空间向量专题练习详细答案

空间向量专题练习详细答案
空间向量专题练习详细答案

空间向量专题练习详细答案

————————————————————————————————作者:————————————————————————————————日期:

2

空间向量专题练习

一、填空题(本大题共4小题,共20.0分) 1.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为 ______ . 【答案】

π

3

或2π

3 【解析】

解:设平面α的法向量为m ??? =(1,0,-1),平面β的法向量为n ? =(0,-1,1), 则cos <m

??? ,n ? >=1×0+0×(?1)+(?1)×1

√2?√2

=-1

2,

∴<m

??? ,n ? >=2π

3. ∵平面α与平面β所成的角与<m ??? ,n ? >相等或互补, ∴α与β所成的角为π

3或2π

3. 故答案为:π

3或2π

3.

利用法向量的夹角与二面角的关系即可得出.

本题考查了利用用法向量的夹角求二面角的方法,考查了计算能力,属于基础题.

2.平面α经过三点A (-1,0,1),B (1,1,2),C (2,-1,0),则平面α的法向量u

? 可以是 ______ (写出一个即可) 【答案】 (0,1,-1) 【解析】

解:AB ????? =(2,1,1),AC

????? =(3,-1,-1), 设平面α的法向量u ? =(x ,y ,z ),

则{u ? ?AB ????? =2x +y +z =0u ? ?AC

????? =3x ?y ?z =0,令z =-1,y =1,x =0.

∴u ? =(0,1,-1). 故答案为:(0,1,-1).

设平面α的法向量u ? =(x ,y ,z ),则{u ? ?AB ????? =2x +y +z =0

u

? ?AC ????? =3x ?y ?z =0,解出即可.

本题考查了线面垂直与数量积的关系、平面的法向量,属于基础题.

3.已知AB ????? =(1,0,2),AC

????? =(2,1,1),则平面ABC 的一个法向量为 ______ . 【答案】 (-2,3,1) 【解析】

解:AB ????? =(1,0,2),AC ????? =(2,1,1),

设平面ABC 的法向量为n ? =(x ,y ,z ), 则{n ? ?AB ????? =0n ? ?AC

????? =0,即{x +2z =02x +y +z =0,取x =-2,则z =1,y =3.

∴n ? =(-2,3,1). 故答案为:(-2,3,1).

设平面ABC 的法向量为n ? =(x ,y ,z ),则{n

? ?AB ????? =0n ? ?AC

????? =0,解出即可. 本题考查了平面的法向量、线面垂直与数量积的关系,属于基础题.

4.在三角形ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1),若向量n

? 与平面ABC 垂直,且|n

? |=√21,则n ? 的坐标为 ______ . 【答案】

(2,-4,-1)或(-2,4,1) 【解析】

解:设平面ABC 的法向量为m ??? =(x ,y ,z ),

则m ??? ?AB ????? =0,且m ??? ?AC

????? =0, ∵AB ????? =(-1,-1,2),AC ????? =(1,0,2), ∴{?x ?y +2z =0

x +2z =0, 即{x =?2z y =4z

, 令z =1,则x =-2,y =4, 即m ??? =(-2,4,1),

若向量n ? 与平面ABC 垂直, ∴向量n ? ∥m ??? , 设n ? =λm ??? =(-2λ,4λ,λ), ∵|n

? |=√21, ∴√21?|λ|=√21, 即|λ|=1, 解得λ=±1,

∴n ? 的坐标为(2,-4,-1)或(-2,4,1), 故答案为:(2,-4,-1)或(-2,4,1)

根据条件求出平面的法向量,结合向量的长度公式即可得到结论. 本题主要考查空间向量坐标的计算,根据直线和平面垂直求出平面的法向量是解决本题的关键.

二、解答题(本大题共3小题,共36.0分)

5.如图,在四棱锥P-ABCD 中,底面ABCD 为菱形,∠BAD=60°,Q 为AD 的中点.

(1)若PA=PD ,求证:平面PQB ⊥平面PAD ; (2)点M 在线段PC 上,PM =1

3PC ,若平面PAD ⊥平面ABCD ,且PA=PD=AD=2,求二面角M-BQ-C 的大小.

【答案】 解:(1)证明:由题意知:PQ ⊥AD ,BQ ⊥AD ,PQ ∩BQ=Q , ∴AD ⊥平面PQB , 又∵AD ?平面PAD , ∴平面PQB ⊥平面PAD .

(2)∵PA=PD=AD ,Q 为AD 的中点, ∴PQ ⊥AD ,

∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD , ∴PQ ⊥平面ABCD ,

以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴, 建立如图所求的空间直角坐标系, 由题意知:Q (0,0,0),A (1,0,0), P (0,0,√3),B (0,√3,0),C (-2,√3,0)

∴QM ??????? =23QP ????? +13QC ????? =(-2

3

,√33

,2√33

), 设n 1???? 是平面MBQ 的一个法向量,则n 1???? ?QM ??????? =0,n 1???? ?QB ?????? =0, ∴{

√3y =0

?23

x+

√3

3y+2√33

z=0,∴n 1???? =(√3,0,1),

又∵n 2???? =(0,0,1)平面BQC 的一个法向量, ∴cos <n 1???? ,n 2???? >=1

2,

∴二面角M-BQ-C 的大小是60°. 【解析】

(1)由题设条件推导出PQ ⊥AD ,BQ ⊥AD ,从而得到AD ⊥平面PQB ,由此能够证明平面PQB ⊥平面PAD .

(2)以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角M-BQ-C 的大小.

本题考查平面与平面垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.

6.如图,

在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,点E 是PC 的中点,F 在直线PA 上. EF ⊥PA ,求PF

PA 的值;

(1)若

(2)求二面角P-BD-E 的大小.

【答案】 解:(1)∵在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,

∴以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,

∵PD=DC=2,点E 是PC 的中点,F 在直线PA 上, ∴P (0,0,2),A (2,0,0),C (0,2,0),E (0,1,1),

设F (a ,0,c ),PF ????? =λPA

????? ,则(a ,0,c -2)=λ(2,0,-2)=(2λ,0,-2λ), ∴a =2λ,c =2-2λ,F (2λ,0,2-2λ),

EF

????? =(2λ,-1,1-2λ),PA ????? =(2,0,-2), ∵EF ⊥PA ,∴EF ????? ?PA ????? =4λ-2+4λ=0,解得λ=1

4, ∴PF

PA =1

4.

(2)P (0,0,2),B (2,2,0),D (0,0,0),E (0,1,1),

DP ????? =(0,0,2),DB ?????? =(2,2,0),DE

?????? =(0,1,1), 设平面BDP 的法向量n ? =(x ,y ,z ),

则{n ? ?DB

?????? =2x +2y =0n

? ?DP ????? =2z =0,取x =1,得n ? =(1,-1,0),

设平面BDE 的法向量m ??? =(x ,y ,z ),

则{m ??? ?DB

?????? =2x +2y =0m ??? ?DE ?????? =y +z =0,取x =1,得m ??? =(1,-1,1),

设二面角P-BD-E 的大小为θ,

则cos θ=|m ??? ?n ?? |

|m ??? |?|n ?? |=2

√2?√3

=√

6

3

. ∴二面角P-BD-E 的大小为arccos √6

3

【解析】

(1)以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,利用向量法能求出PF

PA 的值.

(2)求出平面BDP 的法向量和设平面BDE 的法向量,由此能求出二面角P-BD-E 的大小.

本题考查线段比值的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

7.如图所示的几何体是由棱台ABC-A 1B 1C 1和棱锥D-AA 1C 1C 拼接而成的组合体,其底面四边

形ABCD 是边长为2的菱形,且∠BAD=60°,BB 1⊥平面ABCD ,BB 1=2A 1B 1=2.

(Ⅰ)求证:平面AB 1C ⊥平面BB 1D ; (Ⅱ)求二面角A 1-BD-C 1的余弦值.

【答案】

(Ⅰ)证明:∵BB 1⊥平面ABCD ,∴BB 1⊥AC , ∵ABCD 是菱形,∴BD ⊥AC ,

又BD ∩BB 1=B ,∴AC ⊥平面BB 1D ,

∵AC ?平面AB 1C ,∴平面AB 1C ⊥平面BB 1D ; (Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,

以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.

则B(0,?1,0),D(0,1,0),B 1(0,?1,2),A(√3,0,0),A 1(√3

2

,?1

2

,2),

C 1(?

√32

,?1

2,2),

∴BA 1???????? =(√32

,12

,2),BD ?????? =(0,2,0),BC 1??????? =(?

√32

,12

,2). 设平面A 1BD 的法向量n ? =(x ,y ,z),

由{n ? ?BA 1???????? =√32x +12y +2z =0n ? ?BD

?????? =2y =0,取z =√3,得n ? =(?4,0,√3), 设平面DCF 的法向量m ??? =(x ,y ,z),

由{m ??? ?BD ?????? =2y =0m ??? ?BC 1

??????? =?√32

x +12

y +2=0,取z =√3,得m ??? =(4,0,√3). 设二面角A 1-BD-C 1为θ, 则cosθ=

|m ????? ?n ?? ||m||n|

=

1319

【解析】

(Ⅰ)由BB 1⊥平面ABCD ,得BB 1⊥AC ,再由ABCD 是菱形,得BD ⊥AC ,由线面垂直的判定可得AC ⊥平面BB 1D ,进一步得到平面AB 1C ⊥平面BB 1D ;

(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.求出所用点的坐标,得到平面A 1BD 与平面DCF 的法向量,由两法向量所成角的余弦值可得二面角A 1-BD-C 1的余弦值.

本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.

空间向量的加减数乘运算练习题集

课时作业(十四) [学业水平层次] 一、选择题 1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量 D .既不共线也不共面向量 【解析】 由共面向量定理易得答案A. 【答案】 A 2.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA → =-AB →=-a -2b ,∴BD →=-2BA →, ∴BD →与BA → 共线, 又它们经过同一点B , ∴A 、B 、D 三点共线. 【答案】 A 3.A 、B 、C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC → ,则P 、A 、B 、C 四点( ) A .不共面 B .共面

C .不一定共面 D .无法判断 【解析】 ∵34+18+1 8=1, ∴点P 、A 、B 、C 四点共面. 【答案】 B 4. (2014·莱州高二期末)在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1→表示向量BD 1→ 的结果为( ) 图3-1-9 =AB →-AD →+AA 1→ =AD →+AA 1→-AB → =AB →+AD →-AA 1→ =AB →+AD →+AA 1→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD → .故选B. 【答案】 B 二、填空题 5.如图3-1-10,已知空间四边形ABCD 中,AB →=a -2c ,CD → =5a +6b -8c ,对角线AC ,BD 的中点分别为E 、F ,则EF → =________(用向量a ,b ,c 表示).

高中数学第三章空间向量与立体几何单元质量测评新人教A版选修21

高中数学第三章空间向量与立体几何单元质量测评新人教A 版选 修21 第三章 单元质量测评 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 第Ⅰ卷 (选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分. 1.若平面α外直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( ) A .a =(1,0,1),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1) 答案 D 解析 若l ∥α,则a ·n =0,只有选项D 中a ·n =0. 2.已知A (1,2,-1),B 为A 关于平面xOy 的对称点,C 为B 关于y 轴的对称点,则BC →=( ) A .(-2,0,-2) B .(2,0,2) C .(-1,0,-1) D .(0,-2,-2) 答案 A 解析 由题意可知B (1,2,1),C (-1,2,-1),∴BC → =(-2,0,-2). 3.以下四组向量中,互相平行的组数为( ) ①a =(2,2,1),b =(3,-2,-2); ②a =(8,4,-6),b =(4,2,-3); ③a =(0,-1,1),b =(0,3,-3); ④a =(-3,2,0),b =(4,-3,3). A .1 B .2 C .3 D .4 答案 B 解析 ∵②中a =2b ,∴a ∥b ;③中a =-1 3b ,∴a ∥b ;而①④中的向量不平行.故选B. 4.已知a =(1,x,1),b =(2,1,-1)的夹角为锐角,则函数y =x 2 +4x -1的值域是( ) A .(-∞,3) B .(-∞,-3) C .(-4,+∞) D .(-∞,-4) 答案 C

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

高考总复习 中学教学案空间向量单元(教师版全套)

空间向量 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算.3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a+b=. (2) 加法结合律:(a+b)+c=. (3) 数乘分配律:λ(a+b)=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a、b(b≠0),a∥b等价于存在实数λ, 使.

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使 . 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使 . 6.空间向量的数量积 (1) 空间向量的夹角: . (2) 空间向量的长度或模: . (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b = .空间向量的数量积的常用结论:(a) cos 〈a 、b 〉= ; (b) ?a ?2= ; (c) a ⊥b ? . (4) 空间向量的数量积的运算律:(a ) 交换律a ·b = ; (b ) 分配律a ·(b +c )= . 例1.已知正方体ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0 ,2 1 =-∴==y x y x 变式训练1. 在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A A 1c ,则下列向量中与M B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2. 底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点,求证:AB 1∥平面C 1BD. 证明:记,,,1AA ===则 A B C D A B

空间向量知识点归纳总结

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线 向量或平行向量,a 平行于b ,记作b a //。 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =

λb 。 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数 ,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使 ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作 (,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+ x )- 2 D.y=sin(3 21π -x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( )

空间向量与立体几何单元测试题

空间向量与立体几何单元测试题一、选择题 1、若a,b,c是空间任意三个向量, R λ∈,下列关系式中,不成立的是() A.a b b a +=+ B. () a b a b λλλ +=+ C.()() a b c a b c ++=++ D. b a λ = 2、给出下列命题 ①已知a b ⊥, 则 ()() a b c c b a b c ?++?-=? ; ②A、B、M、N 为空间四点,若 ,, BA BM BN 不构成空间的一个基底, 则A、B、M 、N共面; ③已知a b ⊥,则,a b与任何向量不构成空间的一个基底; ④已知{} ,, a b c 是空间的一个基底,则基向量 ,a b 可以与向量 m a c =+构成空间另一个基底. 正确命题个数是() A.1 B.2 C.3 D.4 3、已知,a b 均为单位向量,它们的夹角为60?,那么 3 a b + 等于() A 7 B 10 C 13 D.4 4、 1,2,, a b c a b ===+ 且 c a ⊥,则向量a b 与 的夹角为() A.30?B.60?C.120?D.150?5、已知 ()() 3,2,5,1,,1, a b x =-=- 且 2 a b?=,则x的值是() A.3 B.4 C.5 D .6 6、若直线l的方向向量为 a,平面α的法向量为n,则能使//lα的是( ) A ()() 1,0,0,2,0,0 a n ==- B. ()() 1,3,5,1,0,1 a n == C ()() 0,2,1,1,0,1 a n ==-- D. ()() 1,1,3,0,3,1 a n =-= 7.空间四边形OABC中,OB OC =, 3 AOB AOC π ∠=∠=,则cos<, OA BC>的值是() A. 2 1 B. 2 2 C.- 2 1 D.0 8、正方体ABCD-1 1 1 1 D C B A的棱长为1,E是 1 1 B A中点,则E到平面 1 1 D ABC的距离是() A. 3 B. 2 C. 1 2D. 3 9.若向量a与b的夹角为60°,4 = b,(2)(3)72 a b a b +-=-,则a=() A.2B.4 C.6 D.12 10.如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是() A. 10 30 B. 2 1 C. 15 30 D. 10 15 1

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

空间向量练习题

空间向量在立体几何中的应用 【知识梳理】1、已知直线12,l l 的方向向量分别为12,v v u r u u r ,平面,αβ的法向量分别为12,n n u r u u r ,则 (1)12//l l ? ;(2)12l l ⊥? ;(3)若直线12,l l 的夹角为θ,则cos θ= ; (4)1//l α? ;(5)1l α⊥? ;(6)若直线1l 与面α的成角为θ,则sin θ= ; (7)//αβ?面面 ;(8)αβ⊥?面面 ;(9)若αβ面与面成二面角的平面角为θ,则 。 2、(1)三余弦定理: ; (2)三垂线定理(及逆定理): ; (3)二面角的平面角定义(范围): ; 【小试牛刀】1、A (1,1,-2)、B (1,1,1),则线段AB 的长度是( ) A.1 B.2 C.3 D.4 2、向量a =(1,2,-2),b =(-2,-4,4),则a 与b ( ) A.相交 B.垂直 C.平行 D.以上都不对 3.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是( ) A .- 21a +21b +c B .21a +21b +c C .2 1 a - 21b +c D .-21a -2 1 b + c 4.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 5 1 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 5.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于

高中数学空间向量与立体几何单元练习题

《空间向量与立体几何》习题 一、选择题(每小题5分,共50分) 1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是 A .- 21a +21b +c B .21a +21b +c C .2 1a - 21b +c D .-21a -2 1 b + c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 51 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于 A.41 B.4 1 - C.43 D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.1 5.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A. 213 B.253 C.453 D.4 53 6.下列几何体各自的三视图中,有且仅有两个视图相同的是 A .①② B .①③ C .①④ D .②④ 7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ①正方体 ②圆锥 ③三棱台 ④正四棱锥

A .9π B .10π C .11π D .12π 8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1 D 1 D .异面直线AD 与CB 1所成的角为60° 9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A . 6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为 A.5 B.41 C.4 D.52 二、填空题(每小题5分,共20分) 11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy . 12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥, 1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD 的距离为 . 三、解答题(共80分) 俯视图 正(主)视图 侧(左)视图 2 3 2 2

(完整版)空间向量与立体几何题型归纳.doc

空间向量与立体几何 1,如图,在四棱锥V-ABCD中,底面 ABCD是正方形,侧面 VAD是正三角形,平面 VAD⊥底面 ABCD (1)证明 AB⊥平面 VAD; (2)求面 VAD与面 VDB所成的二面角的大小 2, 如图所示,在四棱锥 P— ABCD中,底面 ABCD为矩形,侧棱 PA⊥底面 ABCD,AB= , BC=1, PA=2, E 为 PD的中点 . (1)求直线 AC与 PB所成角的余弦值; (2)在侧面 PAB内找一点 N,使 NE⊥平面 PAC,并求出 N点到 AB和 AP的距离 .( 易错点 , 建系后, 关于 N 点的坐标的设法 , 也是自己的弱项 )

3.如图,在长方体ABCD― A1 B1 C1D1中, AD=AA1=1, AB=2,点 E 在棱 AB上移动 . (1)证明: D1E⊥A1D; (2)当 E 为 AB的中点时,求点 A 到面 ECD1的距离; (3)AE 等于何值时,二面角 D1― EC― D的大小为( 易错点 : 在找平面 DEC的法向量的时候 , 本 来法向量就己经存在了, 就不必要再去找, 但是我认为去找应该没有错吧, 但法向量找出来了, 和那个己经存在的法向量有很大的差别, 而且 , 计算结果很得杂, 到底问题出在哪里?) 4.如图,直四棱柱 ABCD - A1 B1C1D1中,底面 ABCD 是等腰梯形, AB ∥ CD , AB = 2DC = 2, E 为 BD 1的中点, F 为 AB 的中点,∠ DAB = 60°. (1)求证: EF ∥平面 ADD 1A1; 2 1 (2) 若BB12 ,求 A F 与平面 DEF 所成角的正弦值.

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

空间向量与立体几何-单元测试-有答案

& 第三章 空间向量与立体几何 单元测试 (时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 1.以下四组向量中,互相平行的组数为( ) ①a =(2,2,1),b =(3,-2,-2);②a =(8,4,-6),b =(4,2,-3);③a =(0,-1,1),b =(0,3,-3);④a =(-3,2,0),b =(4,-3,3) A .1组 B .2组 C .3组 D .4组 : 解析:∵②中a =2b ,∴a ∥b ;③中a =-1 3b , ∴a ∥b ;而①④中的向量不平行. 答案:B 2.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件;②若a ∥b ,则存在唯一 的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP → =2OA →-2OB →-OC → ,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基底,则{a +b ,b +c ,c +a }构成空间的另一组基底;⑤|(a ·b )·c |=|a |·|b |·|c |. A .2个 B .3个 C .4个 D .5个 解析:①|a |-|b |=|a +b |?a 与b 共线,但a 与b 共线时|a |-|b |=|a +b |不一定成立,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知正确;⑤由向

量的数量积的性质知,不正确. ! 答案:C 3.如图,已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连接AC ,BD ,PB , PC ,PD ,则下列各组向量中,数量积不一定为零的是( ) 与BD → 与PB → 与AB → 与CD → 解析:建立如图所示的空间直角坐标系. 设矩形ABCD 的长、宽分别为a ,b ,PA 长为c ,则A (0,0,0),B (b,0,0), D (0,a,0),C (b ,a,0),P (0,0,c ). - 则PC →=(b ,a ,-c ),BD →=(-b ,a,0),DA →=(0,-a ,0),PB → =(b,0,

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳 一、基础知识 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b | ? , 其中a ,b 分别是直线a ,b 的方向 向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量, φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | ? . 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ? ,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值. 直线与平面所成角的范围为????0,π 2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值. 利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互

补,需要结合图形进行判断. 二、常用结论 解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2. 如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角 [典例精析] 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为7 21 ,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→ 方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0). (1)证明:DE ―→=(0,2,0),DB ―→ =(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则????? n ·DE ―→=0,n ·DB ―→=0, 即????? 2y =0,2x -2z =0. 不妨取z =1,可得n =(1,0,1).

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

空间向量与立体几何练习题

______________________________________________________________________________________________________________ 空间向量与立体几何单元检测题 一、选择题: 1、若 a , b , c 是空间任意三个向量 , R ,下列关系式中 ,不成立的是( ) A 、 a b b a B 、 a b a b C 、 a b c a b c D 、 b a 2、已知向量 a =( 1, 1,0),则与 a 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、( 2 , 2 ,0) D 、(1,1, 2 2 1) 3、若 a , b ,c 为任意向量, m R ,下列等式不一定成立的是( ) A. C. (a b ) c a (b c ) B. (a b ·)c a ·c b ·c m(a b ) m a m b D. (a ·b ·)c a ·( b · c ) 4、设 a ( x ,4,3), b (3,2, z) ,且 a ∥ b ,则 xz 等于( ) A. 4 B. 9 C. 9 D. 64 9 5、若向量 a (1, ,2) 与 b (2, 12), 的夹角的余弦值为 8 ,则 ( ) 9 A. 2 B. 2 C. 2 或 2 D.2 或 2 55 55 6、已知 ABCD 为平行四边形,且 A(413),,, B(2, 51),, C(3,7, 5) ,则 D 的坐标为( ) A. 4 1 B. (2,4,1) C. ( 2141),, D. (513,, 3) 7,, 2 7、在正方体 ABCD A 1 B 1C 1D 1 中,O 为 AC , BD 的交点,则 C 1 O 与 A 1 D 所成角的( ) A. 60° B. 90° C. arccos 3 D. arccos 3 3 6 8、正方体 ABCD A 1 B 1 C 1 D 1 的棱长为 1, E 是 A 1 B 1 的中点,则 E 到平面 ABC 1 D 1 的距 离是( )

相关文档
最新文档