八年级数学用公式法解一元二次方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3用公式法解一元二次方程
教学目标
(1)会用公式法解一元二次方程;
(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;
(3)渗透化归思想,领悟配方法,感受数学的内在美.
教学重点
知识层面:公式的推导和用公式法解一元二次方程;
能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.
教学难点:求根公式的推导.
总体设计思路:
以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.
教学过程
整体教学流程:形成表象,提出问题分析问题,探究本质
得出结论,解决问题拓展应用,升华提高
归纳小结,布置作业.
形成表象,提出问题
在上一节已学的用配方法解一元二次方程的基础上创设情景.
解下列一元二次方程:(学生选两题做)
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
(3)4x2-16x+17=0 ; (4)3x2+4x+7=0.
然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?
接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)
(1)3x2+4x+2=0; (2)3x2-2x+1=0;
(3)4x2-16x-3=0 ; (4)3x2+x+7=0.
思考:新的四题与原题的解题过程会发生什么变化?
设计意图:1.复习巩固旧知识,为本节课的学习打下更好的基础;
2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激
发学生的求知欲望.
分析问题,探究本质
由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.
进而提出下面的问题:
既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?
让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.
ax2+bx+c=0(a≠0) 注:根据学生学习程度的不同,可
ax2+bx=-c 以采用学生独立
尝试配方, 合
x2+x=-作尝试配方或教师引导下进行
x2+x+=-+配方等各种教学形式.
(x+)2=
然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2-4ac”的重要性.
当b2-4ac≥0时,
(x+)2=注:这样变形可以避免对a正、负的讨论,
x+=便于学生的理解.
x=-即x=
x1= , x2=
当b2-4ac<0时,方程无实数根.
设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.
得出结论,解决问题
由上面的探究过程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定. 当b2-4ac≥0时,
x=;
当b2-4ac<0时,方程无实数根.
这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.
进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.
运用公式法解一元二次方程.(设计两个环节:共同练习和独立完成)
[共同练习]
(1)2x2-x-1=0; (2)4x2-3x+2=0 ;
(3)x2+15x=-3x; (4)x2-x+=0.
此环节的设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤.
[独立完成]
用公式法解一元二次方程:
(1)x2+x-6=0; (2)x2-x-=0; (3)3x2-6x-2=0;
(4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.
此环节的设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获.
拓展运用,升华提高
分两个环节:用一用和想一想(此环节基于学生课堂掌握的情况而定,可作为课后思考题).
[用一用]
解决本章引言中的问题:
要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以小)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?
雕像上部的高度AC,下部的高度BC应有如下关系:
即BC2=2AC.
设雕像下部高xm,于是得方程
x2=2(2-x)
整理得:x2+2x-4=0.
解这个方程,得
x=,
x1=-1+,x2=-1-.
精确到0.001,x1≈1.236,x2≈-3.236.
考虑实际意义, x≈1.236.所以雕像下部高度应设计约为1.236m.
在前面的基础上进一步提问: (结合学生的实际情况,可以放在课后思考.)
(1)如果雕像的高度设计为3m,那雕像的下部应是多少?4m呢?
(2)进而把问题一般化,这个高度比是多少?
之后简单介绍黄金分割数,使学生感受到数学的奥妙.
此环节的设计意图:①运用所学的知识解决实际问题;②能力层面上的拓展----化归思想.
[想一想]清清和楚楚刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.
此环节的设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.
归纳小结,布置作业
结合上面用一用,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.
作业: (结合学生的实际情况,可以分层布置.)