利用中心差分格式数值求解导数讲课讲稿

利用中心差分格式数值求解导数讲课讲稿
利用中心差分格式数值求解导数讲课讲稿

利用中心差分格式数值求解导数

利用中心差分格式数值求解导数

目录

一、问题描述 ................................................................................................................................... 2 二、格式离散 .. (3)

二阶导数中心差格式离散 ...................................................................................................... 3 追赶法求解线性方程组简述 .................................................................................................. 5 计算流程图 ............................................................................................................................. 7 三、程序中主要符号和数组意义 ................................................................................................... 7 四、计算结果与讨论 ....................................................................................................................... 8 五、源程序. (11)

一、问题描述

利用中心差分格式近似导数22/dx y d ,数值求解

()x dx y

d 2sin 2

2= ()10≤≤x

1/,0/10====x x y y

步长分别取 0001.0,001.0,01.0,

05.0=?x

二、格式离散

将x 轴上[0,1]之间的线段按上述步长,等步长的离散为n 个小段,包括端点,共n+1个网格节点,示意图如下:

线段上边的数字表示x 轴上的坐标值,线段下边的数字表示节点编号,从0到n 编号。

二阶导数中心差格式离散

21

1222)2sin(x y y y dx y d x i i i ?+-==+- 整理为线性方程形式

)2sin(2211x x y y y i i i ?=+-+-

其中,x ? 为空间离散步长;i=1,2,……,n-1

包括边界条件的线性方程组如下:

边界条件

边界条件

)*)1(*2sin(2.........

..........)**2sin(2........

..........)*1*2sin(2021221122100=?-?=+-??=+-??=+-=--+-n n n n i i i y x n x y y y x i x y y y x x y y y y

改写成矩阵形式: f Ay =

其中,???

??

?

?

?

??

?

??

??

???????????----=101211

211

2112101 A ,??????????????????????=-n n i y y y y y y 110 ,

?????

??????

???????????=-n n i f f f f f f 110

系数矩阵A 中仅三对角线上的数值不全为0,其余位置上的数值全为0,是典型的对角占优的三对角矩阵,列向量f 中,

)2sin(2x i x f i ??=,且10==n f f ,作为边界条件。

追赶法求解线性方程组简述

??

???

??????

??

????

?

???

?=??????

?????????

???????????----=---n n

n n n i i i b a c b a c b a c b a c b A 11111100101211

211

2112101

对A 做Crout 分解,即

LU A =,?????

??????

?????

?

????

?=--n n

n n s r s r s r s r s L 11

22

110

,???

?

?

??????

??????????

?=-11111121

0n t t t t U

其中i i i t r s ,,为待定常数,由矩阵乘法可以得到下面的式子:

1

,,3,2,1,

/,,3,2,1,,,,3,2,1,

100

000-===-==

===-n i s c t n i t a b s b c t b s n

i a r i i i i i i i i i

将对角占优三对角矩阵线性方程组f Ay =等价为如下两个方程组

f L

g =,g Uy =

求解对角占优三对角矩阵线性方程组的追赶法步骤:

①输入数据i i i c b a ,, ②计算i i t s , ③求解方程组f Lg =

n

i s g a f g b f g i i i i i ,,3,2,1,

/)(/10

00 =-==-

④求解方程组g Uy =

0,1,,2,1,1 --=-==+n n i y t g y g y i i i i n

n

⑤输出T n y y y y ),,,(10 =

计算流程图

三、程序中主要符号和数组意义

符号或数组意义

A、B、C、D、filename 用于自动更改dat文件名的字符串变量

h 离散步长

n 离散网格数,共n+1个网格节点

p 辅助变量,暂时记录网格节点上的y值

数组x,y 离散节点的x,y坐标

子程序数组a,b,c 记录系数矩阵占优对角线上的值

子程序数组f 记录线性方程组常数向量

子程序数组s,r,t,g 追赶法求解线性方程组需要用到的中间辅

五点差分法(matlab)解椭圆型偏微分方程教学文稿

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0kmax) break; end if(max(max(t))

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

Poisson方程九点差分格式_米瑞琪

数值实验报告I 实验名称Poisson方程九点差分格式实验时间2016年 4 月 15 日姓名米瑞琪班级信息1303学号04成绩 一、实验目的,内容 1、理解Poisson方程九点差分格式的构造原理; 2、理解因为网格点的不同排序方式造成的系数矩阵格式的差异; 3、学会利用matlab的spdiags(),kron()函数生成系数矩阵; 二、算法描述 针对一个Poisson方程问题: 在Poisson方程五点差分格式的基础上,采用Taylor展开分析五点差分算子的截断误差,可以得到: 为了提高算子截断误差的精度,在(1)式中配凑出了差分算子的形式,将原Poisson方程代入(1)式有: 考虑,有:

将(3)代回(2)可得 得到Poisson方程的九点差分格式: 在计算机上实现(4)式,需要在五点差分格式 的基础上在等式两端分别增加一部分,将等式左侧新增的部分写成紧凑格式,有: 对于该矩阵,可以看成是两个矩阵的组合:

以及 则生成这两个矩阵可以采用Kroncker生成,方法类似于五点差分格式。 对于右端添加的关于f(x,y)的二阶导数,可以采用中心差分格式进行近似代替,即: 写成相应的紧凑格式有:

该式中的矩阵又可以分解为两个矩阵的和:

%计算误差 u_real=@(x,y)exp(pi*(x+y))*sin(pi*x).*sin(pi*y); for i=1:N1-1 u_m((i-1)*(N2-1)+1:i*(N2-1))=u_real(x(i),y); end u_v=u_m'; err_d=max(abs(u_d-u_v)); sol=reshape(u_d,N2-1,N1-1); mesh(X,Y,sol) 四. 数值结果 针对课本P93给出的问题,分别采用步长,将计算出的误差列表如下: 步长五点差分格式误差九点差分格式误差 可见采用九点差分格式可以进一步缩小误差,达到更高阶的精度。 五. 计算中出现的问题,解决方法及体会 在生成九点差分格式的时候,等号右端涉及到了对f的二阶偏导,我最初利用符号函数定义了f,随后求出其二阶偏导(仍然是符号函数)之后带入网格点,求f二阶偏导的精确解,但是代入过程相当繁琐,运行速度非常慢,最终我改变策略,选用f关于x,y的二阶中心差分格式替代精确值,最终得到了相对满意的结果。 教 师 评 语 指导教师:年月日

对流扩散方程有限差分方法.

对流扩散方程有限差分方法 求解对流扩散方程的差分格式有很多种,在本节中将介绍以下3种有限差分格式:中心差分格式、Samarskii 格式、Crank-Nicolson 型隐式差分格式。 3.1 中心差分格式 时间导数用向前差商、空间导数用中心差商来逼近,那么就得到了(1)式的中心差分格式]6[ 2 1 11 1122h u u u v h u u a u u n j n j n j n j n j n j n j -+-+++-=-+-τ (3) 若令 h a τ λ=,2h v τ μ=,则(3)式可改写为 )2()(2 111111 n j n j n j n j n j n j n j u u u u u u u -+-+++-+--=μλ (4) 从上式我们看到,在新的时间层1+n 上只包含了一个未知量1 +n j u ,它可以由时间层n 上的值n j u 1-,n j u ,n j u 1+直接计算出来。因此,中心差分格式是求解对 流扩散方程的显示格式。 假定),(t x u 是定解问题的充分光滑的解,将1 +n j u ,n j u 1+,n j u 1-分别在),(n j t x 处 进行Taylor 展开: )(),(),(211ττO t u t x u t x u u n j n j n j n j +??? ?????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????-==-- 代入(4)式,有 2 111 1122),(h u u u v h u u a u u t x T n j n j n j n j n j n j n j n j -+-+++---+-= τ )()()(2222 h O v x u v h O a x u a O t u n j n j n j ?-????????-?+????????++????????=τ )()()(222h O v a O x u v x u a t u n j n j n j ?-++????????-??? ?????+????????=τ

用五点有限差分格式求解椭圆型方程(偏微分方程) 程序2

用五点有限差分格式求解椭圆型方程(偏微分方程)程序2 2010-04-29 10:33 function varargout=liu(varargin) a=0;b=2;c=0;d=1;h1=1/16;h2=1/16; f=inline('(pi^2-1)*exp(x)*sin(pi*y)','x','y'); g1x=inline('0'); g2x=inline('0'); g1y=inline('sin(pi*y)'); g2y=inline('exp(2)*sin(pi*y)'); [X,Y,Z]=chfenmethed(f,g1x,g2x,g1y,g2y,a,b,c,d,h1,h2); mesh(X,Y,Z); shading flat; xlabel('X','FontSize',14); ylabel('Y','FontSize',14); zlabel('error','FontSize',14); title('误差图'); function [X,T,Z]=chfenmethed(f,g1x,g2x,g1y,g2y,a,b,c,d,h1,h2) %求解下问题 %-(u_xx+u_yy)=f(x,y) x,y 在区域内x in a

%h2离散y方向的步长 N=10000; x=a:h1:b; y=c:h2:d; m=length(x); n=length(y); ee=0.00001; [X,T]=meshgrid(x,y); Z=zeros(n,m); U=zeros(n,m); for i=2:m-1 U(1,i)=feval(g1x,x(i)); U(n,i)=feval(g2x,x(i)); end for j=1:n U(j,1)=feval(g1y,y(j)); U(j,m)=feval(g2y,y(j)); end %while true %下为高斯赛德尔迭代法 %---------------------------------------------------------------------- for k=1:N

几类二阶变系数常微分方程解法论文

几类二阶变系数常微分方程解法论文

二阶变系数常微分方程几种解法的探讨 胡博(111114109) (湖北工程学院数学与统计学院湖北孝感 432000) 摘要:常系数微分方程是我们目前可以完全解决的一类方程,而求变系数常微分方程的通解是比较困难的,一般的变系数常微分方程目前是还没有通用解法的。本文主要对二阶变系数常微分方程求解进行了探究,利用特解、常数变易法、变量变换等方法求出了某些二阶变系数线性微分方程的通解,并初步归纳了二阶变系数线性方程的求解基本方法及步骤。 关键词:二阶变系数线性微分方程;变换;通解;特解 To explore the solution of some ordinary differential equations of two order variable coefficient Zhang jun(111114128) (School of Mathematics and Statistics Hubei Engineering University Hubei Xiaogan 432000) Abstract:Differential equation with constant coefficients is a class of equations we can completely solve the present general solution, and change coefficient differential equations is difficult, the variable coefficient ordinary differential equation is at present there

利用中心差分格式数值求解导数

利用中心差分格式数值求解导数 目录 一、问题描述 (2) 二、格式离散 (2) 二阶导数中心差格式离散 (2) 追赶法求解线性方程组简述 (3) 计算流程图 (5) 三、程序中主要符号和数组意义 (5) 四、计算结果与讨论 (6) 五、源程序 (9)

一、问题描述 利用中心差分格式近似导数22/dx y d ,数值求解 ()x dx y d 2sin 22= ()10≤≤x 1 /,0/10====x x y y 步长分别取 0001.0,001.0,01.0, 05.0=?x 二、格式离散 将x 轴上[0,1]之间的线段按上述步长,等步长的离散为n 个小段,包括端点,共n+1个网格节点,示意图如下: 线段上边的数字表示x 轴上的坐标值,线段下边的数字表示节点编号,从0到n 编号。 二阶导数中心差格式离散 211222)2sin(x y y y dx y d x i i i ?+-==+- 整理为线性方程形式 )2sin(2211x x y y y i i i ?=+-+- 其中,x ? 为空间离散步长;i=1,2,……,n-1 包括边界条件的线性方程组如下:

边界条件 边界条件0 ) *)1(*2sin(2......... ..........) **2sin(2..................) *1*2sin(20 21221122100=?-?=+-??=+-??=+-=--+-n n n n i i i y x n x y y y x i x y y y x x y y y y 改写成矩阵形式: f Ay = 其中,?????? ????????????????????----=1012112112112101 A ,??????????????????????=-n n i y y y y y y 110 ,??????????????????????=-n n i f f f f f f 110 系数矩阵A 中仅三对角线上的数值不全为0,其余位置上的数值全为0,是 典型的对角占优的三对角矩阵,列向量f 中,)2sin(2x i x f i ??=,且10==n f f ,作为边界条件。 追赶法求解线性方程组简述 ????? ?????????????????=??????????????????????????----=---n n n n n i i i b a c b a c b a c b a c b A 1111110 01012112112112101

变系数_非线性微分方程的求解

变系数/非线性微分方程的求解:Example1: van der Pol equation Rewrite the van der Pol equation (second-order) The resulting system of first-order ODEs is 见:vdp_solve.m及vdp.mdl vdp_solve.m vdp.mdl

Example2: 2 with x(0) = 4 x (0)=0 5(5)5sin()5 +-+= x t x t x 见:exam2_solve.m及exam2.mdl exam2_solve.m exam2.mdl

Example3: ODEs 函数实现及封装说明[以一阶微分方程为例] 510 w i t h (0)4 dx x x dt +==- 引言: 一步Euler 法求解[相当于Taylor 展开略去高阶项]: 11()k k k k k k k k k k k x x x Ax bu t x x t x x t Ax bu ++-==+??=+??=+??+ 补充说明1:对于任意方程/方程组可化为如下一阶形式[方程组]: x Ax Bu =+ 或者(,)(,)M t x x f t x = 补充说明2:ODEs 的解法不同之处在于 1、时间步长的选取(及导数的求解?):有无误差控制 变步长; 2、积分方法:选用哪几个时间状态信息。 见:my_ode_rough.m[直接求解] / test_my_ode.m[按Matlab/ODEs 方式封装] my_ode_rough.m

大连理工大学 高等数值分析 椭圆方程差分法

椭圆方程差分法 1 矩形网上差分方程 考虑二阶椭圆型偏微分方程的第一边值问题 (1.1) ()()()?????=∈=+++--Γy x y x u y x F Eu Du Cu u u y x yy xx ,,,αG 其中C ,E D ,是常数;0≥E ;()()G C 0,∈=y x F F ;(,)x y α是给定的光滑函数。假设(5.1)存在光滑的唯一解。 为简单起见,假设G 是矩形区域,其四个边与相应坐标轴平行。考虑矩形网格:1h 和2h 分别为x 和y 方向的步长,h G 为网格内点节点集合,h Γ为网格边界点集合,=h G h G h Γ。 对于内点()j i y x ,h G ∈用如下的差分方程逼近(1.1) (1.2) 21 ,1,12h u u u j i ij j i -++---221,1,2h u u u j i ij j i -++-+1,1,12h u u C j i j i -+-+21,1,2h u u D j i j i -+-+ij Eu =ij F 其中),(j i ij y x F F =。(1.2)通常称为五点差分格式。 用(1.1)的真解(,)u x y 在网点上的值(,)i j u x y 、1(,)i j u x y -等等分别替换(1.2)中的ij u 、1,i j u -等等,然后在(,)i j x y 点处作Tailor 展开,便知(1.2)逼近(1.1) 的截断误差阶为() 2221h h O +。 方程(1.2)可以改写为 (1.3) j i a ,1-j i u ,1-+j i a ,1+j i u ,1++1,-j i a 1,-j i u +1,+j i a 1,+j i u +j i a ,j i u ,ij F = 对每一内点都可以列出这样一个方程。遇到边界点时,因为边界点u 的函数值已知,将相应的项挪到右端去。最后,得到一个以u 的内点近似值为未知数的线性方程组。这个方程组是稀疏的,并且当1h 和2h 足够小时是对角占优的。 可以证明,五点差分格式关于右端和初值都是稳定的,收敛阶为2212()O h h +。

变系数(2+1)维Broer-Kaup方程的新精确解P

第21卷第1期原子与分子物理学报 V o l .21,№.1 2004年1月 J O U R N A LO FA T O M I CA N D M O L E C U L A RP H Y S I C S J a n .,2004 文章编号:1000-0364(2004)01-0133-06 变系数(2+1)维B r o e r -K a u p 方程的新精确解 ? 李德生 (沈阳工业大学理学院,沈阳110023 )摘要:通过一个简单的变换,变系数(2+1)维B r o e r -K a u p 方程被简化为人们熟知的变系数B u r g e r s 方程。利用近年来广泛使用的齐次平衡法和t a n h -函数法,获得了变系数(2+1)维B r o e r -K a u p 方程的一些新的精确解。 关键词:变系数(2+1)维B r o e r -K a u p 方程;齐次平衡法;t a n h -函数法;精确解中图分类号:O 175.2 文献标识码:A S o L e n e we x a c t s o l u t i o n s t o t h e (2+1)-d i L e n s i o n a l B r o e r -K a u p e q u a t i o nw i t h v a r i a b l e c o e f f i c i e n t s L I D e -S h e n g (S c i e n c e S c h o o l o f S h e n y a n g U n i v e r s i t y o f T e c h n o l o g y ,S h e n y a n g 1 10023,P .R .C h i n a )A b s t r a c t :T h e (2+1)-d i m e n s i o n a l B r o e r -K a u p e q u a t i o nw i t h v a r i a b l e c o e f f i c i e n t s a r e r e d u c e d t o t h e f a m i l i a r B u r g e r s e q u a t i o nw i t h v a r i a b l e c o e f f i c i e n t s b y a s i m p l e t r a n s f o r m a t i o n .S o m e n e we x a c t s o l u t i o n s o f t h e (2+1)-d i m e n s i o n a l B r o e r -K a u p e q u a t i o nw i t hv a r i a b l e c o e f f i c i e n t s a r eo b t a i n e db y t h eu s eo f t h eh o m o g e n e o u s m e t h o d a n d t h e t a n h -f u n c t i o nm e t h o dw h i c h a r ew i d e l y u s e d t e c h n i q u e s i n r e c e n t y e a r s .K e y w o r d s :T h e (2+1)-d i m e n s i o n a lB r o e r -K a u p e q u a t i o n w i t hv a r i a b l ec o e f f i c i e n t s ;T h eh o m o g e n e o u s m e t h o d ;T a n h -f u n c t i o nm e t h o d ;E x a c t s o l u t i o n s 1引言 本文再次考虑变系数(2+1)维B r o e r -K a u p 方程的精确求解问题 H y t E α(t )[H x x y -2(H H x )y -2G x x ]G 1E α(t )[-G x x -2(G H )x < ╰╰] (1 )对于该方程的研究人们已获得了大量的结果。在文献[1~2]中,利用改进的齐次平衡法,作者深入细致地 研究了常系数方程的局域相干结构,给出了一些新的具有特殊形式的精确解,如多D r o m i o n 解,多L u m p 解,振荡型D r o m i o n 解,圆锥曲线孤子解,运动和静止呼吸子解和似瞬子解等。文献[3]进一步考虑了变系数(2+1)维B r o e r -K a u p 方程的精确求解问题,利用王明亮于90年代中期提出的齐次平衡法[4~5] ,导出了该方程的B T , 并由此得到了类似于文献[1~2]中的局域相干结构和一些新的精确解。?收稿日期:2003-06-25 基金项目:国家“973“项目(批准号:1998030600);国家自然科学基金(批准号:10072013 )资助的课题。作者简介:李德生(1963-),男。吉林抚松县人,沈阳工业大学理学院副教授,大连理工大学在读博士生,主要从事孤立子理论与数学机械化研究。

二维变系数抛物型方程的一个高阶ADI差分格式

二维变系数抛物型方程的一个高阶ADI 差分格式 马小霞1,颜晓琳2,陈汝栋2 (1.焦作大学基础部,河南焦作 454003;2.天津工业大学理学院,天津 300387) 摘要:针对二维变系数抛物型方程,构造出了一个高精度、恒稳定的交替方向隐式(ADI )差分格式,格式的截断误 差阶达O (τ2+h 4).通过数值实验,验证了理论分析的正确性和差分格式的精确性与有效性. 关键词:抛物型方程;ADI 格式;截断误差;恒稳定中图分类号:O241.82 文献标志码:A 文章编号:1671-024X(2014)01-0077-04 A high accuracy ADI difference scheme for solving two-dimension variable coefficients parabolic equation MA Xiao-xia 1,YAN Xiao-lin 2,CHEN Ru-dong 2 (1.Department of Basic Course ,Jiaozuo University ,Jiaozuo 454003,China ;2.School of Science ,Tianjin Polytechnic University ,Tianjin 300387,China ) Abstract :A high accuracy alternation direction implicit scheme (ADI )for solving the two-dimensional parabolic equations is presented ,and the scheme is absolutely stable and the truncation error is O (τ2+h 4).The experiments show the scheme is effective and advantage ,and the theory is right by a numerical example. Key words :parabolic equation ;ADI difference scheme ;truncation error ;absolutely stable 收稿日期:2013-05-31 基金项目:国家自然科学基金(11071279);河南省教育厅自然科学基础研究基金(2008B110016) 第一作者:马小霞(1969—),女,硕士,讲师. 通信作者:陈汝栋(1956—),男,教授,硕士生导师.E-mail :chenrd@https://www.360docs.net/doc/bf6944710.html, 天津工业大学学报 JOURNALOFTIANJINPOLYTECHNICUNIVERSITY 第33卷第1期2014年2月 Vol.33No.1February 2014 抛物型方程在处理废料污染、渗透、驱动、海水入侵以及半导体等工程实际问题中有着广泛的应用,因此研究其高精度、高稳定和计算量较小的数值解法具有重要的意义.用有限差分方法研究这类问题的数值方法目前已做了许多工作[1-5].但这些工作大多是对常系数而言的.文献[4]中对二维变系数抛物型方程数值方法仅对系数依赖于一个变量的情况进行了研究,本文的研究是对系数依赖于两个变量的情形进行的.应用Taylor 展开、算子方法[6]以及粘结系数法[7]得到了一个高精度(截断误差阶达O (τ2+h 4))、恒稳定的ADI 格式.格式的建立和稳定性分析都比文献[4]简单得多,文末的数值实验证明了本文理论分析的正确性和所得格式的精确性与有效性. 1差分格式的建立 考虑如下的二维变系数非齐次抛物型方程初边 值问题 鄣u 鄣t =a (x ,y )鄣2u 鄣x 2+b (x ,y )鄣2 u 鄣y 2 +f (x ,y ,t )(x ,y ,t )∈Ω×(0,T ](1)u (x ,y ,0)=φ(x ,y ) (x ,y )∈Ω軍(2) u (x ,y ,t )=Ψ(x ,y ,t ) ( x ,y )∈Γ,0,0<t ≤T (3≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤ )其中:0<c 1≤a (x ,y )≤c 2;Γ为Ω的边界. 设τ=Δt =T/N 为时间步长,h =Δx =Δy =1/M 为空间步长,N 、M 均为正整数.u n j ,k 表示在节点(jh ,kh ,n τ)处的网函数值,微分方程问题(1)—(3)的解函数为u (x ,y ,t ),并记u (jh ,kh ,n τ)=u (j ,k ,n ),f n+12 j ,k = 12 (f n +1j ,k +f n j ,k ).由Taylor 展开式u (j ,k ,n +1)=u (j ,k ,n )+τ鄣u (j ,k ,n )+τ22鄣2u (j ,k ,n )鄣t 2+…=exp (τ鄣鄣t )u (j ,k ,n )(4)

一阶中心差分格式

中心差分格式的程序实现 数学10-1班 余帆 10072121 1、考虑问题 考虑二阶常微分方程边值问题: f qu dx u d Lu =+-=22 (1) βα==)(,)(b u a u 其中q ,f 为[a,b]上的连续函数,βα,为常数。 2、网格剖分与差分格式 将区间[a,b]分成N 等分,分点为 N i ih a x i ,,1,0,???=+= , h=(b-a)/N,于是我们得到区间I=[a,b]的网格剖分,i x 为网格节点,h 为步长。 差分格式为: . ,,1,,2,1202 1 1βα==-???==++--=-+N i i i i i i i h u u N i f u q h u u u u L 3、截断误差 将方程(1)在节点离散化,由泰勒公式展开得 )()(12)()()(2)(344 2222 1 1h dx x u d h dx x u d h x u x u x u i i i i i O +??????+??????=+--+ 所以截断误差为 )()(12)(3 44 2h dx x u d h u R i i O +? ?????-=

4、数值例子 x x q e x u x sin 1)()(+== x e x f x sin )(= 其中[]1 ,0∈x 5、求解 由f qu dx u d Lu =+-=22, x e x f x sin )(= x x q e x u x sin 1)()(+== 将向量式的差分格式用矩阵形式表示出来,得到矩阵形式为 ????????????? ?+--+--+-212 22 12112112h q h q h q N ????????????-121N u u u = ?????? ? ????? ??++-βα 12 2 212N f h f h f h 系数矩阵A=??? ? ? ? ? ??? ? ???+--+--+-212 22 12112112h q h q h q N ,我们可以利用高斯消去 法求得u (x )的数值解。 6、实验结果 程序输出结果: 取N=10; 逼近解u1 真解u 1.10521961652189 1.10517091807565 1.22149147782632 1.22140275816017

微分方程数值解II

微分方程数值解II 主要内容: 第一章有限差分法的理论基础 1. 构造差分格式的主要方法; 2. 差分格式的一般性要求; 3. Lax等价性定理; 4. 差分格式的von Neumann稳定性分析方法; 5. 差分格式的修正方程。 第二章线性抛物型方程的差分方法 1. 扩散方程的显式格式; 2. 扩散方程的隐式格式; 3. 线方法; 4. 多维抛物型方程的ADI方法; 5. 分数步法; 6. Burgers方程的差分法和网格雷诺数。 第三章一维线性双曲型方程的数值方法 1. 线性双曲型系统的特征和Riemann问题; 2. 守恒律的有限体积法; 3. Lax-Friedriches格式、Lax-Wendroff格式、特征线法差分格式; 4. 双曲型方程的迎风格式、CIR格式、Godunov 方法; 5. 二阶Godunov格式、总变差概念及限制器函数; 6. 双曲型方程及变系数双曲型方程的高分辨率(TVD)波传播格式。 第四章一维非线性双曲型守恒律的数值方法 1. 非线性双曲型守恒律的间断解、弱解、熵条件; 2. 标量守恒律的Riemann问题解及Godunov格式; 3. 熵修正、数值粘性、Osher格式及高分辨率波传播格式; 4. 守恒型与Lax-Wendroff定理、离散熵条件、非线性稳定性及收敛性; 5. 典型守恒律方程组的Godunov间断分解方法及Godunov格式; 6. 守恒律方程组的MUSCL格式。 第五章多维双曲型守恒律的高分辨率格式 1. 多维方程组的双曲性; 2.Lax-Wendroff方法、Runge-Kutta推进的半离散方法、维数分裂方法; 3. 标量方程的LW方法、Godunov 格式、方向迎风及角迎风格式; 4. 多维标量方程的高分辨率格式; 5. 多维方程组的高分辨率格式。 第六章双曲型守恒律的其它高分辨率方法 1. ENO与WENO格式;

1、变系数线性微分方程的求解

本科毕业论文 题目:变系数线性微分方程的求解问题院(部):理学院 专业:信息与计算科学 班级:信计081 姓名:张倩 学号:2008121191 指导教师:庞常词 完成日期:2012年6月1日

目录 摘要 (Ⅱ) ABSTRACT (Ⅲ) 1前言 1.1微分方程的发展和应用 (1) 1.2二阶变系数线性常微分方程的重要性 (2) 1.3本文的研究内容及意义 (2) 2二阶变系数线性微分方程特、通解与系数的关系 2.1基本概念 (3) 2.2二阶变系数线性微分方程的求解定理 (3) 2.3二阶变系数线性微分方程特、通解与系数的关系 (5) 3 微分方程的恰当方程解法 3.1恰当方程的概念 (8) 3.2恰当微分方程解法 (10) 4 微分方程的积分因子解法 4.1积分因子的概念 (14) 4.2积分因子解法 (14) 5二阶变系数微分方程可积的条件 结论 (22) 谢辞 (23) 参考文献 (24)

摘要 微分方程在数学理论中占有重要位置,在科学研究、工程技术中有着广泛的应用。在微分方程理论中,一些特殊的微分方程的性质及解法也已经有了深入的研究,它们总是可解的,但是变系数微分方程的解法比较麻烦的。 如果能够确定某一类型的二阶变系数线性微分方程的积分因子或恰当方程,则该二阶变系数线性微分方程就可以求解,问题在于如何确定积分因子和恰当方程及该类方程在何种情况下可积。 本文通过对微分方程的理论研究,用不同的方法探讨这类问题,扩展了变系数线性微分方程的可积类型,借助积分因子和恰当方程的方法求解方程。 关键词:变系数;二阶微分方程;积分因子;恰当因子

S olve For Varied Coefficient Second Order Liner Differential Equation ABSTRACT Second order liner homogeneous differential equation plays an important role in mathematics theory, and use extensively in science research and technology. In differential equation theory, some special differential equation’s solve ways have already been researched. So they can be seemed as could be solved sort of equation. But varied coefficient equation, however, this solve for this sort of equation is hard. If we can make integrating factor or exact equation of some types of second order liner different equation, and this types of second order liner different equation can be solved. The problem is how to make integrating factor and exact equation, and this type equation can be integral in which condition. This article utilizes different ways to research this problem in different equation theories, which expand could be solved type of varied coefficient second order liner differential equation. By integrating factor and exact equation make varied coefficient second order liner differential equation. Key Words: varied coefficient; second order liner differential equation; integrating factor; exact equation

偏微分中心差分格式实验报告(含matlab程序)

二阶常微分方程的中心差分求解 学校:中国石油大学(华东)理学院 姓名:张道德 一、 实验目的 1、 构造二阶常微分边值问题: 22,(),(), d u Lu qu f a x b dx u a u b αβ?=-+=<

11122 222222333222122112 100121012010012 00N N N u f q h h u f q h h h u f q h h h q u f h h ---???? ??+-???? ??? ???? ???????-+-? ?????? ???????????=-+? ?????? ???????????-???? ????????-+????? ?? ????? 可以看出系数矩阵为三对角矩阵,而对于系数矩阵为三对角矩阵的方程组可以用“追赶法”求解,则可以得出二阶常微分方程问题的数值解。 四、 举例求解 我们选取的二阶常微分方程边值问题为: 2 22242,01 (0)1,(1), x d u Lu x u e x dx u u e ?=-+=-<

相关文档
最新文档