图形相似与相似三角形知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形相似与相似三角形知识点解读

知识点1..相似图形的含义

把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)

解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.

(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.

例1.放大镜中的正方形与原正方形具有怎样的关系呢?

分析:要注意镜中的正方形与原正方形的形状没有改变.

解:是相似图形。因为它们的形状相同,大小不一定相同.

例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号).

解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.

知识点2.比例线段

对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,

即a c

b d

=(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.

解读:(1)四条线段a,b,c,d成比例,记作

a c

b d

=(或a:b=c:d),不能写成其他形式,即

比例线段有顺序性.

(2)在比例式a c

b d

=(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比

例内项,d是第四比例项.

(3)如果比例内项是相同的线段,即a b

b c

=或a:b=b:c,那么线段b叫做线段和的比例中项。

(4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等.

例3.已知线段a=2cm, b=6mm, 求a

b

分析:求a

b

即求与长度的比,与的单位不同,先统一单位,再求比.

例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=3

2

dm,求c的长度.

分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c.知识点3.相似多边形的性质

相似多边形的性质:相似多边形的对应角相等,对应边的比相等.

解读:(1)正确理解相似多边形的定义,明确“对应”关系.

(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.

例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少?

分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比,即

为1

3

,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边的长.

知识点4.相似三角形的概念

对应角相等,对应边之比相等的三角形叫做相似三角形.

解读:(1)相似三角形是相似多边形中的一种;

(2)应结合相似多边形的性质来理解相似三角形;

(3)相似三角形应满足形状一样,但大小可以不同;

(4)相似用“∽”表示,读作“相似于”;

(5)相似三角形的对应边之比叫做相似比.

注意:①相似比是有顺序的,比如△ABC∽△A1B1C1,相似比为k,若△A1B1C1∽△ABC,

则相似比为1

k

。②若两个三角形的相似比为1,则这两个三角形全等,全等三角形是相似三

角形的特殊情况。若两个三角形全等,则这两个三角形相似;若两个三角形相似,则这两个三角形不一定全等.

例6.如图,已知△ADE∽△ABC,DE=2,BC=4,则和的相似比是多少?点D,E分别是AB,AC的中点吗?

B

注意:解决此类问题应注意两方面:(1)相似比的顺序性,(2)图形的识别.

解:因为△ADE∽△ABC,所以DE AD AE

BC AB AC

==,因为

21

42

DE

BC

==,

所以

1

2

AD AE

AB AC

==,所以D,E分别是AB,AC的中点.

知识点5.相似三角的判定方法

(1)定义:对应角相等,对应边成比例的两个三角形相似;

(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.

(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.

(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.

(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.

经过归纳和总结,相似三角形有以下几种基本类型:

①平行线型

常见的有如下两种,D E∥BC,则△ADE∽△ABC

B

B C

② 相交线型

常见的有如下四种情形,如图,已知∠1=∠B ,则由公共角∠A 得,△ADE ∽△ABC

如下左图,已知∠1=∠B ,则由公共角∠A 得,△ADC ∽△ACB 如下右图,已知∠B=∠D ,则由对顶角∠1=∠2得,△ADE ∽△

ABC

B

C

③ 旋转型

已知∠BAD=∠CAE ,∠

B=∠D ,则△ADE ∽△ABC ,下图为常见的基本图形.

C

④ 母子型

已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD .

相关文档
最新文档