二次函数基础知识盘点

二次函数基础知识盘点
二次函数基础知识盘点

二次函数基础知识盘点

二次函数()20y ax bx c a =++≠是中考必考的内容,填空题、选择题常考查其基础知识,解答题一般与其他知识组合形成综合题,并常作为压轴题,以考查学生分析问题和解决问题的能力,因此盘点一下二次函数的基础知识很有必要。

一、二次函数的系数与抛物线的特征

1. a 的符号确定抛物线的开口,0a >时开口向上;0a <时开口向下。

2. ab 的整体符号确定抛物线对称轴的位置,当0ab >(即02b

a

-<)时,对称轴在y 轴的左方;当0ab <(即02b a ->)时,对称轴在y 轴的右方,特殊地,当0b =时,02b a

-=,y 轴为抛物线的对称轴。

当a 的符号与对称轴的位置确定时,可以确定b 的符号,例如,对称轴在y 轴的右方时,0ab <,若

0a >,则0b <;若0a <,则0b >。

3. c 的符号确定抛物线与y 轴的交点位置。0c >时,交点在y 轴的正半轴上;0c <时,交点在y 轴的负半轴上。特殊地0c =时,抛物线过原点。又若0b =时,抛物线的顶点在原点。

4. 2

4b ac ?=-的符号确定抛物线与x 轴的交点个数。0?>时,有两个交点;0?=时,只有一个交点,抛物线的顶点在x 轴上;0?<时,没有交点。

例如,二次函数()2

0y ax bx c a =++≠的图象如图⑴所示,则0a <,0

b <(

0ab >)

,0c >,0?>。 二、二次函数与二次方程之间的关系

二次函数()2

0y ax bx c a =++≠中,当0y =时,转化为方程

20ax bx c ++=,当抛物线与x 轴有交点时(0?≥),可以解二次方程2

0ax bx c ++=,求得抛物线与x

轴的交点坐标,并且由图象可以确定当x 取何值时0y >或0y <。

例如,二次函数223y x x =--中,令2

230x x --=,得3x =或1x =-,

抛物线与x 轴交于A ()1,0-,B ()3,0两点(如图2)。当3x >或1x <-时,

0y >;当13x -<<时,0y <。

三、二次函数的恒等变形

2

22

424b ac b y ax bx c a x a a -?

?=++=++

??

?。 这是一种非常重要的恒等变形,应该熟练掌握,这种变形至少有以下几个方面的作用:

1. 可知抛物线的顶点坐标为24,24b ac b a

a ??

-- ???;

2. 可知抛物线的对称轴为2b x a

=-

; 3. 可知二次函数的最大值或最小值,当0a >时,有最小值244ac b a -;当0a <时,有最大值2

44ac b a

-;

4. 可以确定x 为何值时,y 随x 的增大而增大,或y 随x 的增大而减小;

5. 便于取点作出二次函数的图象(通常找出五点:顶点,与x 轴的两个交点,与y 轴的交点及该点关于对称轴的对称点);

6. 有利于按照要求平移抛物线。

例如,二次函数2

23y x x =--,可通过配方变形为()2

14y x =--。由此可知抛物线的顶点坐标为

()1,4-;对称轴为1x =;当1x =时,函数有最小值4-;当1x <时,y 随x 的增大而减小,当1x >时,

y 随x 的增大而增大;取五点:()1,0-,()0,3-,()1,4-,()2,3-,()3,0可以作出此二次函数的图象

(如上图⑵);将抛物线向左平移1个单位,再向上平移4个单位,就可以得到二次函数2

y x =的图象。

四、二次函数解析式的确定 二次函数一般有三种形式: 1. 一般式:2

y ax bx c =++;

2. 顶点式:()2

y a x m n =-+,(),m n 为抛物线的顶点;

3. 交点式:()()12y a x x x x =--,()12,x x 为抛物线与x 轴交点的横坐标。 解题时,要根据所给的条件,灵活选择其中的一种表达形式。

例1 如图⑶,二次函数2

y ax bx c =++的图象过点()1,0A -和点()1,2B -,且与y 轴交于正半轴,

给出下列四个结论:

①0abc < ②20a b -< ③1a c +=- ④1a <-

其中正确结论的序号是__________。 解:由图象可知0a <,0b <(

0ab >)

,0c >,0abc ∴>。

x

又由图象可知,对称轴12b x a =-

>-,即12b a

<。 0a <,2b a ∴>,即20a b -<。

图象过点()1,0-和()1,2-,

0,

2,a b c a b c -+=?∴?

++=-?

二式相加得,1a c +=-。 1a c +=-,1a c ∴=--,0c >,1a ∴<-。

∴正确结论的序号是②③④。

例2 已知抛物线()2

112

y x m x n =-

+-+经过()1,2A -、()4,3B -两点。 ⑴求此抛物线的解析式; ⑵求抛物线与x 轴的交点坐标; ⑶求抛物线的顶点坐标和对称轴方程; ⑷画出此抛物线的图象; ⑸当x 取何值时,0y <?

⑹当x 取何值时,y 随x 的增大而增大? ⑺将此抛物线沿x 轴方向向右平移32个单位,再沿y 轴方向向下平移9

8

个单位,求平移后的抛物线的解析式。

解:⑴

抛物线过()1,2-和()4,3-,

()()112,2

8413,m n m n ?---+=?∴??-+-+=-?即()()51,241 5.m n m n ?

--+=?

??-+=?

解得3,

23.m n ?

=???=?

211322y x x ∴=-++。

⑵解211

3022

x x -

++=,即260x x --=,得2x =-或3x =。 ∴抛物线与x 轴交于()2,0-和()3,0。

⑶2

2111125322228

y x x x ??=-++=--+ ???。

∴抛物线的顶点坐标是125,28??

???

,对称轴是12x =。

图1

y =

2

a b

2 )2

x +a b 2 )2+a b ac 442

-

⑷抛物线过()2,0-、()1,2-、()0,3、125,28??

???

、()1,3、()3,0、()4,3-诸点,

图象如图⑷。

⑸当2x <-和4x >时,0y <。

⑹当1

2

x <时,y 随x 的增大而增大。

⑺平移后的解析式为2

113259

22288

y x ??=---+- ???,

即()2

1222

y x =--+。

二次函数的图象知识总结

【知识梳理】 一、图象平移示意图

一般地,平移二次函数y =ax 2的图象便可得到二次函数y =a (x - h )2+k 的图象.

二、图象的平移方法

1、用配方法将二次函数y =ax 2+bx +c 转化成y =a (x - h )2+k 的形式. 即 y =ax 2+bx +c

= a (x 2+a b x +a c

= a [x 2+2×a b 2x +(a b 2)2-(a b 2)2a c

]

= a (x +a

b 2)2+a b a

c 442

-.

2、图象的平移的方向和大小

x

y =ax 2

上、下移

y =ax 2+k

左、右移

y =a (x - h )2

y =a (x - h )2+k

左、右移

上、下移

上、下移且左、右移

根据a b 2的正(负)将其图象向左(右)平移|a b

2|个单位;再根据a b ac 442-的正(负)将其图象向上

(下)平移|a

b a

c 442

-|个单位,即可得到二次函数y =ax 2+bx +c 的图象,如图1所示.

三、图象的性质

1、二次函数y =ax 2+bx +c 的图象是以x =-a b 2为对称轴,以(-a

b

2,a b ac 442

-)为顶点的抛物线.

2、二次函数y =ax 2+bx +c 的图象,如图2,当a > 0时,其图象的开口向上,这时当x <-

a

b

2时y 的值随x 的增大而减小;当x >-a b 2时y 的值随x 的增大而增大;当x =-a

b

2时,y 有最小值a b ac 442-.如图

3,当a < 0时,其图象的开口向下,这时当x <-

a

b

2时y 的值随x 的增大而增大;当x >-a

b

2时y 的值随x 的增大而减小;

当x =-a

b

2时,y 有最大值a b ac 442-.

3、二次函数y =ax 2+bx +c 的图象的二次项系数a ——定形;

顶点(-a

b

2,a b ac 442-)——定位.

【链接中考】

例1二次函数y =x 2-2x -3的对称轴和顶点坐标分别是( ) A .x = 1,(1,-4)

B . x = 1,(1,4)

C . x = -1,(-1,4)

D . x = -1,(-1,-4)

解析:将y =x 2-2x -3配方,

y = x 2-2x -3= x 2-2x +1-1-3=(x -1)2-4. ∴对称轴是x = 1,顶点坐标是(1,-4). 故应选A . 注:还可以直接利用顶点坐标公式求得(读者自己完成).

例2在距离地面2米高的某处把一物体以初速度0ν(米/秒)竖直向上抛出,在不计空气阻力的情况下,其上升高度s (米)与抛出时间t (秒)满足:s =0νt -

2

1gt 2

(其中g 是常数,通常取10米/秒2),若0ν=10米/秒,则该物体在运动过程中最高点距离地面____米.

x =-a

2

x =-a 2

图2 图3

解析:由题意,得s =10t -5t 2.则

s =10t -5t 2 =-5(t 2-2t )=-5(t 2-2t +1-1) =-5(t -1)2+5. 所以,该函数的最大值为5.

故该物体在运动过程中最高点距离地面5+2 = 7(米). 例3如图4,一位篮球运动员跳起投篮,球沿抛物线y =-5

1x 2

+3.5运行,然后准确落入篮框内。已知篮框的中心离地面的距离为3.05米.

(1)球在空中运行的最大高度为多少米?

(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少? 解析:(1)由抛物线y =-

5

1x 2

+3.5知,其顶点为(0,3.5). 所以,球在空中运行的最大高度为3.5米.

(2)在y =-5

1x 2

+3.5中, 当y =3.05时,3.05=-5

1

x 2+3.5,∴x =±1.5.

又∵x > 0,x =1.5. 当y =2.25时,2.25=-5

1x 2

+3.5,∴x =±2.5. 又∵x < 0,x =-2.5.

故运动员距离篮框中心的水平距离是|1.5|+|-2.5| = 4(米).

求二次函数解析式的三种方法

一、已知任意三点求解析式用一般式,即2

(0)y ax bx c a =++≠。

方法是:把三点坐标分别代入一般式,得到关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值,即可得到二次函数的解析式。

例1、如图,抛物线经过A 、B 、C 三点,顶点为D ,且与x 轴的另一个交点为E ,求抛物线的解析式

x

D

分析:观察图像,点A 、B 、C 、E 的坐标已知,在其中任选三点,将它们的坐标代入一般式,即可求出抛物线的解析式

解:设抛物线的解析式为2

y ax bx c =++,由图像可知,抛物线经过点A (-1,0)、B (0,3)、C

(2,3)三点,所以03423a b c c a b c -+=??=??++=?,解得1

23a b c =-??

=??=?

,所以抛物线的解析式为23y x x =-++

二、已知顶点或最大(小)值求解析式用顶点式,即2

()(0)y a x h k a =-+≠

方法是:先将顶点坐标(h ,k )或最大(小)值代入顶点式,再把另一点的坐标代入求出a ,即可得抛物线的解析式

例2、已知二次函数2

y ax bx c =++的顶点为(-2,1),且过点(2,7),求二次函数的解析式 分析:本题提供的是一般式,若用一般式求解比较繁琐,若设顶点式,则只需求一个待定系数即可。 解:设二次函数为2

(2)1y a x =++,把点(2,7)代入解析式,得2

7(22)1a =++,解得1

2

a =,所以二次函数的解析式为21(2)12y x =

++,即21

212

y x x =++ 三、已知与x 轴两交点坐标求解析式用交点式,即12()()(0)y a x x x x a =--≠

方法是:将抛物线与x 轴两个交点的横坐标1x 、2x 代入交点式,然后将抛物线上另一点的坐标代入求出a ,即可得抛物线的解析式

例3、已知变量y 是x 的二次函数,且函数图像如图,在x 轴上截得的线段AB 长为4个单位,又知函数图像顶点坐标为P (3,-2),求这个函数的解析式

分析:因为函数图像在x 轴上截得的线段AB 长为4个单位,且函数图像顶点坐标为P (3,-2),根据图像可知,图像与x 轴的两个交点的坐标分别为A (1,0)、B (5,0),然后利用交点式即可求出二次函数的解析式

解:因为函数图像顶点坐标为P (3,-2),在x 轴上截得的线段AB 长为4个单位,所以抛物线与x

轴的交点分别为A (1,0)、B (5,0),设所求二次函数解析式为(1)(5)y a x x =--。因为函数图像经过P (3,-2),所以2(31)(35)a -=--,解得12a =

,所以二次函数的解析式为1

(1)(5)2

y x x =--,即215

222

y x x =

-+

x

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

初中数学二次函数知识点总结

初中数学二次函数知识 点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学二次函数知识点总结 原文阅读 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x?,0)和 B(x ?,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P 在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

史上最全初三数学二次函数知识点归纳总结

史上最全初三数学二次函数知识点归纳总结 二次函数知识点归纳及相关典型题 第一部分基础知识 1.定义:一般地,如果y ax2bx c(a,b,c是常数,a0),那么y叫做x的二次函数. 2.二次函数y ax2的性质 (1)抛物线y ax2的顶点是坐标原点,对称轴是y轴. (2)函数y ax2的图像与a的符号关系. ①当a0时抛物线开口向上顶点为其最低点; ②当a0时抛物线开口向下顶点为其最高点. (3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y ax2(a0). 3.二次函数y ax2bx c的图像是对称轴平行于(包括重合)y轴的抛物线. b 2a4ac b4a 224.二次函数y ax bx c用配方法可化成:y a x h k的形式,其中h22,k. 25.二次函数由特殊到一般,可分为以下几种形式:①y ax2;②y ax2k;③y a x h; ④y a x h k; ⑤y ax2bx c. 6.抛物线的三要素:开口方向、对称轴、顶点. ①a的符号决定抛物线的开口方向:当a0时,开口向上;当a0时,开口向下; a相等,抛物线的开口大小、形状相同. ②平行于y轴(或重合)的直线记作x h.特别地,y轴记作直线x0. 7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:y ax2b4ac b bx c a x2a4a22b4ac b(),对称轴是直线x,∴顶点是. 2a2a4a 2b2 (2)配方法:运用配方的方法,将抛物线的解析式化为y a x h k的形式,得到顶点为(h,k),对称轴是直线 x h. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 - 1 - 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线y ax2bx c中,a,b,c的作用 (1)a决定开口方向及开口大小,这与y ax2中的a完全一样. (2)b和a共同决定抛物线对称轴的位置.由于抛物线y ax2bx c的对称轴是直线 x b2a

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数知识点梳理

二次函数de 基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数de 概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)de 函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数de 定义域是全体实数. 2. 二次函数2 y ax bx c =++de 结构特征: ⑴ 等号左边是函数,右边是关于自变量x de 二次式,x de 最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数de 基本形式 1. 二次函数基本形式:2 y ax =de 性质: a de 绝对值越大,抛物线de 开口越小。 2. 2 y ax c =+de 性质:上加下减。 3. ()2 y a x h =-de 性质:左加右减。

4. ()2 y a x h k =-+de 性质: 三、二次函数图象de 平移 在原有函数de 基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++de 比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同de 表达形式,后者通过配方可以 得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象de 画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取de 五点为:顶点、 与y 轴de 交点()0c , 、以及()0c ,关于对称轴对称de 点()2h c ,、与x 轴de 交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称de 点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴de 交点,与y 轴de 交点. 六、二次函数2 y ax bx c =++de 性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x de 增大而减小;当2b x a >-时,y 随x de 增大而增大;当2b x a =-时,y

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

(完整word版)初中二次函数知识点总结(全面)

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

二次函数知识讲解基础(供参考)

《二次函数》全章复习与巩固—知识讲解(基础) 【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解. 【知识网络】 【要点梳理】 要点一、二次函数的定义 一般地,如果是常数,,那么叫做的二次函数. 要点诠释: 如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小. 要点二、二次函数的图象与性质 1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 函数解析式开口方向对称轴顶点坐标 当时(轴) (0,0)

开口向上 当时 开口向下 (轴) (0,) (,0) (,) () 2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线. 3.抛物线20 () y ax bx c a =++≠中,,, a b c的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则. 4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.) (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:). 要点诠释:

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

初中数学二次函数知识点汇总

1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

二次函数各知识点考点典型例题及练习

二次函数各知识点、考点、典型例题及对应练习(超全) 【典型例题】 题型 1 二次函数的概念 例1(基础).二次函数2 365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展, 武汉市中考题,12) 下列命题中正确的是 ○ 1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○ 2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。 ○ 3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。 ○ 4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。 ○ 5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC =6,则抛物线解析式为 y=x 2-5x+4。 ○ 6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。 ○ 7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。 ○ 8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。 ○ 9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。 ○ 10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。 ○ 11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。 点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。复习时,抓住系数a 、b 、c 对图形的影响的基本特点,提升学生的数形结合能力,抓住抛物线的四点一轴与方程的关系,训练学生对函数、方程的数学思想的运用。 题型2 二次函数的性质 例3 若二次函数2 4y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0)知,此抛物线的对称轴为直线x=1,此时121,2x x =-=时,对应的y 1 与y 2的大小关系是( ) A .y 1 y 2 D.不确定 点拨:本题可用两种解法 解法1:利用二次函数的对称性以及抛物线上函数值y 随x 的变化规律确定:a>0时,抛物线上越远离对称轴的点对应的函数值越大;a<0时,抛物线上越靠近对称轴的点对应的函数值越大

(精心整理)二次函数知识点复习

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4.()2 y a x h k =-+的性质: 三、 二 次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成c m x b m x a y ++++=)()(2 (或c m x b m x a y +-+-=)()(2 ) 四、二次函数 ()2 y a x h k =-+与 2 y ax bx c =++的比较

相关文档
最新文档