2021年高中数学 三垂线定理及其逆定理教案 人教版
三垂线定理()教案 新人教A版必修

实用文档 精心整理1课题:2.2.3.6三垂线定理(2)课 型:新授课一、课题:三垂线定理(2)二、教学目标:1.进一步明确三垂线定理及逆定理的内容;2.能在新的情景中正确识别定理中的“三垂线”,并能正确应用.三、教学重、难点:三垂线定理的应用。
四、教学过程: (一)复习:1.三垂线定理及其逆定理的内容; 2.练习:已知:在正方体中,求证:(1);(2). (二)新课讲解:例1.点为所在平面外的一点,点为点在平面内的射影,若,求证:.证明:连结, ∵,且 ∴(三垂线定理逆定理) 同理,∴为的垂心, ∴, 又∵, ∴(三垂线定理)【练习】:所在平面外的一点在平面内的射影为的垂心,求证:点在内的射影是的垂心.例2.已知:四面体中,是锐角三角形,是点在面上的射影,求证:不可能是的垂心.1AC 111BD AC ⊥11BD B C ⊥A BCD ∆O A BCD ,AC BD AD BC ⊥⊥AB CD ⊥,,OB OC OD AO BCD ⊥平面AC BD ⊥BD OC ⊥OD BC ⊥O ABC ∆OB CD ⊥AO BCD ⊥平面AB CD ⊥BCD ∆A BCD O BCD ∆B ACD ∆P ACD ∆S ABC -,SA ABC ABC ⊥∆平面H A SBC H SBC ∆DCBAD 1C 1B 1A 1O DCBA实用文档精心整理 2 证明:假设是的垂心,连结,则,∵∴是在平面内的射影,∴(三垂线定理)又∵,是在平面内的射影∴(三垂线定理的逆定理)∴是直角三角形,此与“是锐角三角形”矛盾∴假设不成立,所以,不可能是的垂心.例3.已知:如图,在正方体中,是的中点,是的交点,求证:.证明:,是在面上的射影又∵,∴取中点,连结,∵,∴为在面上的射影,又∵正方形中,分别为的中点,∴,∴(三垂线定理)又∵,∴.五、课堂小结:三垂线定理及其逆定理的应用.六、作业:1.已知是所在平面外一点,两两垂直,是的垂心,求证:平面.2.已知是所在平面外一点,两两垂直,H SBC∆BH BH SC⊥BH SBC⊥平面BH AB SBCSC AB⊥SA ABC⊥平面AC SC ABCAB AC⊥ABC∆ABC∆H SBC∆1111ABCD A B C D-E1CCF,AC BD1A F BED⊥平面1AA ABCD⊥平面AF1A F ABCDAC BD⊥1A F BD⊥BC G1,FG B G111111,A B BCC B FG BCC B⊥⊥平面平面,B G1A F11BCC B11BCC B,E G1,CC BC1BE B G⊥1A F BE⊥EB BD B=1A F BED⊥平面P ABC∆,,PA PB PC H ABC∆PH⊥ABCP ABC∆,,PA PB PCHCSBAGFED CBAD1C1B1A1。
三垂线定理及逆定理的应用

三垂线定理及其逆定理的应用教案教学目的(1) 使学生初步掌握三垂线定理及其逆定理应用的规律.(2) 进一步培养学生逻辑思维能力和解决问题的能力.教学过程一、复习师:三垂线定理及逆定理的内容是什么?怎样证明?(在学生回答时,教师画出图1,并强调指出:a在a内的位置不一定过点O.)怪11生:(三垂线定理的证法,要求学生用双剪头的书写格式. )师:对于三垂线定理要注意以下三点:(1) 三垂线定理包含三个垂直关系. PAL a, AC L a, PC L a,且(2) 三垂线定理及其逆定理是判定直线和直线垂直的重要命题.(3) 在论证直线和直线垂直的问题中,常常要考虑应用三垂线定理及其逆定理.、应用(教师根据复习时的小结引出课题:三垂线定理及其逆定理的应用. )1第一类练习题目的:进一步使学生加深对三垂线定理的理解. 复习应用三垂线定理的基本规律. 从题目条件的变更中,增强学生对三垂线定理的认识以及应用能力.教法:教师提出问题,利用投影机将图形映在屏幕上,全班学生思考,个别学生回答.题目:如图2,已知矩形ABCD中,2BC=AB M是DC的中点,PA!平面ABCD求证PML MB学生回答后,教师作简要讲评•然后,对题目的已知条件进行变换,让学生回答.(1)如果将题设中2BC=ABt掉,其他条件都不变,那么PM和MB是否垂直?(教师随即在屏幕上映出图3,让学生思考议论、回答.)J M⑵ 如果题设中的 M 不是DC 的中点,其他条件都不变,那么 PM 和MB 是否垂直?(教师在屏幕上映出图4,让学生思考议论、回答.)(3) 如果将题设“ PU 平面 ABCD 改为“ PA 为平面ABCD 勺斜线”,其他条件不变, 那么PM 和MB 的位置关系将会怎样?①一定不垂直?②不一定垂直?在什么情况下垂直?图5 耕(根据学生回答,分别在屏幕上映出图5、图6、图 7.)图4J MB教师讲评后指出,从题目题设的变化中可以看出应用三垂线定理的要点是:平面内的一条直线垂直于这个平面的斜线在平面内的射影(特别强调“垂直”、“射影” )•小结:(师生共同完成.)(1)欲证直线和直线垂直,要考虑应用三垂线定理.(2)应用三垂线定理时,必须满足定理的条件.2•第二类练习题目的:通过图形位置的变化,使学生能够在不同情况下,正确地应用三垂线定理,克服思维定势给证题带来的消极影响.教法:教师先在黑板上写出第(1)题的题目,让学生思考,并画出图形,写出证法要点,教师巡视,个别指导•然后,让一位学生板演,教师讲评•教师再在黑板上写出第(2)题的题目,画出图形,让全班学生思考,回答.(1)已知:在Rt△ ABC中,/ A=Rt Z, PA!平面ABC BDLPC,垂足为D.(图8)求证:ADL PC⑵在正方体ABCD-A1B1CD中,求证BD丄平面ABC.(图9)U9E;小结:(学生回答教师归纳.)应用三垂线定理及其逆定理证明直线和直线垂直时,不能受图形形状的影响,要细心观察直线与平面的内在关系,只要符合定理的条件便可得出垂直的结论.3.第三类练习题目的:通过三垂线定理证明直线和直线垂直,从而计算点到直线的距离,让学生初步掌握立体几何计算题的解题思路.教法:教师提出问题,画出图形,师生共同研讨.教师写出解题要点.⑴已知:等腰三角形ABC中,Z A=120°, AB=AC BC=6 PB丄平面ABC PB=3.(图10)求点P到AC的距离.團ID(注意引导学生确定点D的位置.)②已知:Rt△ ABC中,Z C=90 , AC=a BC=b点P到平面ABC的距离为h,且PA=PB=PC (图11)求点P到Rt△ ABC三边的距离.图11(引导重点是:确定P在平面ABC内射影0的位置,直角三角形外心的性质.)讲完以上两题后,教师引导学生看书,讲解课本的例题,不作板书.(课本例题:道旁有一条河,彼岸有电塔AB高15m只有测角器和皮尺作测量工具,能否求出电塔顶与道路的距离?)4.例题在教师引导下,启发学生积极思考,教师根据思路写出解题的全部过程,力求简明 扼要、规范,给学生作出示范,以培养学生解题能力和文字表述能力.[例1]已知:PA PB PC 两两垂直.求证:P 在平面ABC 内的射影0是厶ABC 的垂心.(教师画出如图12或图13的图形,可任选其一.)师:欲证0为厶ABC 的垂心,需知垂心定义.根据垂心定义,只需证出直线 AO 、BOCO 分别垂直于BC CA AB.如何证出AC L BQ 要考虑应用三垂线定理的逆定理.PO PA 与平面ABC 是什么关系? AO 与PA 有什么关系? PA 与BC 有什么关系?(教师边问、边根据学生回答写出证明过程. )证明 因为P 在平面ABC 内的射影为O,所以POL 平面ABC 连结AQ 延长AO 交BC 于D,贝V AO 是PA 在平面ABC 内的射影.••• AP 丄 PB API PC 二AP 丄平面PBC.又BCu 平面PBG••• AP 丄 BC根据三垂线定理的逆定理,得 ADL BC 所以,人。
高中数学三垂线定理及其逆定理教案人教版

《三垂线定理及其逆定理》教案知识目标:1、掌握三垂线定理及其逆定理;2、用三垂线定理及其逆定理培养学生的空间想象能力,逻辑思维能力和转化能力。
3、正确运用这两个定理分析和解决实际问题。
教学重点、难点:重点:1、三垂线的分析和证明;2、三垂线定理及其逆定理的应用。
难点:正确运用这两个定理并建立空间三线垂直的模型。
教学过程:一、回顾与思考:1、回顾直线与平面垂直的相关性质;2、阅读课本,找出射影、斜线段等概念;3、平面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不(用演示大木三角板在桌面上随意摆放一下,引起学生思考)(还可以引入日常生活中用铡刀铡草的例子, 用铡刀铡草怎样才能保证草料与铡刀的刀刃垂直呢?当且仅当草料与刀座垂直就行。
) 二、新课讲授:1、由以上的分析,我们可以抽象出如下的一个图。
PO ⊥α,PA 与α斜交于点A ,AO ⊥a ,问PA 与a 所成的角;显然PO ⊥α POα⊂a OA a 平面POA PAPOOA=O PA 平面POA即:PA 与a 所成的角为900由此可以得到: 三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(说明:三垂线定理来源于“线面垂直”,抓住平面α的垂线PO 才是抓住了定理的实质与关键)2、让学生说出三垂线定理的逆命题,并说明其真假,如果是真命题,能否证明这个命题。
PO ⊥α POα⊂a PA a 平面POA OAPOPA=P OA 平面POA由此可以得到:三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它和这条斜线在平面内的射线垂直。
说明:⑴、三垂线定理及其逆定理所描述的“三线”为:斜线(PA )、射影线(OA )和直线a 之间的垂直关系。
⑵、如果把PA 、OA 、a 之间的垂直关系作整体思考,三垂线定理及其逆定理的“一致性” 描述就是斜线及射影同垂直于射影面内的直线。
三垂线定理示范课教案

三垂线定理示范课教案一、教学目标知识与技能:1. 让学生理解三垂线定理的内容及其实际应用。
2. 学会使用三垂线定理解决几何问题。
过程与方法:1. 通过观察模型,引导学生发现三垂线定理的规律。
2. 培养学生运用几何推理和证明的能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于探索、合作学习的良好习惯。
二、教学重点与难点重点:三垂线定理的内容及其应用。
难点:三垂线定理的证明和运用。
三、教学准备教具:三角板、直尺、圆规、模型等。
学具:笔记本、笔、三角板、直尺等。
四、教学过程1. 导入:通过一个实际问题,引发学生对三垂线定理的思考。
2. 新课讲解:(1)引导学生观察模型,发现三垂线定理的规律。
(2)讲解三垂线定理的内容,让学生理解并掌握。
(3)举例说明三垂线定理的应用,让学生学会运用。
3. 课堂练习:(1)让学生独立完成一些有关三垂线定理的练习题。
(2)引导学生相互讨论,共同解决问题。
五、课后作业1. 完成课后练习题,巩固三垂线定理的知识。
2. 选取一道有关三垂线定理的综合题,进行深入研究和思考。
3. 准备下一节课的相关内容。
六、教学评估1. 课堂练习环节,观察学生对三垂线定理的理解和运用情况。
2. 课后作业的完成情况,了解学生对课堂所学知识的掌握程度。
3. 对学生进行访谈,了解他们对三垂线定理的理解和兴趣。
七、教学反思课后,教师应反思本节课的教学效果,包括:1. 学生对三垂线定理的理解和掌握程度。
2. 教学方法和教学内容的适用性。
3. 学生的参与度和积极性。
八、拓展与延伸1. 引导学生探索三垂线定理在实际生活中的应用。
2. 介绍与三垂线定理相关的数学历史故事,激发学生的兴趣。
3. 鼓励学生参加数学竞赛或研究项目,提高他们的数学能力。
九、教学评价1. 学生对该节课的理解和兴趣。
2. 学生对三垂线定理的掌握程度。
3. 学生参与课堂活动和合作学习的情况。
十、教学计划本节课的教学计划如下:1. 导入:10分钟2. 新课讲解:20分钟3. 课堂练习:15分钟4. 课堂小结:5分钟5. 课后作业布置:5分钟教师应根据实际情况灵活调整教学计划,确保教学目标的实现。
《三垂线定理》教案

《三垂线定理》教案基本问题: 三垂线定理及逆定理内容是什么单元问题: 如何运用三垂线定理和逆定理解题内容问题: 运用三垂线定理及逆定理有哪些要素课程标准(本单元所针对的课程标准或内容大纲):三垂线定理及其逆定理是现行立体几何教材中的两个十分重要的定理 .前者实际上是平面内一条直线和平面的一条斜线垂直的判定定理 ,后者实际上是平面内的一条直线和平面的一条斜线垂直的性质定理 .这两个定理的实质是 :平面内的一条直线与平面的斜线及其在平面内的射影垂直的关系。
一、教学目标:立足学生现状,结合教学大纲,制定以下教学目标:1、知识与技能1)熟练掌握三垂线定理及其逆定理的内容,并会证明。
2)会运用定理解简单题。
3)培养学生的识图能力及空间想象力,提高对知识的应用能力。
4)通过探索过程,进一步渗透立体几何证明中的转化思想,提高学生的多向思维能力。
2、过程与方法自主合作探究,指导法、讲练结合法3、情感态度价值观通过数学严密的逻辑推理教学使学生感受到数学的严谨性,体会数学美。
二、教学重难点:重点:熟练掌握并区分三垂线定理及其逆定理内容。
难点:真正弄清定理中复杂的线线关系。
三、教学用具:电脑、大屏幕、实物投影仪四、教学过程:(一)复习提问:我先用电脑结合大屏幕依次提出如下问题:(二)讲授新课1、三垂线定理的证明及简单应用。
1)在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直。
(首先,通过问答法由学生说出命题的已知、求证,然后让学生思考证明过程,接着让学生互说证明过程,最后请一名同学讲出证明过程。
)已知:P A、PO分别是平面α的垂线、斜线,AO是PO在平面α上的射影。
a在平面α内,a⊥AO。
求证:a⊥PO命题正确得出这便是三垂线定理。
2)分析定理:①定理中元素:一面四线三垂直一面——平面α(基础平面)四线——PA(α的垂线),PO(斜线),AO(射影),a(α内的直线)三垂直——PO⊥a ,A0⊥a ,PA⊥a (故称三垂线定理),由一垂、二垂得出第三垂,并不是三垂都作为已知条件。
.2.3.5三垂线定理(1)教案新人教A版必修2

••• a 平面 POA , ••• a PA .课题:223.5三垂线定理(尖刀班)(1)课 型:新授课一、 课题:三垂线定理二、 教学目标:1 •掌握科学的概念,了解射影、斜线的定义;2 •掌握三垂线定理及其逆定理,利用三垂线定理及其逆定理解决有关线线 垂直问题。
三、 教学重、难点:三垂线定理及其逆定理; 三垂线定理及其逆定理中各条直线之间的关系.四、 教学过程:(二)新课讲解:1 •射影的有关概念:(1 )点的射影:自一点P 向平面 引垂线,垂足P 叫做P 在平面 内的正射影(简称 射影)。
(2)图形的射影:如果图形F 上所有点在一个平面内的射影构成图形F ,则F 叫做F在这个平面内的射影.2 •斜线的有关概念:(1)斜线:如果一条直线和一个平面相交但不垂直,那么这条直线叫做平面的斜线;(2)斜足:斜线和平面的交点;(3 )斜线段:斜线上一点和斜足间的线段叫做斜线段.由此,斜线段 AB 在平面内的射影仍为线段,即为线段A o B • 3 .三垂线定理:定理:在平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
已知:PO, PA 分别是平面的垂线和斜线, OA 是PA 在平面 内的射影,a 且a OA求证:a PA ;证明:•••PO PO a ,又••• a OA, PO I OAP说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;PO ,O(2)推理模式:PAI Aa , a OA4.三垂线定理的逆定理:在平面内的一条直线如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
(证明略)P0,0推理模式:PAI A a A0a ,a AP,CD AB于点D,请指出图形中的练习:Rt ABC 在平面内,C 90o, PC直角三角形。
Rt ABC, Rt ADC,Rt BDCRt PDA, Rt PDBRt PCA, Rt PCB, Rt PCD三.例题分析:例1.已知:点0是ABC的垂心,PO平面ABC,垂足为0 ,求证:PA BC .证明:•••点0是ABC的垂心,••• AD BC又••• P0 平面ABC,垂足为0 , PAI平面ABC所以,由三垂线定理知,PA BC .例2 .如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的角平分线上.已知:BAC在平面内,点PE,F,0,PE PF ,求证:BA0 CA0.证明:••• PE AB,PF AC,P0 ,• AB 0E, AC 0F (三垂线定理逆定理)•/ PE PF ,PA PA ,• Rt PAE Rt A0F ,••• AE AF,又••• AO AO, /. Rt AOE Rt AOF••• BAO CAO •例3 •如图,道路两旁有一条河,河对岸有电塔AB,高15m,只有量角器和A尺作测量工具,能否测出电塔顶与道路的距离?解:在道路边取点C ,使BC与道路边所成的水平角等于90°, J再在道路边取一点D,使水平角CDB 45 , *测得C,D的距离等于20m ,•/ BC是AC在平面上的射影,且CD BC • CD AC (三垂线定理) 因此斜线段AC的长度就是塔顶与道路的距离,CDB 45o,CD BC,CD 20m, • BC 20m,在Rt ABC 中得|AC| 、AB2 BC2 1 52 2(f 25(m),答:电塔顶与道路距离是25m •四、课堂小结:1•射影和斜线的有关概念;2•三垂线定理及其逆定理.五、作业:1 .在正方体AC1中,求证:正方体的对角线A|C垂直于平面ABQ1•2 •如图,ABCD是矩形,PA 平面ABCD,点M , N分别是AB, PC的中点,求证:AB MN •3 .已知:如图若直角ABC的一边BC//平面,另一边AB和平面斜交于点A,求证:ABC在平面上的射影仍为直角。
三垂线定理教案

三垂线定理(人教版)一、设计理念本教学设计以师生互动教学为指导,以信息技术融入学科教学为手段,以课堂为依托来实现教学目标。
在教学过程中,注意与学生所学数据知识的衔接,突出三垂线定理的思想,强调三垂线定理的应用。
人人学习有价值的数学。
二、教材分析“三垂线定理”是在研究了空间直线和平面直线关系的基础上来研究空间两条直线垂直关系的一个重要定理。
它既是线面垂直关系的一个应用,又为后续学习奠定了基础,同时这节课也是培养学生空间想象能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新精神能力都有重要意义。
三、学情分析对处于该学习阶段的学生来说,空间观念才初步形成,学生在认识和理解的上都会存在困难,为了加深印象并说。
明复杂的直线位置关系,可以采用一些教具,或者让学生通过亲自动手操作,提高感性认识,进行理性的证明和记忆,有助于定理的掌握。
领会定理实质的关键是要认识到平面内一条直线与斜线及其在平面内的射影确定的平面垂直;应用定理的关键是要找到平面的垂线,射影就可以由垂足与斜足确定,问题便会迎刃而解。
四、教学目标1. 知识与技能1)理解、掌握三垂线定理及其逆定理的内容,并能从口头上和书面上作出正确的表达。
2)掌握运用三垂线定理或逆定理解决数学问题。
2. 过程与方法通过探索三垂线定理及其证明,培养学生观察问题,发现问题的能力和空间想象能力,培养学生空间计算能力和逻辑思维能力。
3. 情感态度与价值观激发学生学习兴趣,激发学生不断发现、探索新知的精神;渗透知识相互转化理论联系实际的辩证唯物主义观点,并通过图形的立体美、对称美,培养学生的审美意识。
五、教学重、难点重点:启发学生去发现三垂线定理,证明三垂线定理,正确运用三垂线定理及其逆定理去解决实际问题。
难点:理解三垂线定理及其逆定理的本质,掌握运用两个定理证题的一般思路和步骤。
真正弄清定理中复杂的线线关系。
六、教学方法与手段以老师的讲授法、学生的讨论法和师生之间的问答法相结合。
《三垂线定理及其逆定理》教案

高邮市菱塘民族中等专业学校备课纸(首页)
高邮市菱塘民族中等专业学校备课纸(续页)第2页
2
、三垂线定理逆定理证明(利用线面垂直的判定定理)
内容:平面内的一条直线与该平面的一条斜线垂直,则平面内的这条直 线一定垂直与该斜线在平面内的射影。
符号表述:
证明:
四、定理分析
高邮市菱塘民族中等专业学校备课纸(续页)
第3页
五、例题分析
复备: 例一:如图,V-ABC 为空间四边形(四个顶点不在同一平面上),VA 、 BC 为两条对角线,设VA 与
所在平面垂直。
证明:VD 是
边BC 上的高
AD 是
边BC 上的高。
例二:如图1-91,点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:
PB⊥AC.
六、课内练习
如图正方体ABCD—A1B1C1D1中,连接BD1,AC,CB1,B1A.
求证:BD1
平面AB1C.
高邮市菱塘民族中等专业学校备课纸(续页)
第4页
七、知识总结
复备:
1、本节我们学习的内容是?
2、本节学习的两个定理证明方法是?
八、作业设计
如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高中数学三垂线定理及其逆定理教案人教版
知识目标:
1、掌握三垂线定理及其逆定理;
2、用三垂线定理及其逆定理培养学生的空间想象能力,逻辑思维能力和转化能力。
3、正确运用这两个定理分析和解决实际问题。
教学重点、难点:
重点:1、三垂线的分析和证明;2、三垂线定理及其逆定理的应用。
难点:正确运用这两个定理并建立空间三线垂直的模型。
教学过程:
一、回顾与思考:
1、回顾直线与平面垂直的相关性质;
2、阅读课本,找出射影、斜线段等概念;
3、平面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但
呢?
(用演示大木三角板在桌面上随意摆放一下,引起学生思考)
(还可以引入日常生活中用铡刀铡草的例子,
用铡刀铡草怎样才能保证草料与铡刀的刀刃垂直呢?
当且仅当草料与刀座垂直就行。
) 二、新课讲授:
1、由以上的分析,我们可以抽象出如下的一个图。
PO ⊥α,PA 与α斜交于点A ,AO ⊥a ,问PA 与a 所成的角; 显然PO ⊥α
PO
OA a 平面
POA PA POOA=O PA 平面POA 即:PA 与a 所成的角为900 由此可以得到:
三垂线定理:在平面内的一条直线,
如果它和这个平面的一条斜线的射影垂直, 那么它也和这条斜线垂直。
(说明:三垂线定理来源于“线面垂直”,抓住平面α的垂线PO , 才是抓住了定理的实质与关键)
2、让学生说出三垂线定理的逆命题,并说明其真假,如果是真命题,能否证明这个命题。
PO ⊥α
PO
PA a 平面POA OA POPA=P OA 平面POA 由此可以得到: a
α
三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它和这条斜线在平面内的射线垂直。
说明:⑴、三垂线定理及其逆定理所描述的“三线”为:斜线(PA)、射影线(OA)和直线a之间的垂直关系。
⑵、如果把PA、OA、a之间的垂直关系作整体思考,三垂线定理及其逆定理的“一致性”描述就是斜线及射影同垂直于射影面内的直线。
⑶、三垂线定理及其逆定理的应用,关键在于找出平面的垂线,至于射影是由垂足和斜足来确定的,那就处于次要位置。
三垂线定理及其逆定理的应用程序为“一垂、二射、三证”,一垂:即找已知平面的垂线;二射:即找斜线在平面内的射影;三证:即证明射影与直线a垂直。
3、例题选讲:
例1、如图所示:在正方体ABCD-A1B1C1D1中
⑴、BD1与AC成角
⑵、BD1与A1D成角
⑶、BD1与A1C1成角
⑷、BD1与B1C成角
⑸、BD1与DC1成角
例2、如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上。
A B
C
D
A1
C1 D
P
已知:∠BAC 在平面内,点P ,PE 于点E , PF 于点F ,PO 于点O ,PE=PF ;
求证:∠BAO=∠CAO
证:
PE=PF OE=OF
PO
PO OEAB ∠BAO=∠
CAO
PEAB
PFAC OFAC
(说明:⑴、平面POA 称为∠BAC 的平分面,这个面上的每一个点到∠BAC 的两边相等; ⑵、本例可以作为一个结论,在解选择题与填空题时用。
)
变式训练(例题预案)
从点P 引三条射线PA 、PB 、PC ,每两条射线的夹角为600,求直线PC 和平面APB 所成的角
的余弦值。
()
4、课堂练习:
课本P27 1、2、3
(教师巡视课堂,让学生回答问题,发现问题及时纠正。
) 5、课堂小结:
C
F
A
B
C
P
E
F
Q D
⑴、本节课是在学习了直线和平面垂直的基础上引入的,它的实质还是直线与平面的垂直;
⑵、三垂线定理及其逆定理是描述斜线(PA)、射影线(OA)和直线a这“三线”之间的垂直关系,同学们下去以后还要结合课本去落实巩固。
⑶、三垂线定理及其逆定理应用的六字诀“一垂、二射、三证”同学们要牢记在心。
6、布置作业:课本P28 4、6。