为“胶晶态”(脂肪链全反式,排列紧密,刚性和厚度增加)
Tc以上时,为 “液晶态”
(脂肪链伸缩、弯曲、外扭)
磷脂发生相变时, “胶晶态” “液晶态” “液态”共存, 出现相分离,使膜的流动性增加,易导致内容物泄漏。
脂质体的理化性质(相变温度)
相变温度与脂质体膜稳定性
O
+
NH3 O
O
P O O
O
O O
R
R
六角相
磷脂酰乙醇胺(PE)
脂质体的组成(中性磷脂)
⑶鞘磷脂(sphingomyelin,SM)
CH3
+
CH3
N
CH3
特性:酰胺键和羟基基团之间形
成氢键相互作用,因此,比PC具 有更高秩序的胶相。
HO
O O P O NH O O
R
SM
脂质体的组成
2、负电荷磷脂(酸性磷脂)
脂质体制备技术
药剂教研室 吴琳华
内容提要
脂质体的概念 脂质体的组成、结构、理化性质与分类 脂质体的制备方法 脂质体的质量研究 特殊性能脂质体 脂质体的作用机理 脂质体的特点
第一节
概述
脂质体(liposomes) 将药物包封于类脂质双分子 层内而形成的微型囊泡。
脂质体的研究进展
脂质体的理化性质
2、膜的通透性 (1)半通透性脂质体膜: 不同离子穿膜和分子扩散过膜速率不同。 (2)膜两侧的渗透压: 导致分子量较小的物质渗漏或磷脂膜破裂 (3)对于在水中和有机溶剂中溶解度都非常高的分子, 磷脂膜是一种非常弱的屏障。
脂质体的理化性质
3.膜的流动性 Tc时膜的流动性增加: 包裹在脂质体内的药物具有最大释放速率。 胆固醇可调节膜的流动性: a.高于Tc时,减少膜的流动性 b.低于Tc时,增加膜的流动性 4、荷电性 含酸性脂质的脂质体荷负电 含碱基的脂质体荷正电 不含离子的脂质体显电中性
旋转
大单层脂质体
脂质体的制备方法
三、溶剂注入法 1、乙醇注入法 脂质乙醇液 细针头快速注入到缓冲液中 SUVs。 (残存的乙醇用透析法除去) 优点:简单快速,脂质浓度受限。缺点: 水相包封率极低,乙醇难除。 2、乙醚注入法 脂质乙醚液 细孔针头慢慢注入55~60℃的缓冲液中 乙醚蒸发 单层脂质体(直径50~200nm)。 优点:脂质浓度不受限,水相包封率高; 缺点:制备时间长。
脂质体的组成
胆固醇与磷脂的排列示意图
脂质体的组成
4、正电荷脂质 硬脂酰胺(sterylamine,SA)、胆固醇衍生物。 普遍应用于基因的传递系统 5、大豆甾醇及其葡萄糖苷 为纯天然品,较安全,价格便宜。 ⑴大豆甾醇葡萄糖苷(SG) 是从提炼豆油残渣中分离出来的甾醇葡萄糖苷的混合物。 能提高脂质体的肝靶向性。 ⑵大豆甾醇(soybean sterol,SS) 是SG去葡萄糖残基的水解产物。与Ch结构相似,能提高脂 质体稳定性,其膜稳定作用大于Ch。
脂质体的分类
正电荷脂质体 按荷电性分类 负电荷脂质体 中性脂质体
脂质体的分类
静脉给药脂质体
口服给药脂质体 肺部吸入给药脂质体
眼部用药脂质体
按给药途径分类 黏膜给药脂质体 外用脂质体和经皮给药脂质体 局部注射用脂质体(肌注、关节腔、脊髓腔、肿瘤内等) 免疫诊断用脂质体 基因工程和生物工程用脂质体
第三节 脂质体的制备方法
4、电感应法(库尔特计数器)
5、光感应法(如粒度测定仪)
脂质体的质量研究(粒径和分布)
1、光学显微镜法 将脂质体混悬液稀释(约5倍),取1滴放入载玻片上或滴入细胞 计数板内,放上盖玻片,观察脂质体粒径大小和数目,然后按其大小 分档计数,以视野见到的粒子总数,求出各档次百分数。 仅适用于大的脂质体。 2、电子显微镜法 用负染法和冰冻蚀刻法,用于分析小脂质体。 负染法:用溶液悬浮脂质体,样品滴在有支持膜的铜网上,滤纸吸去 多余的液体,再滴重金属染料,滤纸吸去多余液体,自然干燥30min, 用电镜观察脂质体的结构和粒径分布。
脂质体的分类(按结构分类)
2.多室(层)脂质体(MLVs), 双分子脂质膜与水交替形成的多层结构的囊泡。 一般由五层、或更多层的同心板组成。 较少层数(两到四层)的又称为寡层脂质体。 粒径一般为100nm~5µ m。 包封容积相对较低。
脂质体的分类(按结构分类)
3.多囊脂质体 (multivescular liposomes,MVLs)
不能包裹物质
单室脂质体
多室脂质体
第二节
脂质体的组成、结构、理化性质与分类
三、脂质体的理化性质
相变温度 膜的通透性 理化性质
膜的流动性
脂质体荷电性
脂质体的理化性质(相变温度)
1、相变温度(phase transition temperature,
脂质体
升高温度
Tc)
脂质双分子层中酰基侧链排列改变
由许多非同心囊泡构成,每个囊泡中包裹着被装载药物的水溶液。 粒径为5~50µ m 。 适用于包裹水溶性物质。
载药量比单层脂质体
和多层脂质体高得多 具有缓释作用。
多囊脂质体的结构
脂质体的分类
普通脂质体(一般脂质材料制成 ) 按结构性能分类 特殊性能脂质体
(特殊的脂质材料制成)
பைடு நூலகம்
热敏感性脂质体 pH敏感脂质体 多糖被复的脂质体 免疫脂质体 长循环脂质体 光敏脂质体 磁性脂质体
第二节
脂质体的组成、结构、理化性质与分类
二、脂质体的结构
双分子结构:磷脂分子的亲水端呈 弯曲的弧形,形似“手杖”,与 胆固醇分子的亲水基团相结合,形 成“U”形结构。两个“U”形结构相对 排列,则形成双分子结构。
卵磷脂与胆固醇在脂质体中的排列形式
脂质体的结构
脂质体的结构类似生物膜,在脂质体的水相和脂质双分 子层组成的膜内可以包裹多种物质。 包裹物质 脂溶性药物 定位于双分子层脂质膜间 水溶性药物 包裹在水相 两性化合物 定位在水相与膜内部交界磷脂上 在水相和有机溶剂中都不溶的物质 在两种介质中溶解性都非常好的物质
各种机械方法分散
多层脂质体
脂质体的制备方法(薄膜法)
1.干膜超声法 超声波仪(探针型和水浴型)超声处理 葡聚糖凝胶柱层析(分离除去未包入的药物) 脂质体混悬液 脂质体混悬液
2.薄膜-振荡分散法 干膜 加入缓冲溶液 脂质体 3.薄膜-匀化法
组织捣机或高压乳匀机匀化 此法较适合工业生产。
液体快速混合器振荡(25℃2min)
脂质体的制备方法
四、冷冻干燥法 磷脂 高度分散在缓冲盐溶液中
冷冻干燥(干燥物) 脂质体 冷冻温度、速度及时间等因素影响脂质体的包封率和稳定性。 加入冻结保护剂,能降低冻融过程对脂质体的损害。 甘露醇 、D-葡萄糖 此外还有:pH梯度法和前体脂质体法等。 超声波处理
分散到含药物的水性介质中
第四节 脂质体的质量研究
有序排列变为无序排列 至一定温度
相变温度 Tc
膜的物理性质改变
膜的横切面增加、双分子层 厚度减少、膜流动性加
脂质体的理化性质(相变温度)
决定Tc的因素 (1)磷脂的种类。磷脂都具有特定的Tc值。 (2)极性基团的性质。 (3)酰基侧链的长度和不饱和度。 酰基侧链长 —— Tc高 链的饱和度高 ——Tc高
脂质体的组成
3、胆固醇(cholesterol, Ch)膜的另一类重要组成成分。
存在:动物细胞的质膜中含量较高,植物中含量较少。 性质:为中性脂质,亦属于双亲性分子,但亲油性大于亲水性。
在脂质体中的状态:作为两性分子,能嵌镶入膜,羟基团朝向亲水面, 脂肪族的链朝向并平行于磷脂双层中心的烃链。胆固醇本身不形成脂 质双层结构,但它能以高浓度方式掺入磷脂膜。 在脂质体中的作用:主要与磷脂相结合,阻止磷脂凝集成晶体结构。 减弱膜中类脂与蛋白质复合体之间的连接,像“缓冲剂”一样起着调 节膜结构“流动性”的作用。