阵列信号处理中的DOA估计算法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阵列信号处理中的DOA估计算法

摘要:本文简要介绍了阵列信号处理的基本知识和其数学模型,并且对阵列信号处理中很重要的来波方向(DOA)估计方法进行了比较,主要包括古典谱估计方法、Capon最小方差法、多重信号分类(MUSIC)算法以及旋转不变因子空间(ESPRIT)算法。通过这些算法的介绍和比较,我们可以很方便地在不同的情况下选择不同的算法去对信号的来波方向进行估计。

关键词:阵列信号处理;来波方向(DOA);MUSIC;自相关矩阵;特征分解;ESPRIT DOA Estimation Algorithms in Array Signal Processing Abstract:In this paper, we have introduced the basic knowledge and data model of array signal processing and have compared many DOA estimation methods in array signal processing,which included classical spectrum estimation method、Capon minimum variance method、MUSIC method and ESPRIT method。Through the introduction and comparison of these algorithms,we can choose different algorithm to estimate the DOA of signal in different situation,conveniently。Key word s:array signal processing;DOA;MUSIC;self-correction matrix;eigendecomposition;

ESPRIT

1.引言

近几十年来,阵列信号处理作为信号处理的一个重要分支,在声纳、雷达、通信以及医学诊断等领域得到了相当广泛的应用和发展。阵列信号处理是指在一定大小空间的不同位置去设置传感器,组成传感器阵列,利用传感器阵列去接收空间中的信号并且通过一定的方法对接收的信号进行处理。阵列信号处理的目的是为了增强有用的信号,抑制无用的干扰和噪声,并且从接收的信号中提取出有用信号的特征以及信号所包含的信息。与传统的单个定向传感相比,传感器阵列具有比较高的信号增益、灵活的波束控制、很高的空间分辨率以及极强的干扰抑制能力。阵列信号处理研究的主要问题包括[5]:空间谱估计——对空间信号波达方向进行超分辨估计;零点形成技术——使天线的零点对准干扰方向;波束形成技术——使阵列方向图的主瓣指向所需的方向。其研究的三个主要方向分别在不同的时期进行了不同的主要研究,这三个阶段分别是:

1、20世纪60年代主要集中在波束形成技术方面[1],如自适应相控天线、自适应波束操控天线和自适应聚束天线等,主要目的是使阵列方向图的主瓣指向所需要的方向。

2、20世纪70年代主要集中在零点形成技术方面[2],如自适应置零技术、自适应调零技术、自适应杂波抑制和自适应旁瓣相消等,可以提高信号输出的信噪比(SNR)。

3、20世纪80年代主要集中在空间谱估计方面[3],如最大似然谱估计、最大熵谱估计、子空间谱估计等,它是现代谱估计理论与自适应阵列技术结合的产物,主要是研究在阵列处理带宽内空间信号的波达方向的估计问题,这标志着阵列信号处理研究的重大变化。

信号的波达方向(DOA)估计是阵列信号处理领域的一个非常重要的研究内容。信号的DOA估计算法大多是一种极值搜索法,即首先形成一个包含待估计参数的函数(一般是一个伪谱函数),然后通过对该函数进行峰值搜索,得到的极值就是信号的波达方向。这些算法主要包括:1965年Bartlett基于波束形成的思想提出的DOA估计算法,但是该算法不能分辨出两个空间距离小于波束宽度的信号源。1968年Schweppe首先研究了虽大似然估计算法(ML),但是比较重要的还是后来Capon提出的高进度的ML,该算法对于服从高斯分布的信源估计可以达到克劳—拉美界,但是需要对接收阵列数据的自相关矩阵进行求了逆运算,运算量相当大。1979年Schmidt提出了多重信号分类法[4](Multiple Signal Classification,MUSIC)以及各种改进的MUSIC算法等,它们都需要进行特征值分解运算,可以得到比较高精度的参数估计,但是计算量太大。1985年Roy和Kailath提出了一种借助旋转不变技术的参数估计算法[6](Estimating Signal Via Rotational Invariance Techniques,ESPRIT),它是利用阵列流行的某些特性形成一个可以直接求解的函数,能够比较方便的得到所需要的估计参数。在此之后,人们以MUSIC和ESPRIT为基础,提出了各种各样的算法,例如最小范数法[7]、ROOT-MUSIC[8]、TLS-ESPRIT[9]等。这些不同的算法是基于不同的理论提出的,并且建立在不同的约束条件之下,所以其特性和适用对象也会不同。

2.数据模型

2.1平面波与阵列

在无线通信中我们通过天线对电磁波进行发射和接收。为了增加电磁波的利用率和电磁波的波束形状可控,一般采用阵列天线。在一般情况下,将一组传感器按一定的方式设置在空间不同的位置上组成传感器阵列,此传感器阵列能够接收空间的传播信号,然后对所接收到的信号经过适当的处理并提取所需的信号源和信号属性等信息,包括信号辐射源辐射信号的数目、方向、幅度等。一般来说,构成阵列的阵元可以按照任意的方式进行排列,但是通常是按照直线等距、圆周等距或平面等距排列的,并且取向相同。为了简化天线阵列的分析,

通常作如下假设[10

]:

1. 窄带假设:这样可以保证所有阵元几乎同时接收到该信号,即阵元接收之间的信号包络没有变化;

2. 信号的统计特性:假设入射到阵列的信号为平稳且各态历经,这样可以用时间平均来代替统计平均。噪声为互不相关的白噪声,方差为2

n σ。

3. 忽略阵元之间的互耦;

4. 信号的数目要小于阵元的数目,并且阵列接收到得所有信号的波达方向互不相同,信号之间互不相关;

5. 平面波假设:假设信源到阵列的距离远大于阵列的口径,从而所有入射到阵列的信号波前金额以近似为平面波。

假设在天线阵的原唱存在D 个信号源,则所有到达阵列的波前可近似为平面波。若天线阵由M 个全向天线组成,将第一个阵元设为参考阵元,则到达参考阵元的第i 个信号为:

()()0,0,1,,1j t

i i s t z t e

i D ω==- (1)

式中,()i z t 为第i 个信号的复包络,包含信号信息。0j t

e

ω为空间信号的载波。由于信号满

足窄带假设条件,则()()i i z t z t τ-≈,那么经过传播延迟τ后的信号可以表示为:

()()()

0j t i i s t z t e

ωτττ--=-

()0,0,1,

,1j i s t e i D ωτ-≈=- (2)

则理想情况下第m 个阵元接收到的信号可以表示为:

()()()10

D m i mi m i x t s t n t τ-==-+∑ (3)

式中,mi τ为第i 个阵元到达第m 个阵元时相对于参考阵元的时延,()m n t 为第m 阵元上的加性噪声。根据式(2)和(3)可得,整个天线阵接收到得信号为:

()()()1

a D i i i t s t t -==+∑X N

()()t t =+AS N (4)

式中,01020a ,,,i

i Mi

T

j j j i e

e e

ωτωτωτ---⎡⎤=⎣⎦为信号i 的方向向量,[]011a ,a ,

,a D -=A 为阵列

流形,()()()()011,,

,T

D t s t s t s t -=⎡⎤⎣⎦S 为信号矩阵,()()()()12,,

,T

M t n t n t n t =⎡⎤⎣⎦N 为

加性噪声矩阵,[

]

T

表示矩阵转置。

2.2 均匀线阵与均匀圆阵

在实际中一般使用均匀线阵和均匀圆阵等阵列结构。

(1)均匀线阵

均匀线阵(ULA :Uniform Linear Array )是一最简单常用的阵列形式,如图1所示,将M 个阵元等距离排列成一直线,阵元间距为d 。假定一信源位于远场,即其信号到达各阵元的波前为平面波,其波达方向(DOA )定义为与阵列法线的夹角θ。

相关文档
最新文档