14抛物线的参数方程(教师版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14. 抛物线的参数方程
主备: 审核:
学习目标:1. 了解椭圆的参数方程的推导过程及参数的意义; 2. 掌握椭圆的参数方程,并能解决一些简单的问题. 学习重点:椭圆参数方程的应用,
学习难点:椭圆参数方程中参数的意义. 学习过程:
一、课前准备:
阅读教材3334P P -的内容,理解抛物线的参数方程的推导过程,并复习以下问题: 1.将下列参数方程化为普通方程:
(1)2
23
x t y t t =-⎧⎨
=+-⎩(t 为参数),答:2
53x x y --=; (2)224x m y m
⎧=⎨=⎩(m 为参数),答:2
8x y =.
2.将下列普通方程化为参数方程:
(1)2
2x y =,其中1x t t
=-(t 为参数),答:221224
x t t y t t ⎧=-⎪⎨⎪=+-⎩
;
(2)2
34y x =,其中x t =(0t ≥为参数)
,答:x t
y =⎧⎪⎨=⎪⎩
. 二、新课导学: (一)新知:
抛物线的参数方程的推导过程:
如图:设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角记为α,当α在(,)22
ππ
-
内变化时,
点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的M 点与对应.因此,可以取α为参数探求抛物线的参数方程.
根据三角函数的定义得,tan y
x
α=,即tan y x α=,联立2
2y px =,得
22tan 2tan p x p y α
α⎧=⎪⎪⎨
⎪=⎪⎩
(α为参数),这为抛物线的不含顶点的参数方程,但方程的形式不够简洁, 设1
tan t α=,(,0)(0,)t ∈-∞+∞,则222x pt y pt
⎧=⎨=⎩(t 为参数 ),
当0t =时,由参数方程得,正好为顶点(0,0)O ,因此当(,)t ∈-∞+∞时,上式为 22y px =的参数方程.
注意:参数t 的几何意义为:表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.
动动手:(1)选择适当的参数t ,建立抛物线2
2x py =的参数方程.
【解析】如图,(0,
)(,)2
2
ππαπ∈,根据三角函数的定
义
得,tan y t x
α==,即y xt =,联立2
2x py =,得
2
22x pt
y pt
=⎧⎨=⎩(t 为参数). (2)可选择M 到准线的距离t 为参数,2
2y px =的参
数方程是怎样的
【解析】如图,||MA t =,则2
p
x t =-
,代入抛物线方程,得y
=
2p x t y ⎧=-⎪⎨
⎪=⎩
(t 为参数). (二)典型例题:
【例1】A 、B 是抛物线2
2y x =上异于顶点的两动点,
且OA OB ⊥,OM AB ⊥并与AB 相交于M ,求点M 的轨迹方程.
【解析】方法一 :设(,)M x y ,211(2,2)A t t ,2
22(2,2)B t t 1212(,0)t t t t ≠⋅≠且. 由OA OB ⊥,所以0OA OB ⋅=,
221212(2)20t t t t +=,121t t =-………①
又OM AB ⊥,所以0OM AB ⋅=,
2221212()2()0x t t t t -+-=.
所以12()0x t t y ++=,12(0)y
t t x x
+=-≠……………②
又211(2,2)AM x t y t =--,2
22(2,2)MB t x t y =--且A ,M ,B 共线.
∴22
1212(2)(2)(2)(2)x t t y y t t x --=--,即1212()20y t t t t x +--=……③
由①,②代入③,得到 2
2
20(0)x y x x +-=≠,这就是所求M 点的轨迹方程.
方法二:设2111(,)(0)2y A y y ≠,2
2
22(,)(0)2
y B y y ≠,
因为OA OB ⊥,所以
22
12
12022
y y y y ⋅+=,124y y =-, 直线AB 的方程为:211122
()2
y y y x y y -=-+,即122(2)y x y y =
-+, 所以直线AB 过定点(2,0)C p
又OM AB ⊥,所以点M 的轨迹是以OC 为直径的圆,则M 的轨迹方程为 222()(0)x p y p y -+=≠.
动动手:已知O 是坐标原点,A 、B 是抛物线2
22x pt y pt
⎧=⎨=⎩(t 为参数)上异于顶点的两动点,
且OA OB ⊥,求AB M 中点的轨迹方程.
【解析】设)2,2(121pt pt A ,)2,2(22
2pt pt B ,由OA OB ⊥,得121-=t t ,
又中点),(y x M 由⎪⎪⎩
⎪⎪⎨⎧+=+=+=+=)
(222)(222212122212
221t t p pt pt y t t p pt pt x ,结合121-=t t , 得点M 的方程为:)2(2
p x p y -=.
三、总结提升:
1.弄清抛物线参数方程中参数的几何意义,特别是参数t 对应的角的取值范围,会将抛物线的参数方程与普通方程互化.
2.抛物线2
2(0)y px p =>上任意一点可以设为2
(2,2)M pt pt . 3.在求轨迹方程时,可以考虑用参数的方式设出动点的坐标. 四、反馈练习:
1. 若点(3,)P m 在以点F 为焦点的抛物线2
4()4x t t y t
⎧=⎨=⎩为参数上,则PF 等于( C )
A .2
B .3
C .4
D .5 2. 抛物线2
2x m
y m
=⎧⎨=-⎩(m 为参数)的焦点坐标是 ( B ) A .(1,0)- B .(0,1)- C .(0,2)- D .(2,0)- 3. 已知曲线2
2()2x pt t p y pt
⎧=⎨=⎩为参数为正常数,上的两点,M N 对应的参数分别为12t t 和,
120t t +=且,那么MN = ( C )
A .1p t
B .12p t
C .14p t
D .18p t
4. 若曲线2
22x pt y pt
⎧=⎨=⎩(t 为参数)上异于原点的不同的两点1M 、2M 所对应的参数分别是1t 、
2t ,求12M M 所在直线的斜率.
【解析】由于1M 、2M 所对应的参数分别是1t 、2t ,,所以可设两点1M 、2M 坐标分别为
22111222(2,2),(2,2)M pt pt M pt pt ,
所以,112222
1212
221
22M M pt pt k pt pt t t -=
=-+. 5. A 、B 是抛物线2
2y x =上异于顶点的两动点,且OA OB ⊥,点A 、B 在什么位置时,AOB ∆的面积最小最小值是多少
【解析】设211(2,2)A t t ,2
22(2,2)B t t 1212(,0)t t t t ≠⋅≠且,
则1||2|OA t =
,2||2||OB t =, 因为OA OB ⊥,所以121t t =-,
所以122|AOB S t t ∆=
=
=4≥, 当且仅当12t t =-时,即A 、B 关于x 轴对称时AOB ∆面积最小,最小面积为4.
五、学后反思: