第一类换元积分法的“凑微分”思想探析及运用

第一类换元积分法的“凑微分”思想探析及运用
第一类换元积分法的“凑微分”思想探析及运用

第一类换元积分法的“凑微分”思想探析及运用

作者:农建诚

作者机构:广西现代职业技术学院,547000

来源:数学学习与研究:教研版

ISSN:1007-872X

年:2012

卷:000

期:005

页码:P.74-74

页数:1

中图分类:O172.1

正文语种:CHI

关键词:第一换元积分法;凑微分;运用技巧

摘要:本文通过对第一换元积分法中的“凑微分”思想进行了深入解析,凑微分的理论依据是原函数的概念和复合函数一阶微分形式的不变性,进行凑微分时通过分析函数的内外层结构确定需凑徽分的因式,通过微分运算式子进行灵活变形,并总结了凑微分的具体计算方法,最后给出运用凑微分进行第一换元积分法积分计算的三个步骤,并举例说明运用.

换元积分法第一类换元法

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”,dx x x d )()(?'=? . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+? .若u 是中间变量,()u x ?=,()x ?可微,则根据复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量 x 的微分来对待,从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时, 如果被积函数g (x )可以化为一个复合函数与它内函数的导函数的积的形式[()]()f x x ??'的形式, 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++. 所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

高中数学解题基本方法 换元法

高中数学解题基本方法--换元法 高中数学解题基本方法--换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t 0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+

的值域时,易发现x∈[0,1],设x=sinα,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r 0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t 0和α∈[0,]。 Ⅰ、再现性题组: 1.y=sinx??cosx+sinx+cosx的最大值是_________。 2.设 f x+1 =log 4-x (a 1),则 f x 的值域是_______________。 3.已知数列 a 中,a=-1,a??a=a-a,则数列通项a=___________。 4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。 5.方程=3的解是_______________。 6.不等式log 2-1 ??log 2-2 〈2的解集是_______________。 【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+; 2小题:设x+1=t t≥1 ,则f t =log[- t-1 +4],所以值域为-∞,log4];

微积分复习及解题技巧

《微积分》复习及解题技巧 第一章 函数 一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2 二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示) 对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0 ④反正(余)弦函数式:自变量 ≤1 在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。 典型例题:《综合练习》第二大题之1 补充:求y=x x 212-+的定义域。(答案:2 12<≤ -x ) 三、判断函数的奇偶性: 典型例题:《综合练习》第一大题之3、4

第二章 极限与连续 求极限主要根据: 1、常见的极限: 2、利用连续函数: 初等函数在其定义域上都连续。 例: 3、求极限 的思路: 可考虑以下9种可能: ①0 0型不定式(用罗彼塔法则) ② 2 0C =0 ③∞ 0=0 ④01 C =∞ ⑤21C C ⑥∞ 1C =0 ⑦ 0∞=∞ ⑧2C ∞=∞ ⑨∞ ∞ 型不定 式(用罗彼塔法则) 1sin lim 0 =→x x x e x x x =??? ? ?+∞→11lim )0(01 lim >=∞→αα x x ) ()(0 lim 0 x f x f x x =→11 lim 1 =→x x 1) () (lim =→x g x f x α?? ???∞ ≠=→)0(0 )(11lim 常数C C x f x α?? ???∞ ≠=→)0(0)(22lim 常数C C x g x α

换元积分法(第一类换元法)

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”,dx x x d )()(?'=? . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+?.若u 是中间变量,()u x ?=,()x ?可微,则 根据复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量 x 的微分来对待从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积 表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时 如果被积函数g (x )可以化为一个复合函数与 它内函数的导函数的积的形式[()]()f x x ??'的形式 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++. 所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

高中数学解题方法-换元法

高中数学解题方法 2013年高考数学二轮复习 换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:代数换元、三角换元、均值换元等。例如解不等式:0224≥-+x x ,先变形为设)0(2>=t t x ,而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现[]1,0∈x ,设 α2sin =x ?? ????∈22,0α,问题变成了熟悉的求三角函数值域。如变量y x ,适合条件 )0(222>=+r r y x 时,则可作三角代换θθsin ,cos r y r x ==化为三角问题。 均值换元,如遇到S y x =+形式时,设t S y t S x -=+=2 ,2等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 题型一:代数换元 例1:(1)方程1313 ++-x x =3的解是_______________ (2)x x x f --=2)(的值域是___________.

不定积分第一类换元法

不定积分第一类换元法(凑微分法) 一、 方法简介 设)(x f 具有原函数)(u F ,即)()('u f u F =,C u F du u f +=?)()(,如果U 是中间变量,)(x u ?=,且设)(x ?可微,那么根据复合函数微分法,有 dx x x f x dF )(')]([)]([???= 从而根据不定积分的定义得 ) (] )([)]([)(')]([x u du u f C x F dx x x f ????=??=+=. 则有定理: 设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ) (] )([)(')]([x u du u f dx x x f ???=??= 由此定理可见,虽然?dx x x f )(')]([??是一个整体的记号,但如用导数记号 dx dy 中的dx 及dy 可看作微分,被积表达式中的dx 也可当做变量x 的微分来对待,从而微分等式du dx x =)('?可以方便地应用到被积表达式中。 几大类常见的凑微分形式: ○1??++=+)()(1 )(b ax d b ax f a dx b ax f )0(≠a ; ○ 2??=x d x f xdx x f sin )(sin cos )(sin ,??-=x d x f xdx x f cos )(cos sin )(cos ,?? =x d x f x dx x f tan )(tan cos ) (tan 2,x d x f x dx x f cot )(cot sin )(cot 2??-=; ○3??=x d x f dx x x f ln )(ln 1 )(ln ,??=x x x x de e f dx e e f )()(; ○ 4n n n n x d x f n dx x x f ??=-)(1)(1)0(≠n ,??-=)1()1()1(2x d x f x dx x f ,? ?=)()(2) (x d x f x dx x f ; ○ 5??=-x d x f x dx x f arcsin )(arcsin 1)(arcsin 2 ;

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

数学解题方法换元法详解

二、换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2α ,α∈[0,π2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x 2+y 2=r 2(r>0) 时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值换元,如遇到x +y =S 形式时,设x =S 2+t ,y =S 2 -t 等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,π2 ]。 例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求 1S m a x +1S min 的值。(93年全国高中数学联赛题) 【分析】 由S =x 2+y 2联想到cos 2α+sin 2 α=1,于是进行三角换元,设x S y S ==???? ?cos sin αα代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin αα 代入①式得: 4S -5S ·sin αcos α=5 解得 S =10852-sin α ;

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

§4.2换元积分法(第一类换元法)

4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”, d (x) (x)dx . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分 . Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分 . Ⅳ 讲授内容: 一、第一类换元积分法 设 f(u)具有原函数 F(u), f(u)du F(u) C .若u 是中间变量, u (x), (x)可微,则 根据复合函数求导法则,有 所以根据不定积分的定义可得: f [ (x)] (x)dx F[ (x)] C u (x) F[u] C [ f (u)du] 以上是一个连等式可以改变顺序从新写一遍,就有 f [ (x)] (x)]dx u (x) [ f(u)du] F u C F (x) C . 以上就是第一换元积分法。 从以上可以看出, 虽然 f[ (x)] (x)dx 是一个整体记号, 但是被积表达式中的 dx 可当作变量 x 的微分来对待 从而上式中的 (x) dx 可以看成是 (x)的微分, 通过换元 u ( x) ,应用到被积表 达式中就得到 (x)dx du . 定理 1 设 f (u)具有原函数 F(u) ,u (x)可导, du (x)dx ,则 f [ (x) (x)dx f (u)du F(u) C F[ (x)] C (1) 如何应用公式 (1) ,在求不定积分积分 g(x)dx 时 如果被积函数 g(x)可以化为一个复合函数与 它内函数的导函数的积的形式 f[ (x)] (x) 的形式 那么 (x) u u (x) g(x)dx f[ (x)] (x)dx (x) u [ f (u) du] F(u) C u (x)F[ (x)] C . 所以第一换元积分法体现了“凑”的思想 . 把被积函数凑出一个复合函数与其内函数的积 精彩文档 dF( (x)) dF du (x)] (x) 。 dx du dx f (u)

(完整版)定积分典型例题精讲

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

换元法

换元法

运用换元法解题时,要引入什么样的“新元”和怎样引入“新元”,不同的问题有不同的方法和技巧。 换元的方法有:局部换元、三角换元、均值换元等。换元的种类有:等参量换元、非等量换元。 局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如:解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式:2t +t-2≥0求解得:t ≥1,t ≤-2指数函数的单调性求解2x ≥1, 2x ≤-2的问题。 x ≥0,x ≤ 1 4 三角换元:应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=21x -的值域时,若x ∈[-1,1],设x=sin α ,sin α∈[-1,1 ],问题变成了熟悉的求三角函数值域。如变量x 、y 适合条件222x y r +=时(r>0),则可作三角代换x=rcos θ、y=rsin θ化为三角问题。 均值换元:如遇到x+y=2S 形式时,设x= S+t ,y= S -t 等等。 例1. 分解因式 分析:从式子的特征来看,可把各看作一个整体使问题简化,事实上,本题解法较多,下面提供三种方法,供同学们学习参考。 解:法一:对和换元,用换元法解 设 则原式 法二:用换元法来解

设,则 原式 法三:将原式整理成关于x的二次三项式 原式 在函数中的应用 1、求函数的定义域 例2、设函数y=f(x)的定义域是[2,3],求函数y=f(x2)的定义域。 解:设x2=t,则y=f(t)的定义域上[2,3],即2≦t≦3,因此2≦x2≦3,所以 -√3≦x≦-√2或√2≦x≦√3,所求定义域是[-√3,-√2]∪[√2,√3] 2、求函数的解析式 例3、已知f(x+1)=x2-2x,求f(x)的解析式 解:设x+1=t,则x=t-1, 所以 f(t)=(t-1)2-2(t-1)=t -4t-1,即f(x)=x2-4x-1。 例4、已知f(x+1/x)=x2+1/x2, 求f(x)的解析式 解:设x+1/x =t,则x2+1/x2=(x+1/x)2-2,即x2+1/x2=t2-2 故f(t)=t2-2, 因此f(x)=x2-2 化简求值:

最新33第一类换元积分法汇总

33第一类换元积分法

§3.3 第一类换元积分法 教学目的:使学生理解第一类换元积分法,掌握第一类换元积分法的一般步骤及其应用。 重点:第一类类换元积分法及其应用 难点:第一类类换元积分法及其应用 教学过程: 一、问题的提出 不定积分的概念较为简单,但从计算上讲是较为繁杂的,如同数学中一般逆运算比正运算困难一样,不定积分作为微分运算的逆运算,其难易程度却相差甚远,若把求导数比喻为将一根绳子打结,求不定积分则是解结,解结显然比打结难,有时甚至解不开。而且利用直接积分法所能计算的不定积分是非常有限的,因此,有必要进一步研究不定积分的其它计算方法,由复合函数的求导法则可推得一种十分重要的积分方法——换元积分法(通常简称换元法)。该法可分为两类,即第一类和第二类换元法。本节将介绍第一类换元法。 二、第一类换元积分法(凑微分法) 我们将把复合函数的求导法反过来用于求不定积分,即利用变量代换的方法将所要求的不定积分变为基本积分表中所已有的形式或原函数为已知的其他形式来求函数的不定积分,这种方法称为换元积分法。下面先介绍第一类换元积分法。 定理 设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ??=='?)(] )([)()]([x u du u f dx x x f ??? 证明 设)(u f 具有原函数)(u F ,即)(u F '=)(u f ,?du u f )(=C u F +)(. 又因为u 是关于x 的可导函数)(x u ?=,所以有 ???+==='?C x F x dF x d x f dx x x f )]([)]([)]([)]([)()]([?????? 又)(])([x u du u f ?=?)(])([x u C u F ?=+=C x F +=)]([? 从而推得??=='?) (])([)()]([x u du u f dx x x f ??? 证毕 推论 若 ?dx x f )(=C x F +)(成立,则?du u f )(=C u F +)(.也成立,其中u 为x 的任一可导函数 该推论表明:在基本的积分公式中,把自变量x 换为u 的任一可导函数 后,公式仍成立,这就大大的扩大了公式的使用范围。 该方法的关键在于从被积函数?Skip Record If...?中成功地分出一个因子 ?Skip Record If...?与?Skip Record If...?凑成微分?Skip Record If...?,而剩下部分正好表成?Skip Record If...?的函数,然后令?Skip Record If...?,就将所要求的不定积分变为基本积分表中已有的形式。 通过第一类换元积分公式来计算积分的方法叫第一类换元积分法。

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

不定积分换元法例题1

__________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+? 【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-?? 3(2)cos cos cot sin sin sin sin xdx x xdx dx d x x x x = ==? ??? sin ln |si ln |sin |n |sin x x d C x C x ==+=+? 【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==?=? 4(1) 1()11d dx a x a x a d x x a x =?=?++++??? ln |1(|)ln ||d C a x a x a x a x C ++=?=+=+++? 【注】()'1,(),()a x d a x dx dx d a x +=+==+?? 4(2) 1()11d dx x a x x x d a a x a =?=?----??? ln |1(|)ln ||d C x a x a x a x a C --=?=+=--+? 【注】()'1,(),()x a d x a dx dx d x a -=-==-?? 4(3) 22221111111212x a a x a dx dx x a x a dx dx a a a x dx x ??- ?--+??? =-+?==- ? -?? ?????

因式分解综合应用(换元法与添项拆项)(人教版)(含答案)

学生做题前请先回答以下问题 问题1:目前我们学习的因式分解的方法有哪些? 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化为____________. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分_______时,我们会________将其替换,从而简化式子的形式. 以下是问题及答案,请对比参考: 问题1:目前我们学习的因式分解的方法有哪些? 答:提公因式法,公式法,分组分解法,十字相乘法. 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化 为. 答:四种基本方法. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分时,我们会将其替换,从而简化式子的形式. 答:重复出现;设元. 因式分解综合应用(换元法与添项拆项)(人教 版) 一、单选题(共10道,每道10分) 1.把因式分解,正确结果是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 2.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:因式分解的技巧——换元法 3.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法

4.把因式分解,正确结果是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 5.把因式分解,正确结果是( ) A. B. C. D. 答案:C 解题思路:

相关文档
最新文档