专题10平面向量中的范围和最值问题

专题10平面向量中的范围和最值问题
专题10平面向量中的范围和最值问题

专题十、平面向量中的最值和范围问题

平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合. 考点1、向量的模的范围

例1、(1) 已知直角梯形ABCD 中,AD //BC ,0

90ADC ∠=,1,2==BC AD ,P 是腰DC 上的

+的最小值为____________.

(2)(2011辽宁卷理)若,,均为单位向量,且0=?b a ,0))((≤--b -+最大值为( ) A.2-1 B .1 C. 2 D .2

(3)(2010浙江卷理)已知平面向量),(,≠≠01=,且α与αβ-的夹角为

120°的取值范围是_____________ .

变式:已知平面向量α,β满足||||1αβ==,且α与βα-的夹角为120?,则

|(1)2|t t αβ-+()t R ∈的取值范围是 ;

小结1、模的范围或最值常见方法:①通过|a →|2=a →

2转化为实数问题;②数形结合;③坐标法. 考点2、向量夹角的范围

例2、已知OB →=(2,0),OC →=(2,2),CA →=(2cos α,2sin α),则OA →与OB →

夹角的取值范围是( )

A.????π12,π3

B.??????π4,5π12

C.??????π12,5π12

D.??????5π12,π2

小结2、夹角范围问题的常见方法:①公式法;②数形结合法;③坐标法.

考点3、向量数量积的范围

例3、(1)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PB PA ?的最小值为( ) (A) 24+- (B) 23+- (C) 224+- (D) 223+-

(2)如右图,在梯形ABCD 中,DA=AB=BC =12CD =1.点P 在阴影区域(含边界)中运动,则AP →·BD

的取值范围是 ;

小结3、数量积问题涉及的方法较多,常用的方法有:①定义;②模与投影之积;③坐标法;④

a →·

b →=(a →+b →2)2-(a →-b →

2

)2.

考点4、向量的系数问题:

例4、给定两个长度为1的平面向量OA →和OB →

,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB ⌒上变动.若OC →=xOA →+yOB →

其中x ,y ∈R ,则x +y 的最大值是______.

小结4、向量系数问题的一般处理方法:①点乘法;②几何法;③整体法.

变式:已知点G 是ABC ?的重心,点P 是GBC ?内一点,若,AP AB AC λμλμ=++则的取值范围是( ) A .1(,1)2 B .2(,1)3 C .3(1,)2

D .(1,2)

专题十、平面向量中的最值和范围问题练习题

1、(2011全国新课标理)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题

12:||1[0,

)3p a b πθ+>?∈ 22:||1(,]3p a b π

θπ+>?∈

13:||1[0,)3p a b πθ->?∈ 4:||1(,]3p a b π

θπ->?∈

其中真命题是( ) A.

14

,p p B.

13

,p p C.

23

,p p D.

24

,p p

2、(2012广东卷)对任意两个非零的平面向量α和β,定义??=

?αβ

αβββ

,若平面向量a 、b 满 足0≥>a b ,a 与b 的夹角0,4πθ??

∈ ???,且a b 和b a 都在集合2n n Z ??∈????

中,则=a b ( )

A .

1

2

B .1

C .

32

D .

52

3、(2012宁波市期末)在ABC ?中,D 为BC 中点,若 120=∠A ,1-=?

最小值是 ( ) A.

2

1 B.

2

3

C.2

D.

2

2 4、(2011福建卷)已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域??

?

??≤≤≥+212y x y x ,

上的一个动点,则OA OM ?的取值范围是( )

A .[-1,0]

B .[0,1]

C .[0,2]

D .[-1,2] 5、(2012浙江会考)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P , Q 是正方 体内部及面上的两个动点,则?的最大值是( ) A.21 B.1 C.2

3

D.

4

5

6、(2011全国大纲理)设向量,,

1==,2

1-=?

60,=--b c

的最大值等于( ) A .2 B .3 C .2 D .1

7、如图,在直角梯形ABCD

中,

,动点P

在以点C 为圆心,且与直线BD 相切的圆内运动,

,则

的取值范围是(

)

A. B. C. D.

8、(2012安徽卷)若平面向量,a b 满足:23a b -≤;则b a ?的最小值是_____;

9、已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则y

x 39+的最小值为 ;

10、(2012北京卷)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则CB DE ?的值为________,DC DE ?的最大值为____ __;

11、如图,在平面直角坐标系中,正方形OABC 的边长为1,E 为AB 的中点,若F 为正方形 内(含边界)任意一点,则OE OF ?的最大值为 ;

12、如图,线段AB 长度为2,点,A B 分别在x 非负半轴和y 非负半轴上滑动,以线段AB 为一 边,在第一象限内作矩形ABCD ,1BC =,O 为坐标原点,则?的范围是 .

11题图 12题图

13、(2012上海卷理)在平行四边形ABCD 中,∠A=3π

, 边AB 、AD 的长分别为2、1. 若M 、N 分别

是边BC 、CD 上的点,|

|||CD CN BC BM =

,则?的取值范围是_________ ;

专题10、平面向量中的范围和最值问题

专题十、平面向量中的最值和范围问题 平面向量中的最值和范围问题, 是一个热点问题,也是难点问题,这类试题的基本类型是根 据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问 题的一般思路是建立求解目标的函数关系, 通过函数的值域解决问题, 同时,平面向量兼具“数” 与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合. 考点1、向量的模的范围 例1、⑴已知直角梯形ABCD 中,AD //BC , ADC 90°,AD 2,BC 1,P 是腰DC 上的 动点,贝U PA 3PB 的最小值为 ______________ . 120 °贝U 的取值范围是 _________________ 变式:已知平面向量a, B 满足| | | | 1,且a 与 的夹角为120 ,则 |(1 t) 2t |(t R)的取值范围是 ______________________ ; 小结1、模的范围或最值常见方法:①通过 |了|2=;2转化为实数问题;②数形结合;③坐标法. 考点2、向量夹角的范围 例 2、已知 O )B = (2,0), OC = (2,2), CA = (Q2cos a,返 in ",贝 UO )A 与 Ofe 夹角的取值范围是( ) n n n 5 n n 5 n 5 n n A.初 3 B. 4 / C. H ,匚 D. 石,2 小结2、夹角范围问题的常见方法:①公式法;②数形结合法;③坐标法. (2) ( 2011辽宁卷理) 若a,b, c 均为单位向量,且a b 0, (a c)(b c) 最大值为( ) (3) ( 2010浙江卷理) A. 2- 1 卜 F B . 1 C. 2 D . 2 )满足 1,且与-的夹角为

高中数学解题方法系列:平面向量最值问题的4种方法

高中数学解题方法系列:平面向量最值问题的4种方法 平面向量中的最值问题多以考查向量的基本概念、基本运算和性质为主,解决此类问题要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 例1、给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C 在以 O 为圆心的圆弧上变动.若其中 ,则的最大值是________. 分析:寻求刻画C 点变化的变量,建立目标x y +与此变量的函数关系是解决最值问题的 常用途径。 解:设AOC θ∠=,以点O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A ,13(,)2B -,(cos ,sin )C θθ。 Q 13(cos ,sin )(1,0)(,)2x y θθ∴=+-即 cos 23sin y x y θθ?-=????= cos 3sin 2sin()6x y πθθθ∴+=+=+2(0)3 πθ≤≤。 因此,当3 π θ=时,取最大值2。 例2、已知(1,7),(5,1),(2,1),OA OB OP ===u u u r u u u r u u u r 点Q 为射线OP 上的一个动点,当QA QB u u u r u u u r g 取最小值时,求.OQ u u u r 分析:因为点Q 在射线OP 上,向量OQ uuu r 与OP uuu r 同向,故可以得到关于OQ uuu r 坐标的一个 关系式,再根据QA QB u u u r u u u r g 取最小值求.OQ u u u r 解:设(2,),(0)OQ xOP x x x ==≥u u u r u u u r ,则(12,7),(52,1)QA x x QB x x =--=--u u u r u u u r OA u u u r OB uuu r 120o AB u u u v ,OC xOA yOB =+u u u r u u u r u u u r ,x y R ∈x y +,OC xOA yOB =+u u u r u u u r u u u r x y +图 1 1

平面向量中的最值问题浅析

平面向量中的最值问题浅析 耿素兰山西平定二中(045200 ) 平面向量中的最值问题多以考查向量的基本概念、 基本运算和性质为主, 解决此类问题 要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 uuu uuu 例1、给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o .如图所示,点C 在以O uuv uur uuu uuu 为圆心的圆弧 AB 上变动.若OC xOA yOB,其中 y 的最大值是 C 点变化的变量,建立目标 x y 与此变量的函数关系是解决最值问题的 常用途径。 ,以点O 为原点,OA 为x 轴建立直角坐标系,则A(1,0),B(丄,一3), 2 2 C(cos ,sin ) uuur 取最小值时,求 OQ. uuu uuiu uuu 分析:因为点 Q 在射线OP 上,向量OQ 与OP 同向,故可以得到关于 OQ 坐标的一个 uju uuu uur 关系式,再根据QAgQB 取最小值求OQ. 分析:寻求刻画 解:设 AOC umr Q OC uuu xOA uuu yOB, (cos ,sin x 上 2 、3y 2 cos sin 因此,当 cos .3sin 2sin( 評 3) 。 3时,x y 取最大值 uuu UJU 例 2、已知 OA (1,7), OB 2。 uur (5,1),OP (2,1),点Q 为射线OP 上的一个动点,当QAgQB uuu uuu 即 1 心)y( ^,

uur 解:设OQ uuu xOP uuu (2x,x),(x 0),则 QA uuu (1 2x,7 x),QB (5 2x,1 x)

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

平面向量中的线性问题专题(附答案)

平面向量中的线性问题 题型一 平面向量的线性运算及应用 例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD → ,则( ) A.AD → =-13AB →+43AC → B.AD →=13AB →-43AC → C.AD →=43AB →+13 AC → D.AD →=43AB →-13 AC → (2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC → =b ,试用a ,b 表示向量AO → . (3)OA →=λOB →+μOC → (λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1. 变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB → +kAC → ,则λ+k 等于( ) A.1+ 2 B.2- 2 C.2 D.2+2 (2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN → ,则λ+μ=________.

题型二 平面向量的坐标运算 例2 (1)(2015·江苏)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. (2)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),求实数k ; ③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 变式训练2 (1)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD → |的最大值是________. (2)已知向量OA →=(3,-4),OB →=(6,-3),OC → =(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 高考题型精练 1.(2015·四川)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 2.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥BC → 3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC → = λOA →+OB → (λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.2 3 4.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC → 等于( )

高中数学必修4平面向量典型例题及提高题

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y = +2 2||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos |||| a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)若a 与b 共线, b 与c 共线,则a 与c 共线。 (2)若ma mb =,则a b =。 (3)若ma na =,则m n =。 (4)若a 与b 不共线,则a 与b 都不是零向量。 (5)若||||a b a b ?=?,则//a b 。 (6)若||||a b a b +=-,则a b ⊥。 题型2.向量的加减运算

运用坐标法解决平面向量的最值问题

运用坐标法解决平面向量的最值问题 发表时间:2013-04-22T16:02:45.093Z 来源:《中学课程辅导·教学研究》2013年第7期供稿作者:卫保新[导读] 在原题目中没有给出相应的图形,在画出的常规图形也难以使学生联想出到建立直角坐标系。 卫保新 摘要:本文通过对三个数学例题的简要分析,简要谈了应如何运用坐标法解决平面向量的最值问题,并提出了笔者的一些体会。关键词:坐标法;平面向量;最值问题 在平面向量中,解决有关最大、最小值问题是高考命题中一个比较常见的热点问题,题目主要考查平面向量的数量积、向量的模、向量的基本运算等重要知识点。解题的方法除了运用数量积的定义,也可运用数量积的坐标运算。知识综合运用三角、不等式、函数等内容。解题的思想体现了数形结合、等价转换、函数与方程等思想方法。在高考和平时的课堂教学中,学生解题过程时很难联想到引入直角坐标系、运用坐标建立函数模型、不等式模型解决问题。 那么,如何建立适当的直角坐标系呢?一是抓住题中直接或间接的垂直关系;二是抓住题中定量与不定量的关系;三是抓住是否有利于图形写出方程的简单化;四是抓住点的坐标更容易写出;五是所建立的直角坐标系不影响求解的结论。 下面用具体例子说明建立直角坐标系、运用坐标法解决平面向量最值问题(以下的解法仅给出坐标法说明,原标准方法在此不再列出) 说明:在例1中原题中没有给出图形,学生在解决问题时虽然能作出图形,由于点P的不确定性,所以学生不容易联想到建立直角坐标系把问题代数化,在P点的选择技巧上,由于圆外一点均可作出圆的两条切线,并且无论点P位于何处,总可以以PO为x轴或y轴建立适当的直角坐标系。本题运用了重要的知识点——平均值不等式求最值。

平面向量中的最值问题浅析

平面向量中的最值问题浅析 耿素兰 山西平定二中(045200) 平面向量中的最值问题多以考查向量的基本概念、基本运算和性质为主,解决此类问题要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 例1、给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o .如图所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+ 其中 ,x y R ∈,则x y +的最大值是________. 分析:寻求刻画C 点变化的变量,建立目标x y + 与此变量的函数关系是解决最值问题的常用途径。 解:设AOC θ∠=,以点O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A ,1(, )22 B -,(cos ,sin ) C θθ。 ,OC xOA yOB =+ 1(cos ,sin )(1,0)(2x y θθ∴=+-即 cos 2sin y x θθ?-=?? = cos 2sin()6x y πθθθ∴+=+=+2(0)3 π θ≤≤。 因此,当3 π θ= 时,x y +取最大值2。 例2、已知(1,7),(5,1),(2,1),OA OB OP === 点Q 为射线OP 上的一个动点,当 QA QB 取最小值时,求.OQ 分析:因为点Q 在射线OP 上,向量OQ 与OP 同向,故可以得到关于OQ 坐标的一个 关系式,再根据QA QB 取最小值求.OQ 解:设(2,),(0)OQ xOP x x x ==≥ ,则(12,7),(52,1)QA x x QB x x =--=-- 图 1

2 2 (12)(52)(7)(1) 520125(2)8 QA QB x x x x x x x ∴=--+--=-+=-- ∴当2x =时,QA QB 取最小值-8,此时(4,2).OQ = 二、利用向量的数量积n m n m ?≤?求最值 例3、ABC ?三边长为a 、b 、c ,以A 为圆心,r 为半径作圆,PQ 为直径,试判断P 、Q 在什么位置时,BP CQ 有最大值。 分析:用已知向量表示未知向量,然后用数量积的性质求解。 解:,AB BP AP AC CQ AQ AP +=+==- 2 2 2 ()() () BP CQ AP AB AP AC r AB AC AP AB AC r AB AC AP CB AB AC AP CB r ∴=---=-++-=-++≤+- 当且仅当AP 与CB 同向时,BP CQ 有最大值。 三、利用向量模的性质a b a b a b -≤+≤+ 求解 例4:已知2,(cos ,sin ),a b b θθ-== 求a 的最大值与最小值。 分析:注意到()a a b b =-+ ,考虑用向量模的性质求解。 解:由条件知1b = 。 设a b c -= ,则a =b c + , c b c b c b -≤+≤+ , ∴13a ≤≤ 。 所以当b 与c 同向时,a 取最大值3;当b 与c 反向时,a 取最小值1。 四、利用几何意义,数形结合求解 例5、如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是 (A )1213PP PP ? (B )1214PP PP ? (C )1215PP PP ? (D )1216PP PP ? 分析:平面向量数量积121(1,2,3,4,5,6)i PP PP i = 的几何意义为121i PP PP 等于12PP 的长度与 图 2 图3

20、平面向量中的最值问题

与平面向量有关的定值最值问题 1、如图,直角梯形ABCD 中,AD ⊥AB, AB//DC , AB=4,AD=DC=2,设点N 是DC 边的中点, 点M 是梯形ABCD 内或边界上的一个动点,则AM AN ? 的最大值是 A 、4 B 、6 C 、8 D 、10 2、如图,点M 为扇形AOB 的弧的四等分点,动点D C ,分别在线段OB OA ,上, 且.BD OC =若1=OA ,120AOB ? ∠=,则||||+的最小是 . 3.在ABC ?中,D 是BC 边上一点,3BD DC =,若P 是线段AD 边上一动点,且2AD =,则)3(PC PB PA +?的最小值为 . 4.已知圆O 的方程为22 2 =+y x ,PA,PB 为该圆的两条切线,A ,B 为两切点,则PB PA ?的最小值为 A .246+- B .246-- C .248+- D .248-- 5 、已知点(P 与椭圆22 13 x y +=,且,A B 是过原点的直线l 与椭圆的交点,记m PA PB =? ,则m 的最小值是 . 6.过圆4)2(22=++y x 上一点P 向圆1)2(2 2=-+y x 引两条切线,切点分别为A .B ,则?的 取值范围 . 7.动点P (x ,y )满足1, 25,3,y x y x y ≥?? +≤??+≥? 点Q 为(1,-1),O 为坐标原点,||OP OP OQ λ=? ,则λ的取 值范围是 A .[55- - B .[]55 C .[]55- D .[55 - 8.已知M ,N 为平面区域360 y 200x y x x --≤?? -+≥??≥? 内的两个动点,向量(1,3)a = ,则?的最大值是____. 9、设点A 在圆122=+y x 内,点)0,(t B ,O 为坐标原点,若集合{ }|C +={ } 9|),(2 2≤+?y x y x , 则实数t 的最大值为 . 10.若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上任意一点,则OP FP ? 的最大 值为 . 11、已知两个单位向量b a ,满足:0)()(,0=-?-=?c b c a b a ,则||c 的最大值为 A.1 B.2 C.3 D.2 12、已知点),(y x P 在由不等式组?? ? ??≥-≤--≤-+010103x y x y x 确定的平面区域内,O 为坐标原点,点A (-1,2),则 AOP OP ∠?cos ||的最大值是 A .55- B .553 C .0 D .5 13.平面向量,a b 满足:4=? 3=- 的最大值与最小值的和是 . 14.已知ABC ? 中,4,AB AC BC ===点P 为BC 边所在直线上的一个动点,则()AP AB AC ?+ 满足 A.最大值为16 B.最小值为4 C.为定值8 D.与P 的位置有关

平面向量的解题技巧

第四讲平面向量的解题技巧 【命题趋向】由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题, 掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O是ABC △所在平面内一点,D为BC边中点,且2OA OB OC ++=0,那么()A.AO OD =D.2AO OD AO OD = AO OD =B.2 =C.3

平面向量中的最值问题0

平面向量中的最值问题 1.求向量的模的最值或取值范围. 2.求平面向量的夹角的最值或取值范围. 3.求平面向量数量积的最值或取值范围. 【复习指导】 本讲复习时,应结合平面向量数量积的定义及其几何意义,将有关的量表示出来,代数或几何方法求解最值与取值范围. 基础梳理 求最值的方法小结 ㈠.几何方法 ⑴.平面几何方法: 两点之间线段最短、点到直线的距离最短、与圆有关的最值 ⑵.解析几何方法 利用截距、斜率、两点之间的距离等几何意义求最值; 先求轨迹,后求最值 ㈡.代数方法 ⑴.函数方法: 首先分析要求的量的变化和什么因素有关,从而选定变量,建立函数关系式,利用函数有关知识求解最值问题,另外有些问题需结合导数知识求解; ⑵.利用基本不等式求解; ⑶.利用三角函数求解. 双基自测 ㈠.求模的最值或范围

1.平几法求最值 【例1】已知向量OA 和OB 的夹角为3 π ,||4,||1OA OB ==,若点M 在直线OB 上,则||OA OM - 的最小值为________.练习1.⑴.(11全国大纲)设向量,,a b c 满足1||||1,,,602 a b a b a c b c ==?=-<-->=,则||c 的 最大值等于________. 【思路点拨】本题按照题目要求构造出如右图所示的几何图形,然后分析观察不难得到当线段AC 为直径时,||c 最大. 解:如图,构造,,,120AB a AD b AC c BAD ===∠=, 60BCD ∠=,所以,,,A B C D 四点共圆,分析可知当线段AC 为 直径时,||c 最大,最大值为2. ⑵.已知向量,||1a e e ≠=,对任意t R ∈,恒有||||a te a e -≥-,则下列结论正确的是________. ①a e ⊥ ②.()a a e ⊥- ③.()e a e ⊥- ④.()()a e a e +⊥- 解法一:由||||a te a e -≥-知,2 2 ||||a te a e -≥-,即222||2||21a ta e t a a e -?+≥-?+,化简得, 22(1)1t a e t -?≤-,当1t ≤时,即212a e t ?≥+≤恒成立,故1a e ?≥;当1t >时,即212a e t ?≤+>,故1a e ?≤.故1a e ?=,故③成立. 解法二:22(1)1t a e t -?≤-,即2 2210t a et a e -?+?-≥任意t R ∈恒成立,故24()a e ?=?- 840a e ?+≤,即1a e ?=,故③成立. 解法三:由几何意义可知,在所有的向量a te -中,以a e -的模最小,故()e a e ⊥-. 【例2】(08浙江)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足:()()0a c b c -?-=,则||c 的最大值是___________. 解法一:由()()0a c b c -?-=可得,2||()||||cos c a b c a b c θ=+?=+(其中θ为a b +与c 的夹 角),即||()||cos c a b c a b θθ=+?=+≤,故||c 的最大值是2. 解法二:作四边形OABC ,设,,OA a OB b OC c ===,则由已知得,90,90AOB ACB ∠=∠=,

平面向量中的最值范围(偏难 带答案)

平面向量中的最值范围(偏难 带答案) 1、设A ,B ,C 是半径为1的圆O 上的三点,且OA ―→⊥OB ―→,则(OC ―→-OA ―→)·(OC ―→-OB ―→ )的最大值是( ) A .1+2 B.1- 2 C.2-1 D .1 解答:如图,作出OD ―→,使得OA ―→+OB ―→=OD ―→,(OC ―→-OA ―→)·(OC ―→-OB ―→)=OC ―→2-OA ―→·OC ―→-OB ―→·OC ―→+OA ―→·OB ―→=1-(OA ―→+OB ―→)·OC ―→=1-OD ―→·OC ―→,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD ―→·OC ―→取得最小值,最小值为-2,此时(OC ―→-OA ―→)·(OC ―→-OB ―→)取得最大值,最大值为1+2,故选A. 2、如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动 点,则AE ―→·BE ―→的最小值为( ) A.21 16 B.32 C.2516 D .3 解答:如图,以D 为坐标原点建立平面直角坐标系,连接AC . 由题意知∠CAD =∠CAB =60°, ∠ACD =∠ACB =30°, 则D (0,0),A (1,0),B ??? ?32,32,C (0,3).设E (0,y )(0≤y ≤3), 则AE ―→=(-1,y ),BE ―→=????-32,y -32,∴AE ―→·BE ―→=32+y 2-32y =????y -342+21 16, ∴当y =34时,AE ―→·BE ―→有最小值2116 . 选A 3、已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π 3,向量b 满足b 2-4e ·b +3=0,则 |a -b |的最小值是( ) A.3-1 B.3+1 C .2 D .2- 3 3解答∵b 2-4e ·b +3=0,∴(b -2e )2=1,∴|b -2e |=1. 如图所示,把a ,b ,e 的起点作为公共点O ,以O 为原点,向量e 所在直线为x 轴,则b 的终点在以点(2,0)为圆心,半径为1的圆上,|a -b |就是线段AB 的长度. 要求|AB |的最小值,就是求圆上动点到定直线的距离的最小值,也就是圆心M 到直线OA 的距离减去圆的半径长,因此|a -b |的最小值为3-1.

微专题11 与平面向量相关的最值问题

微专题11 与平面向量相关的最值问题 与平面向量共线有关的最值问题是高考的热点与难点,常以中档小题、压轴小题出现.解决此 类问题需要先根据题中的向量关系得出未知元之间的关系式,再求出目标的最值.本专题主要研究平面向量线性表示背景下的最值问题,并在解决问题的过程中体会数学思想方法的灵活运用. 例题:如图,在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC →=xOA →+yOB → (x ,y ∈R ) ,求x +4y 的取值范围. 变式1设点A ,B ,C 为单位圆上不同的三点,若∠ABC =π4,OB →=mOA →+nOC → (m ,n ∈R ),则m +n 的 最小值为________________. 变式2如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量AC →=λDE →+μAP → (λ,μ∈R ),求λ+μ的最小值.

串讲1已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ →=23AP → +13 AC →,则|BQ → |的最小值为________________. 串讲2已知三角形ABC 中,过中线AD 的中点E 任作一条直线分别交边AB ,AC 于M ,N 两点,设AM → =xAB →,AN →=yAC → (xy ≠0),求4x +y 的最小值. (2017·新课标Ⅲ卷)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上,若AP →=λAB →+μAD → ,求λ+μ的最大值. (2018·洛阳三模)在△ABC 中,点P 满足BP →=2PC → ,过点P 的直线与AB ,AC 所以直线分别交于点M ,N ,若AM →=mAB →,AN →=nAC → (m >0,n >0),求m +2n 的最小值. 答案:3. 解析:因为BP →=2PC →,所以,AP →=AB →+BP →=AB →+23(AC →-AB → )=13AB →+23AC →,4分 又因为AM →=mAB →,AN →=nAC →,所以AP → =13m AM →+23n AN →,7分 由于M ,P ,N 三点共线,所以13m +2 3n =1,9分

专题:平面向量常见题型与解题指导

平面向量常见题型与解题指导 一、考点回顾 1、本章框图 2、高考要求 1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。 2、掌握向量的加法和减法的运算法则及运算律。 3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。 4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。 5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。 6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。 7、掌握正、余弦定理,并能初步运用它们解斜三角形。 8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。 3、热点分析 对本章内容的考查主要分以下三类: 1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题. 2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主. 3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质. 在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。本章的另一部分是解斜三角形,它是考查的重点。总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。考查的重点是基础知识和基本技能。 4、复习建议 由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。 在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。 在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。

平面向量中的难题

平面向量中的难题 1.(2016石家庄二模)已知向量,,满足,32=?==,若 0)32()2(=-?-的最大值是_______________. 2.(2016年高考四川卷文理) 在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA ?DB =DB ?DC =DC ?DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是 (A )434 (B )494 (C )374+ (D )374+ 3. (2016年高考浙江卷文)已知平面向量 1,21,=?==若e 为平面单位向量, +______. 4. (2016年高考江苏卷)如图,在ABC ?中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4=?,1BF CF ?=- ,则BE CE ? 的值是 ▲ . 5. 【2015高考浙江,理15】已知12,e e 是空间单位向量,1212 e e ?=,若空间向量b 满足125 2,2b e b e ?=?=,且对于任意 ,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = . 6. 【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,

且,1,,9BE BC DF DC λλ== 则AE AF ?的最小值为 . 7. 已知是内一点,且满足,则 为 8. 若平面向量,满足32≤-a ,则?的最小值是_______________. 9.在平面四边形ABCD 中,点F E ,分别是边BC AD ,的中点,且2=AB ,1=EF ,3=CD .若15=?,则?的值为____ . 10. 在ABC ?中,点P 在行内,且3 141+=,求APC ABP S S ??:的值。 11. 已知O 为锐角?ABC 的外心,AB=6,AC=10,AO x AB y AC =+,且2105x y +=,则边 BC 的长为 _______

巧用平面向量求一类函数值域问题

巧用平面向量求一类函数值域问题 例1.求 2t 1)(-+=t t f 的值域 cos α 则()sin cos f t αα=+ 4πα? ?+ ??? ?∈? 这样解看似没有问题,可是实际上忽略了α的范围。 于是考虑α范围,cos 0α≥ 2,222k k ππαππ??∈-++????32,2444k k πππαππ??+∈-++????∴ 4πα??+ ??? ?∈-? 这样做的话很容易漏掉自变量的范围,于是笔者想到一种更为直观的方法 (向量法)解:令a =(1,1)b =(t 则()f t a b =? 在平面直角坐标系中以(0,0)为起点表示两向量,图 中a =AB ,b 的终点在 22x y =1+(y>0)上。 max |()|||f t a b =?= min |()|||cos135(1)1f t a b f =?=-=- () f t ?∈-? 于是有以下总结: 一般的,对于形如()f x =±其中m ,n 为常数。a ,b 为含自变量x 的式 子,且a+b=正常数)的函数解析式可设 ()(,)(f x m n =?,根据几何直观求()f x 的值域。特别要注意(的取值范围 例2.求 ()f t =的值域

解:设a = )b = ) 则()f t a b =?=+ 在平面直角坐标系中以(0,0)为起点表示两向量,图中a =AB ,b 的终点在 22x y =1 +(x,y>0)上。 max ()||||212f t a b =?=?= min ()()(0)(1)1f t g x g f ==== ()[]1,2f t ∈ 例3函数( ))120,0,f x b a λλλλ=+???的最大值= ,最小值= 。 解:设()12,a λλ= b= ( )a b f x λλ=?=+ ||||cos ,a b a b =??? ,a b =?? ( )max f x ∴=当12λλ? 时,()()2 min =f x f a λ= 当12λλ?时, ()()min =f x f b λ= 例 4设α 为锐角,证明 1≤≤ 证明:令a= ( )b=1,1 |a|1,?∈? 由图像可知 min a b =a b=|a ||b|=1cos45=1 ''''??? 。

平面向量中最值、范围问题

平面向量中的最值、范围问题 一、考情分析 平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合.其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合. 二、经验分享 1.利用平面向量的数量积可以解决几何中的垂直、夹角、长度等问题,即只需将问题转化为向量形式,用向量的运算来求解.如果能够建立适当的直角坐标系,用向量的坐标运算往往更为简捷.1.平面向量线性运算问题的常见类型及解题策略 2.几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果. 3.坐标是向量代数化的媒介,通过向量的坐标表示可将向量问题转化为代数问题来解决,而坐标的获得通常要借助于直角坐标系. 对于某些平面向量问题, 若能建立适当的直角坐标系,可以使图形中复杂的几何关系转化为简单明朗的代数关系,减少推理过程,有效地降低思维量,起到事半功倍的效果.上面两题都是通过建立坐标系将向量问题转化为函数与不等式问题求解,体现了向量解题的工具性. 三、知识拓展 1.-≤?≤a b a b a b . 2.-≤±≤+a b a b a b 四、题型分析 (一) 平面向量数量积的范围问题 已知两个非零向量a r 和b r ,它们的夹角为θ,cos b θ??s 叫做a r 和b r 的数量积(或内积),记作a b ?r r .即a b ?r r =cos a b θ??r s ,规定00a ?=r r ,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用 定义法求解,即a b ?r r =cos a b θ??r s ;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b = (x 2,y 2),则a ·b =x 1x 2+y 1y 2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算. 【例1】在边长为2的等边三角形ABC 中,D 是AB 的中点,E 为线段AC 上一动点,则ED EB ?的取值范

平面向量中的最值与范围问题

平面向量中的最值与范围问题 例1、若正方形ABCD 边长为1,点P 在线段AC 上运动, 则()AP PB PD ?+的取值范围是。 设A(0,0) B(1,0) C(1,1) D(0,1) P(x,x) x ∈[0,1] =(x,x) =(1-x,-x) =(-x,1-x) (+)=(x,x)(1-2x,1-2x)=2x(1-2x)=-(2x- 1/2)^2+1/4 当x=1/4时取得最大值,是1/4 当x=0时,值为0,当x=1时,值为-2,所以最小值为-2 所以取值范围是[-2,1/4] 例2、设点G 是ABC ?的重心,若?=∠120A , 2AB AC ?=- 的最小值是_____ 。 例3、已知平面向量,(0,)αβααβ≠≠满足 1β=,且α与βα-的夹角为120°,则α的取值范围是_________________。 C

例4(2013年重庆理)在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12 OP <,则OA 的取值范围是 ( ) A .? ??B .??C .?D .? 平面向量中的最值与范围问题 课堂练习 1、若非零向量,a b 满足+=a b b ,则( ) A.2>2+a a b B.22<+a a b C.2>+2b a b D. 22<+b a b 2、设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -?-的最小值为 ( ) (A )2- (B 2 (C )1- (D)1 3、已知平面上的向量PA 、PB 满足224PA PB +=,2AB =, 设向量2PC PA PB =+,则PC 的最小值是。

相关文档
最新文档