五年级下册旋转练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元图形的变换

1.轴对称的意义:把一个图形沿着某一条直线对折,如果它能与另一条图形完全

重合,那么这两个图形称轴对称。

2.轴对称的性质:相对应的点到轴对称距离相等。

3.轴对称的特征:沿对称轴对折,对应点重合,对应线段重合,对应角重合。

4.旋转的意义:物体绕某一点运动,这种运动叫旋转。

5.图形旋转的性质:图形旋转,对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应角相等。

6.图形旋转的特征:图形旋转后,形状、大小都没有变化,只是位置变了。

设计图案的方法:

1.设计图案基本方法:利用平移、旋转或对称可以设计简单而美丽的图案.

2.运用平移方法设计图案的步骤:(1)选好基本图案;(2)确定平移的方向;(3)确定平移的距离;(4)画出平移后的图形。

3.运用旋转方法设计图案的步骤:(1)选好基本图案;(2)确定旋转点;(3)确定旋转角度;(4)依次画出旋转后的图形。

4.运用对称方法设计图案的步骤:(1)选好基本图案;(2)确定对称轴;(3)画出基本图案的对称图形。

课堂练习

1、判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。

2、画对称图形

例题1:平移图形3、向右平移两个单位,画出图例题2:旋转

4、三角形ABC绕点B逆时针旋转90°的图形。

5、欣赏设计:连续向右平移1个单位得到的图形

第二单元因数和倍数

一、倍数与因数的关系

【知识点1】倍数与因数之间的关系是相互的,不能单独存在。

例如:6是倍数、3和2是因数。(×)改正:6是3和2的倍数,3和2是6的因数。

练习:

(1)8×5=40,()和()是()的因数,()是()和()的倍数。

(2)因为36÷9=4,所以()是()和()的倍数,()和()是()的因数。

(3)在18÷6=3中,18是6的(),3和6是()的()。(4)在14÷7=2中,()能被()整除,()能整除(),()是()的倍数,()是()的因数。

【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。

例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。

因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。是错误的说法。

(1)有5÷2=2.5可知()

A、5能被2除尽

B、2能被5整除

C、5能被2整除

D、2是5的因数,5是2的倍数

(2)36÷5=7……1可知()

A、5和7是36的因数

B、5能整除36

C、36能被5除尽

D、36是5的倍数

(3)属于因数和倍数关系的等式是()

A、2×0.25=0.5

B、2×25=50

C、2×0=0

【知识点3】没有前提条件确定倍数与因数

例如:36的因数有()。

确定一个数的所有因数,我们应该从1的乘法口诀一次找出。如:1×36=36、2×18=36、3×12=36、4×9=36、6×6=36因此36的所有因数为:1、2、3、4、6、9、12、18、36重复的和相同的只算一个因数。

一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。

例如:7的倍数()。

确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、

5×7=35……还有很多。

因此7的倍数有:7、14、21、28、35、42……

一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。

练习:

(1)20的因数有:

(2)45的因数有:

(3)24的倍数有:

(4)17的倍数有:

【知识点4】有前提条件的情况下确定倍数与因数

例如:25以内5的倍数有(5、10、15、20、25 )。

例如:5、1、20、35、40、10、140、2

以上各数中,是20的因数的数有();是20的倍数的数有();既是20的倍数又是20的因数的数有()。

首先我们应该明确20的因数有哪些,然后在上面的数中一次找出,

特别注意没有在以上数字中出现的因数是不能填入括号的!

练习:

(1)100以内19的倍数有:

(2)在4,6,8,10,12,16,18,20,22,24,28,32,36中

4的倍数:( ) 36的因数:( )

(3)一个数既是6的倍数,又是60的因数,这个数可能是

(4)用1、5、6、8、9组成的数中,是3的倍数的数有是2的倍数的数有。

【知识点5】关于倍数因数的一些概念性问题

一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。

一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。

1是任一自然数(0除外)的因数。也是任一自然数(0除外)的最小因数。

一个数的因数最少有1个,这个数是1。除1以外的任何整数至少有两个因数(0除外)。

一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。

一个数的最小倍数=一个数的最大因数=这个数

练习:

(1)一个数的倍数个数是(),最小的倍数是(),()最大的倍数。

(2)一个数的因数的个数是(),最小的因数是(),最大的因数是

()。

(3)在研究因数和倍数时,我们所说的数一般指的是()。

(4)判断并改正:一个数的因数都比他的倍数小。()

1是所有的自然数的因数。()

一个数的因数一定小于他本身。()

一个数的倍数一定比他的因数大。()

任何一个数的倍数个数一定比因数个数多。()二、2、3、5的倍数的特征

【知识点1】2、3、5的倍数特征

个位上是0,2,4,6,8的数都是2的倍数。例如:202、480、304,都能被2整除。

个位上是0或5的数,是5的倍数。例如:5、30、405都能被5整除。

一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。例如:12、108、204都能被3整除。

个位上是0的数既是2的倍数又是5的倍数。例如:80、20、70、130等。

个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。例如:120、90、180、270等。

自然数按能否被2 整除的特征可分为奇数和偶数。也就是说是2的倍数的数也叫做偶数(0也是偶数),不是2的倍数的数也叫做奇数。(因此在自然数中,除了奇数就是偶数)

偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数

偶数+奇数=奇数偶数-奇数=奇数偶数×奇数=偶数

奇数+奇数=偶数奇数-偶数=奇数奇数×奇数=奇数

奇数-奇数=偶数无论多少个偶数相加都是偶数

偶数个奇数相加是偶数奇数个奇数相加是奇数

练习:

(1)在 27、68、44、72、587、602、431、800中,把奇数和偶数分别填在相应的圈内。

奇数偶数

(2)猜猜我是谁。

我比10小,是3的倍数,我可能是()。

我在10和20之间,又是3和5的倍数,我是()。

相关文档
最新文档