带电粒子在磁场中运动放缩圆和旋转圆 ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在磁场中运动
--------放缩圆和旋转圆
轨迹圆的缩放
• 当粒子的入射速度方向一 定而大小可变时,粒子做 圆周运动的圆心一定在粒 子在入射点所受洛伦兹力 的方向上,半径R不确定, 利用圆规作出一系列大小 不同的内切圆.从圆的动 态中发现临界点。
例1、如图所示,一足够长的矩形区域abcd内充满方 向垂直纸面向里的、磁感应强度为B的匀强磁场,在
PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。 现从点O以同一速率将相同的带负电粒子向纸面内各个不 同的方向射出,它们均做半径为r的匀速圆周运动,求带 电粒子打在边界PQ上的范围(粒子的重力不计)。
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周
运动的半径r相P 同,O为这些轨迹P圆周的公共点。
M
P
2r
2r
r
O
O
O
Q
rN
Q
Q 答 案 : M N( 31)r
练、如图,真空室内存在方向垂直纸面向里,大小B=0.6T
的匀强磁场,内有与磁场方向平行的板ab,在距ab距离
为l=16cm处,有一点状的放射源S向各个方向发射α粒子,
α粒子的速度都是v=3.0×106 m/s,已知 α粒子的电荷与质
量之比q/m= 5.0×107 C/kg ,现只考虑在图纸平面中运动
解析: R′ = mv0′/Bq=1.5×10-2m = r/2
因此,在ab上方的粒子可能出现
的区域为以aO为直径的半圆,如图 a
所示。在ab下方粒子可能出现的区域
为以a为圆心,aO为半径所作圆与磁
场相交的部分,如图。
v0
vv00 B
O
2R′
最大偏转角为180º,射时粒子的方向应与oa的夹角为30º。
R1
R2
qBL m
≥v0≥
qBL 3m
q v0
b B
d
c
轨迹圆的旋转
• 当粒子的入射速度大小 一定而方向不确定时, 从不同方向入射的粒子 的轨迹圆都一样大,只 是位置绕入射点发生了 旋转,从定圆的动旋转 中发现临界点
如图,水平放置的平板MN上方有方向垂直于纸面向里的 匀强磁场,磁感应强度为B,许多质量为m,带电量为 +q的粒子,以相同的速率 v 沿位于纸面内的各个方向, 由小孔O射入磁场区域,不计重力,不计粒子间的相互 影响。下列图中阴影部分表示带电粒子可能经过的区域,
总结:带电粒子在磁场中运动旋转圆和放缩圆
• 1、定圆心:方法 利用v⊥R
利用弦的中垂线
• 2、算半径: 几何法求半径
向心力公式求半径
• 3、从圆的动态中发现临界点。
ad边中点O,方向垂直磁场向里射入一速度方向跟 ad边夹角θ=30°、大小为v0的带正电粒子,已知 粒子质量为m,电量为q,ad边长为L,ab边足够 长,粒子重力不计,求:粒子能从ab边上射出磁场
的v0大小范围.
解:R1+R1sin30º= L/2
得R1 = L/3
a
R2- R2cos60º= L/2 得:R2 = L。 O
场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使 粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应
如何(以v0与oa的夹角表示)?最大偏转角多大?
解析: R =mv/Bq=5×10-2m > r
说明:半径确定时,通过的弧越
的α粒子,求ab上被α粒子打中的区域的长度。
解:α 粒子带正电,沿逆时针方向做 匀速圆周运动,轨道半径R为
a
P1
N
R mv 10cm 即:2R > l > R。
l
qB
N1P R2(lR)28cm
ຫໍສະໝຸດ Baidu
S
P2 b B
N2P (2R)2l21c2m
∴P1P2=20cm
例3、如图,半径为 r=3×10-2m的圆形区域内有一匀强磁
B v0
长,偏转角度越大。而弧小于半
aα
O
r
b
个圆周时,弦越长则弧越长。
R
sin = r/R = 37º,
α
最大偏转角为 2 = 74º。
拓展:若改粒子射入磁场的速度为v0′=3.0×105m/s,其 它条件不变。用斜线画出该批粒子在磁场中可能出
现的区域。若要使粒子飞离磁场时有最大的偏转角,
其入射时粒子的方向应如何(以v0与oa的夹角表示)? 最大偏转角多大?
其中R=mv/qB,哪个图是正确的?( A )
A.
B.
2R
2R
O
O
M 2R R N
M R 2R
N
C.
2R D.
O
RM
O
M 2R
2R N M 2R
2R N
B ON
……以速率 v 沿纸面各个方向由小孔O射入磁场
2R 2R
O
O
2R R
R 2R
A.
B.
O
2R
2R
C.
2R
R
O
2R
2R
D.
例2、如图,磁感应强度为B的匀强磁场垂直于 纸面向里,
--------放缩圆和旋转圆
轨迹圆的缩放
• 当粒子的入射速度方向一 定而大小可变时,粒子做 圆周运动的圆心一定在粒 子在入射点所受洛伦兹力 的方向上,半径R不确定, 利用圆规作出一系列大小 不同的内切圆.从圆的动 态中发现临界点。
例1、如图所示,一足够长的矩形区域abcd内充满方 向垂直纸面向里的、磁感应强度为B的匀强磁场,在
PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。 现从点O以同一速率将相同的带负电粒子向纸面内各个不 同的方向射出,它们均做半径为r的匀速圆周运动,求带 电粒子打在边界PQ上的范围(粒子的重力不计)。
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周
运动的半径r相P 同,O为这些轨迹P圆周的公共点。
M
P
2r
2r
r
O
O
O
Q
rN
Q
Q 答 案 : M N( 31)r
练、如图,真空室内存在方向垂直纸面向里,大小B=0.6T
的匀强磁场,内有与磁场方向平行的板ab,在距ab距离
为l=16cm处,有一点状的放射源S向各个方向发射α粒子,
α粒子的速度都是v=3.0×106 m/s,已知 α粒子的电荷与质
量之比q/m= 5.0×107 C/kg ,现只考虑在图纸平面中运动
解析: R′ = mv0′/Bq=1.5×10-2m = r/2
因此,在ab上方的粒子可能出现
的区域为以aO为直径的半圆,如图 a
所示。在ab下方粒子可能出现的区域
为以a为圆心,aO为半径所作圆与磁
场相交的部分,如图。
v0
vv00 B
O
2R′
最大偏转角为180º,射时粒子的方向应与oa的夹角为30º。
R1
R2
qBL m
≥v0≥
qBL 3m
q v0
b B
d
c
轨迹圆的旋转
• 当粒子的入射速度大小 一定而方向不确定时, 从不同方向入射的粒子 的轨迹圆都一样大,只 是位置绕入射点发生了 旋转,从定圆的动旋转 中发现临界点
如图,水平放置的平板MN上方有方向垂直于纸面向里的 匀强磁场,磁感应强度为B,许多质量为m,带电量为 +q的粒子,以相同的速率 v 沿位于纸面内的各个方向, 由小孔O射入磁场区域,不计重力,不计粒子间的相互 影响。下列图中阴影部分表示带电粒子可能经过的区域,
总结:带电粒子在磁场中运动旋转圆和放缩圆
• 1、定圆心:方法 利用v⊥R
利用弦的中垂线
• 2、算半径: 几何法求半径
向心力公式求半径
• 3、从圆的动态中发现临界点。
ad边中点O,方向垂直磁场向里射入一速度方向跟 ad边夹角θ=30°、大小为v0的带正电粒子,已知 粒子质量为m,电量为q,ad边长为L,ab边足够 长,粒子重力不计,求:粒子能从ab边上射出磁场
的v0大小范围.
解:R1+R1sin30º= L/2
得R1 = L/3
a
R2- R2cos60º= L/2 得:R2 = L。 O
场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使 粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应
如何(以v0与oa的夹角表示)?最大偏转角多大?
解析: R =mv/Bq=5×10-2m > r
说明:半径确定时,通过的弧越
的α粒子,求ab上被α粒子打中的区域的长度。
解:α 粒子带正电,沿逆时针方向做 匀速圆周运动,轨道半径R为
a
P1
N
R mv 10cm 即:2R > l > R。
l
qB
N1P R2(lR)28cm
ຫໍສະໝຸດ Baidu
S
P2 b B
N2P (2R)2l21c2m
∴P1P2=20cm
例3、如图,半径为 r=3×10-2m的圆形区域内有一匀强磁
B v0
长,偏转角度越大。而弧小于半
aα
O
r
b
个圆周时,弦越长则弧越长。
R
sin = r/R = 37º,
α
最大偏转角为 2 = 74º。
拓展:若改粒子射入磁场的速度为v0′=3.0×105m/s,其 它条件不变。用斜线画出该批粒子在磁场中可能出
现的区域。若要使粒子飞离磁场时有最大的偏转角,
其入射时粒子的方向应如何(以v0与oa的夹角表示)? 最大偏转角多大?
其中R=mv/qB,哪个图是正确的?( A )
A.
B.
2R
2R
O
O
M 2R R N
M R 2R
N
C.
2R D.
O
RM
O
M 2R
2R N M 2R
2R N
B ON
……以速率 v 沿纸面各个方向由小孔O射入磁场
2R 2R
O
O
2R R
R 2R
A.
B.
O
2R
2R
C.
2R
R
O
2R
2R
D.
例2、如图,磁感应强度为B的匀强磁场垂直于 纸面向里,