3电阻电路的一般分析方法
电阻电路的一般分析方法
电路常用分析方法第一:支路电流法:以各支路电流为未知量列写电路方程分析电路的方法。
独立方程的列写:(1)从电路的n 个结点中任意选择n-1个结点列写KCL 方程;(2)选择基本回路列写b-(n-1)个KVL 方程。
支路电流法的一般步骤:第二:回路电流法:以基本回路中沿回路连续流动的假想电流为未知量列写电路方程分析电路的方法。
它适用于平面和非平面电路。
1.列写的方程:回路电流法是对独立回路列写KVL 方程,方程数为:)1(--n b ,与支路电流法相比,方程减少1-n 个。
2.回路电流法适用于复杂电路,不仅适用于平面电路,还适用于非平面电路回路电流法的一般步骤:(1)选定)1(--=n b l 个独立回路,并确定其绕行方向;(2)对l 个独立回路,以回路电流为未知量,列写其KVL 方程;(3)求解上述方程,得到l 个回路电流;(4)求各支路电流。
回路电流法的特点:(1)通过灵活的选取回路可以减少计算量;(2)互有电阻的识别难度加大,易遗漏互有电阻。
理想电流源支路的处理:网孔电流法是回路电流法的一种特例。
引入电流源电压,增加回路电流和电流源电流的关系方程。
i来表示。
第三:网孔电流法:是一种沿着网孔边界流动的假想的环流,用m1.网孔电流法:是以网孔电流作为电路的独立变量的求解方法,仅适用于平面电路。
2.基本思想:利用假想的网孔电流等效代替支路电流来列方程。
3.列写的方程:KCL自动满足。
只需对网孔回路,列写KVL方程,方程数为网孔数。
网孔电流法的一般步骤:(1)选定各网孔电流的参考方向,它们也是列方程时的绕行方向。
(通常各网孔电流都取顺时针方向或都取逆时针方向)(2)根据电路,写出自阻、互阻及电源电压。
(3)根据推广公式,列网孔方程。
(4)求解网孔方程,解得网孔电流。
(5)根据题目要求,进行求解。
第四:结点电压法:以结点电压为未知量列写电路方程分析电路的方法。
适用于结点较少的电路。
结点电压法的一般步骤为:(1)选定参考结点,标定1n个独立结点;-(2)对1-n个独立结点,以结点电压为未知量,列写其KCL方程;(3)求解上述方程,得到1n个结点电压;-(4)通过结点电压求各支路电流;(5)其他分析。
第三章 电阻电路的一般分析
第三章电阻电路的一般分析电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR)和电路的拓扑约束特性(KCL,KVL)为依据,建立以支路电流或回路电流,或结点电压为变量的回路方程组,从中解出所要求的电流、电压、功率等。
方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。
本章的重点是会用观察电路的方法,熟练运用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以求解。
3-1 在一下两种情况下,画出图示电路的图,并说明其节点数和支路数(1)每个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。
解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。
图(a1)中节点数6b==n,支路数11图(b1)中节点数7=bn,支路数12=(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。
图(a2)中节点数4b=n,支路数8=图(b2)中节点数15b=n,支路数9=3-2指出题3-1中两种情况下,KCL,KVL独立方程数各为多少?解:题3-1中的图(a)电路,在两种情况下,独立的KCL方程数分别为(1)51==4n1--1=6-1-=n (2)3独立的KVL方程数分别为(1)61=84+--n+=1b1=111b (2)5+6+--n=图(b)电路在两种情况下,独立的KCL方程数为(1)61=5-=1n-7n (2)41=1-=-独立的KVL方程数分别为(1)6+1=95b1-n+=-=1271b (2)51=-n++-3-3对题图(a)和(b)所示G,各画出4个不同的树,树支数各为多少?解:一个连通图G 的树T 是这样定义的:(1) T 包含G 的全部结点和部分支路;(2) T 本身是连通的且又不包含回路。
第03章电阻电路的一般分析
例3 列支路电流法方程。
a
解:
I1 7
+ 70V
–
I2
1+
5U
_
7 I3 11 +
U 2-
节点a: –I1–I2+I3=0 回路1: 7I1–11I2 - 70 +5U =0 回路2: 11I2+7I3 - 5U =0 增补方程:
b
U=7I3
(1-18)
§3.4 网孔电流法
网孔电流——假想每个网孔中有一个网孔电流。方向可 任意假设。
(1-22)
理想电流源(恒流源)支路的处理
①若恒流源支路仅有一个网孔电流穿过,则该网孔电 流= ± 该恒流源电流(同方向取+,否则取-)。 ②非上述情况时:设恒流源两端电压,当作恒压源列方 程。然后增补恒流源电流与网孔电流的关系方程。
例2 列网孔电流方程。
R1
R2 im2 I3s
+ im1 I5s
第三章
电阻电路的一般分析
重点: 1.支路电流法; 2. 网孔电流法; 3.回路电流法; 4.节点电压法。
对于简单电路,通过电阻串、并联关系或 Y—△等效变换关系即可求解。如:
i总 R
R
R i=?
+
-u
2R
2R
2R 2R
i总
i总
u 2R
+
- u 2R
111 u i i总 2 2 2 16R
例4 列网孔电流方程。
解:网孔电流方向如图所示。 (R1 + R3)i1-R3i3=-U2
+
U1 _
R1
iS
R3 i1
+
邱关源《电路》笔记及课后习题(电阻电路的一般分析)【圣才出品】
第3章电阻电路的一般分析3.1 复习笔记一、电路图论的基本概念1.图(G)图(G)是具有给定连接关系的结点和支路的集合,其中每条支路的两端都连到相应的结点上,允许孤立结点的存在,没有结点的支路不能称为图。
路径:从G的一个结点出发,依次通过图的支路和结点(每一支路和结点只通过一次),到达另一个结点(或回到原出发点),这种子图称为路径。
连通图:当G的任意两结点都是连通的,称G为连通图。
有向图:赋予支路方向的图称为有向图。
2.树(T)满足下列三个条件的子图,称为G的一棵树:①连通的;②包含G的全部结点;③本身没有回路。
树支与连支:属于树的支路称为树支;不属于树的支路称为连支。
基本回路:对于G的任意一个树,有且只有一条连支回路,这种回路称为单连支回路或基本回路。
树支数:对于有n个结点,b条支路的连通图,树支数=n-1。
推论:连枝数=b-n+1;基本回路数=连支数=b-n+1。
二、KCL和KVL的独立方程数KCL的独立方程数:对一个具有n个结点的电路而言,其中任意的(n-1)个结点的KCL方程是独立的。
KVL的独立方程数:对一个具有n个结点和b条支路的电路而言,其KVL的独立方程数为(b-n+1)。
三、电路的分析方法1.支路电流法(1)支路电流法是以b个支路电流为变量列写b个方程,并直接求解。
其方程的一般形式为(2)支路电流法解题步骤①标出各支路电流的方向;②依据KCL列写(n-1)个独立的结点方程;③选取(b-n+1)个独立回路,标出回路绕行方向,列写KVL方程。
注:①独立结点选择方法:n个结点中去掉一个,其余结点都是独立的;②独立回路选择方法:先确定一个树,再确定单连支回路(基本回路),仅含唯一的连支,其余为树支。
2.网孔电流法(1)网孔是最简单的回路,即不含任何支路的回路。
网孔数=独立回路数=b-n+1。
网孔电流法是以网孔电流为未知量,根据KVL对全部网孔列出方程求解。
(2)网孔电流法解题步骤①局部调整电路,当电路中含有电流源和电阻的并联组合时,可转化为电压源和电阻的串联组合;②选取网孔电流,指定网孔电流的参考方向;③依据KVL列写网孔电流方程,自阻总为正,互阻视流过的网孔电流方向而定,两电路同向取“+”,异向取“-”。
第3章 电阻电路的一般分析总结
第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。
2、熟练地运用节点法和回路法分析计算电路。
3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。
其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。
1.支路——Branch流过同一个电流的电路部分为一条支路。
2.节点——node三条或者三条以上支路的汇集称为节点。
4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。
6.回路——loop电路中的任意闭合路径,称为回路。
8.网孔——mesh一般是指内网孔。
平面图中自然的“孔”,它所限定的区域不再有支路。
例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。
树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。
一个连通图的树可能存在多种选择方法。
10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。
树一经选定,基本回路唯一地确定下来。
对于平面电路而言,其全部网孔是一组独立回路。
3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。
从而得到含2b 个变量的2b 个独立方程。
又称为“2b 法”。
2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。
3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。
邱关源《电路》第五版第3章电阻电路的一般分析
第 1 步 选定各支路电流参考方向,如图 3-1 所示。 第 2 步 对(n-1)个独立节点列 KCL 方程 如果选图 3-1 所示电路中的节点 4 为参考节点,则节点 1、2、3 为独 立节点,其对应的 KCL 方程必将独立,即: 1 I1 I3 I4 0 2 I1 I 2 I5 0 3 I 2 I3 I6 0 第 3 步.对 b (n 1) 个独立回路列关于支路电流的 KVL 方程 Ⅰ: R1 I 1 R5 I 5 U s 4 R4 I 4 U s1 0 Ⅱ: R2 I 2 U s 2 R6 I 6 R5 I 5 0 Ⅲ: R4 I 4 U s 4 R6 I 6 U s3 R3 I 3 0 第 4 步.求解
第三步,网孔电流方程的一般形式
R11im1 R12im 2 R13im3 us11 R21im1 R22im 2 R23im3 us 22 R31im1 R32im 2 R33im3 us 33
式中,Rij(i=j)称为自电阻,为第 i 个网孔中各支路的电阻之和,值恒为 正。Rij(i≠j)称为互电阻,为第 i 个与第 j 个网孔之间公共支路的电阻之 和,值可正可负;当相邻网孔电流在公共支路上流向一致时为正,不一 致时为负。 usii 为第 i 个网孔中的等效电压源。其值为该网孔中各支路电
G5 1 + US
—
2 G1 G3 G2 G4
3
4
图 3-8
b.对不含有电压源支路的节点利用直接观察法列方程: G1U n1 (G1 G2 G3 )U n 2 G3U n3 0
G5U n1 G3U n (G3 G4 G5 )U n3 0
c.求解 ② 含多条不具有公共端点的理想电压源支路,如图 3-9。 a.适当选取参考点:令 U n4 0 ,则 U n1 U s 。 b. 虚设电压源电流为 I,利用直接观察法形成方程
清华考研 电路原理课件 第3章 线性电阻电路的一般分析方法
返回目录
3.2 回路电流法(Loop Current Method)
基本思想 以假想的回路电流为未知量列写回路的KVL方程。 若回路电流已求得,则各支路电流可用回路电流线性组合表 示。 a 选图示的两个独立回路, 设回路电流分别为il1、 il2。 支路电流可由回路电流表出
I1 R1 US1
+ –
+ : 流过互阻的两个回路电流方向相同 - : 流过互阻的两个回路电流方向相反 0 : 无关
uSlk: 第k个回路中所有电压源电压升的代数和。
回路法的一般步骤: (1) 选定l=b-(n-1)个独立回路,标明回路电流及方向; (2) 对l个独立回路,以回路电流为未知量,列写 其 KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示); 网孔电流法(mesh-current method) 对平面电路( planar circuit ),若以网孔为独立回 路,此时回路电流也称为网孔电流,对应的分析方法称 为网孔电流法。
本章重点 本章重点 3. 3. 1 1 支路电流法 支路电流法 3. 3. 2 2 回路电流法 回路电流法 3. 3. 3 3 节点电压法 节点电压法
重点 本章重点 � 本章
• 熟练掌握电路方程的列写方法 � 支路电流法 � 回路电流法 � 节点电压法
返回目录
3.1 支路电流法 (Branch Current Method)
支路电流法: 以各支路电流为未知量列写电路方程分析电路的方法。 举例说明 2
支路数 b=6
R4
节点数 n=4
i2
1
R2 i3 R3 R1 i1 R6
+ 4
(1) 取支路电流 i1~ i6为独立变
电工技术-电子教案 第3章 电阻电路的一般分析方法
3.2 回路电流法(续6)
例1 试用网孔电流法求图示电路各个支路电流。
解: 选三个网孔为独立回路, 网孔电流分别为 im1 、 im2 及 im3 。 可写出网孔方程为
解此方程得
im11A, im20.5A, im31.5A
各支路电流为 i1im11A, i2im1im20.5A
3.2 回路电流法(续7)
回路电流法
回路电流法是以各回路电流作为未知变量来列写电路方程,
Байду номын сангаас
并求解回路电流,进而求取各支路电流和支路电压的方法。此 时所得方程称为回路方程。 只需对独立回路列写KVL方程,方程数为b- ( n-1)。 回路电流是假设的沿着每个回路边界构成的闭合路径自行流 动的电流。 支路电流等于流经该支路的回路电流的代数和。 若所选回路正好是网孔,则以各网孔电流作为未知变量来列 写电路方程,并求解网孔电流,进而求取各支路电流和支路电
压的方法称为网孔电流法。
3.2 回路电流法(续1)
回路方程的列写
该电路有6条支路、4个节点,因 此,该电路的独立回路所包含的回 路数为3。选回路1、2、3为独立回 路,这3个回路的回路电流分别用il1 、 il2 、 il3表示,则各支路电流与回 路电流的关系为
3.2 回路电流法(续2)
以回路电流为电路变量,对回路1、2 、3列写KVL方程
联立解得
故
3.3 结点电压法
结点电压法
结点电压法是以各结点电压作为未知变量来列写电路方程,
并求解结点电压,进而求取各支路电压和支路电流的方法。此 时所得方程称为结点方程。 只需对独立结点列写KCL方程,方程数为n-1。 在电路中任意选择某一节点为参考节点,则其它节点与参考 节点之间的电压称为节点电压,其参考方向由其它节点指向参 考节点。 任一支路都连接在两个节点上,所以支路电压等于节点电压 或相关两个节点电压之差。
第3章 电阻电路的一般分析方法
(2) 列KCL方程: iR出= iS入
结点 1 i1+i6=iS3 代入支路特性(用结点电压表示):
结点 2
un 2 un 2 un3 un 2 un3 un1 un 2 is 2 (2) R2 R3 R4 R6
i2 + i3 + i4 – i6= -iS2
电路物理量的关系 (电流、电压)
本课程主要研究电路分析,其基本方法: 确定变量 根据约束关系列方程 求解
特点:不改变电路结构,由根据约束关系建立方程求解。
回路电流法(网孔法)和结点电压法。
根据列方程时所选变量的不同可分为支路电流法、
章目录 上一页 下一页
3.1 支路电流法
一、支路电流法:以各支路电流为未知量列写电路, 方程分析电路的方法,称为支路电流法。 步骤:
方法2:选取独立回路时,使理想电流源支路仅仅属 于一个回路, 该回路电流即IS 。
R3 _ Ui + US1_ R1 I1=IS -R2I1+(R2+R4+R5)I2+R5I3=-US2 R1I1+R5I2+(R1+R3+R5)I3=US1
章目录 上一页 下一页
+
I3
R4 I2 R5
IS R2 I1 _ US2 +
u2=R2(iL1-iL2)
章目录 上一页 下一页
回路电流法的一般步骤: (1) 选定独立回路,并在图中标出。 (2) 对独立回路,以回路电流为未知量,列写其 KVL方程。
注意自电阻总是正,互电阻可正可负; 沿着回路绕行方向,电源压升为正,压降 为负; (3)当电路中有受控源或无伴电流源时需另行处理; (4) 求各支路电流(用回路电流表示);
第三章电阻电路的一般分析
第三章电阻电路的一般分析本章内容:1.电路的图及KCL和KVL独立方程数 2.支路分析法3.网孔分析法4.回路电流法5.结点分析法本章重点:主要学习电阻电路的方程建立及一般分析方法(支路分析法、网孔分析法、节点分析法、回路分析法。
其中,支路分析法是最基本的方法)。
本章难点:独立回路数的确定, 回路分析法及节点分析法.§3-1 电路的图本节介绍有关图论的初步知识,学习应用图的方法选择电路方程的独立变量一、电路的图(G)数学上的图:是边(支路)和顶点(结点)的集合,每一条边都连到相应的顶点上,边是抽象的线段,当移去边时,顶点保留,当移去顶点时,应将顶点所连的支路移走。
1.电路的图(连通图G):是将支路画成的抽象线段形成的节点和支路的集合,结点相对于数学图的顶点,支路相当于数学图中的边。
支路是实体。
KVL和KCL 与元件的性质无关,故可用图讨论其方程。
2.无向图:画出的没有方向的图为无向图3.有向图:画出的有方向的图为有向图4.连通图:任意两个结点之间至少有一条支路或路径时的图为连通图。
二、电路的图的画法(有几种,其中简便的画法)1.一般将电阻和电压源串联的组合,电阻和电流源并联的组合看成一条支路, 将流过同一个电流的每一个分支看成一条支路。
如(b)2.指定电流和电压的参考方向,一般选关联参考方向。
如图(c)(a) (b) (c)§3-2 KCL和KVL的独立方程数一、KCL的独立方程数(n个结点电路,KCL的独立方程是n-1个)将电路的有向图,结点和支路加以编号,如下图,对结点①②③④列写KCL 方程有由于每条支路与两个结点相联,其电流从一个节点流出,从另一个结点流入,一正,一负(从表达式可见),将上面4个方程相加,等式两边为0,说明4个方程不是独立的;将上面3个方程相加,等式两边不为0,说明3个方程是独立的。
可见,n个结点电路,n-1个结点的KCL方程是独立的一、KVL的独立方程数(b条支路,n个结点,KVL为b-(n-1)个)KVL的独立方程数等于独立回路数独立回路数等于基本回路数,回路与支路的方向无关,以无向图讨论。
电路原理 第三章
第三章电阻电路的一般分析一、教学基本要求电路的一般分析是指方程分析法,是以电路元件的约束特性(VCR)和电路的拓补约束特性(KCL、KVL)为依据,建立以支路电流或回路电流或结点电压为变量的电路方程组,解出所求的电压、电流和功率。
方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。
本章学习的内容有:电路的图,KCL和KVL的独立方程数,支路电流法,网孔电流法,回路电流法,结点电压法。
本章内容以基尔霍夫定律为基础。
介绍的支路电流法、回路电流法和节点电压法适用于所有线性电路问题的分析,在后面章节中都要用到。
内容重点:会用观察电路的方法,熟练应用支路电流法,回路电流法,结点电压法的“方程通式”写出支路电流方程,回路电流方程,结点电压方程,并求解。
预习知识:线性代数方程的求解难点:1. 独立回路的确定2. 正确理解每一种方法的依据3. 含独立电流源和受控电流源的电路的回路电流方程的列写4. 含独立电压源和受控电压源的电路的结点电压方程的列写二、学时安排总学时:6三、教学内容§3-1 电路的图1. 网络图论图论是拓扑学的一个分支,是富有趣味和应用极为广泛的一门学科。
图论的概念由瑞士数学家欧拉最早提出,欧拉在1736年发表的论文《依据几何位置的解题方法》中应用图的方法讨论了各尼斯堡七桥难题,见图3.1a和b所示。
图3.1 a 哥尼斯堡七桥 b 对应的图19~20世纪,图论主要研究一些游戏问题和古老的难题,如哈密顿图及四色问题。
1847年,基尔霍夫首先用图论来分析电网络,如今在电工领域,图论被用于网络分析和综合、通讯网络与开关网络的设计、集成电路布局及故障诊断、计算机结构设计及编译技术等等。
2. 电路的图电路的图是用以表示电路几何结构的图形,图中的支路和结点与电路的支路和结点一一对应,如图3.2所示,所以电路的图是点线的集合。
第三章 电阻电路的一般分析
例
I1
+ US1
①
+
-
(
U S1 U S 2 1 1 1 U n1 IS3 R1 R2 R3 R1 R2 U S1 U S 2 IS3 R1 R2 U n1 1 1 1 R1 R2 R3
)
-
R1
R2
R3
IS3
对n=2的电路有
U n1
GU I G
I1 I l 1 I 2 I l1 I l 2 I3 Il2
据KVL得
R1 I1 R2 I 2 U S1 U S 2 R I R I U 3 3 S2 2 2
(不可解)
回路电流法比支路电流法求解的方程数少(n1)即只有(b-n+1)个。
由于有受控源,100=R12 ≠R21 = –1350 !
例2.求uA 、iB
a iB 4Ω
6A
b + 20V
-
6Ω
iC
+ u A-
c
3Ω
2 uA
d
- 2Ω 6iB +
a
b
c
o
解:回路取lbodb(2uA) 、 labdoa(iB) 、 lbcdb (iC), lacdoa(6A) labdoa 7iB +3×6=6iB -20 lbcdb 8iC+2×6 = 20
其系数规律为:
R11 ─自电阻,回路l1的所有电阻之和(恒正)(R22…Rmm 同);
R12 、R21 ─互电阻,回路1、2的公有电阻“代数和”,Il1 、 Il2在互电阻上同方向时取正;反之取负。无受控源时相 等.
US11 ─ 回 路 l1 沿 Il1 方 向 上 电 压 源 电 位 升 的 代 数 和 (US22…USmm 同)。
03第三章电阻电路的一般分析方法
us 1
R3
R5
R2
R4
图(G)
R6
5个结点,8条支路。
有时为了需要,可以把元件的串、并联组合作为一条支路处理。
5个结点,8条支路。
4个结点,6条支路。
在图的定义中,结点和支路各自是一个整体,但 任一条支路必须终止在结点上。移去一条支路并 不意味着同时把它连接的结点也移去,所以允许 有孤立的结点存在。若移去一个结点,则应当把 与该结点连接的全部支路都移去。
2
G
1
1
8
5
5
2
6
7
支路(2、5、6),(1、2、3、4), (1、2、6、8)等都是回路。
3
4
3
支路(4、7、8),(1、5、7、4), (2、3、7、5)等都是回路。总共有 13个不同的回路。但是独立回路数远 少于总 的回路数。 支路(1、5、7、3、6、8) 是回路吗?
4
2
支路(1、5、8),(2、5、 6)都是回路。
5
1
2
5
6
7
6
5
3
3
4
3
7
4
7
4
4
4
1、2、6、7为树支。 3、4、5、8为连支。
2、5、4、7为树支。1、 3、6、8为连支。
树支和连支一起构成图G的全部支路。 这个图G有许多不同的树,但不论是哪一个树,树支 数总是4。可以证明,任一个具有n个结点的连通图, 它的任何一个树的树支数为(n-1)。
2
2
5
1
2
5
5
3
1
2
是树吗?
5
8
7
6
3
7
3 第 三 章 电阻电路的一般分析
重点掌握
1. 图论有关概念、独立结点、独立回路。 图论有关概念、独立结点、独立回路。 2. 电路三大分析法: 电路三大分析法: 支路电流法 结点电压法 回路电流法(含网孔电流法) 回路电流法(含网孔电流法)
★§3.1 ★§
一、概念 i1 R1 R2 + uS – ② i2
支路与结点的移去: 支路与结点的移去:支路必须 终止在结点上, 终止在结点上,移去支路不意 味着移去结点,但移去结点必 味着移去结点, 须移去与之相连的所有支路, 须移去与之相连的所有支路, 因此可以存在孤立结点 孤立结点。 因此可以存在孤立结点。
6. 回路(loop): 回路 : 由支路所构成的一条闭合路径。 由支路所构成的一条闭合路径。 该闭合路径中与每个结点相关联 的支路数为2。 的支路数为 。 7. 网孔(mesh):平面 网孔( : 图中的自然孔。 图中的自然孔。孔内区 域中不再含有任何支路 和结点。 和结点。 1 ②
i −i −i = 0
− i 2 + i 3 + i4 = 0 − i4 + i 5 − i 6 = 0 u1 + u2 + u3 = 0 − u3 + u4 + u5 = 0 − u2 − u4 + u6 = 0 u1 = R1 i1 − uS 1 u2 = R2 i2 u3 = R3 i3 u4 = R4 i4 u5 = R5 i5 + R5 i S 5 u6 = R6 i6
② ① ③
树支
④
连支
9.单连支回路(基本回路):只有一个连支 单连支回路(基本回路 只有一个连支 单连支回路 的回路。 个单连支回路. 的回路。有(b-n+1)个单连支回路 个单连支回路
3第三章电阻电路的一般分析
b 1 a 2 3 5
树支
7 8 e
选树 连支
6 9 d
图G
2 3 4
5
8
4
2 8 5 4
独立回路 l=5 3
例题:
该图可写出多少个独立的KCL、 KVL方程;该图具有多少个独立 的电流变量和电压变量。 答:该图共有5个结点,10条支路。 独立结点数为5-1=4个;独立回路数为10-4=6个。 所以可写出4个独立KCL方程,6个独立KVL方程。 该图中数支数为4个,连支数为6个。
US2=6V
-
根据回路电流和支路电流的关系
I1=IⅠ=6A ;I2=IⅡ=-2A ; I3=IⅠ+IⅡ=4A
2.电路如图所示,应用网孔分析法求网孔电流 及支路电流I。 0.5I _
6Ω +
解:(1) 选定网孔电流I1、
I I1 I2 2Ω 5Ω
I2的参考方向如图所示。
(2) 列网孔方程:
49
+ _
三、支路电流法解题步骤: (1)确定支路(电流)数b和节点数n b=6,n=4 (2)列出独立的KCL方程(n-1)=3个 R1 a : I 1 + I5 = I2 b: I2 = I3+ I4 I1 c: I3 + I6 = I1 + U 1 (3)列出独立的KVL方程 b-(n-1)=3=(网孔数) R2 b R3 a
(6 2) I1 2I 2 49
(3) 解方程组, 得
补充方程
2I1 (2 5) I 2 0.5I
I I1 I 2
I1 6.5 A, I 2 1.5 A, I 5 A
3.E1=1V,E3=6V,IS=6A,R1=3,R2=2, R3=1,R4=4,求网孔电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R1
is2
us1 +
-
R3 R2
R4
R5
R6
(d)
我们还可以把元件的并联组合作为一条支路, 画出它的图如图(d)。
在电路中通常规定每一条支路的电流参考方向,
电压的参考方向取关联参考方向。如果把电路的图 的每一条支路也取一个方向,这个方向就是支路电 流的参考方向。这样电路的图就称为“有向图”, 而没有方向的图则称为“无向图”。
本章,我们介绍的分析方法,不要求改变 电路的结构,例如:我们可以选择一组合适的 变量(电压或电流),然后,根据KCL,KVL 列独立的方程组-----电路方程,然后求解各个变 量。
怎样根据电路的连接性质来选择电路方程的独立 变量?需要应用图论的初步知识。
KCL和KVL分别表明了支路电流之间和支路电压 之间的约束关系。
在讨论独立回路前,讨论树,树支,连支
2
5
1
86
5
3
7
我们在图中移去某些支路, 使余下的图形中包含全部结 点和部分支路,树连通而又 不包含回路。
4
树是这样定义的:
一个连通图G的树T包含G的全部结点和部分支路, 而树T本身是连通的而又不包含回路。
对上图,符合以上定义的树有很多
2
树
2
5
1
86
5
3
7
4
2
讨论了独立结点后,我们可以应用KCL列出n-1个独立 方程,接下来对回路应用KVL,需要讨论独立回路。 为了确定独立回路的个数,我们先讨论一些基本概念:
连通图 如果在图G的任意两个结点之间,至少存在 一条由支路构成的路径,则图G称为连通图, 否则就称为非连通图。
1
25
结点1,2,3,4和相应的支 路构成了4个结点的连通图,
对每个回路都可以应用KVL列方程,
2
对(1,5,8),(2,5,6)列方程,
支路5出现两次,通过加
1
5 86
5
或减总可以消去5支路的 3 电压,余下(1,8,6 ,2),可
7
见(1,5,8),(2,5,6) ,(1,8,6 ,2)
只有两个是独立的。
4
一个图的回路数很多, 如何确定它的一组独立回路 有时不太容易, 我们要引进“树”的概念来帮助我 们寻找独立的回路组。
1
1
4
2
2
3
3
5
4
对4个结点应用KCL i1 i4 i6 0 i1 i2 i3 0 i2 i5 i6 0 i3 i4 i5 0
6
一个支路和两个结点相连,一个结点的电流如果 流进(+)对,具另有一n个个结结点点的一电定路是,流在出任(意-)n-,1个在结以点上四 个方上程可中以,得每出个n电-1流个出独现立两的次KC,L一方正程一,负相,应因的此n-41个 方程个相结加点,称0=为0,独也立就结是点一。个方程是不独立的。但任 意三个是独立的
11 56
5
3
3
4
221来自5 8653
11 5
5
3
7
7
3
4
4
连
2
枝
5
1
86
5
3
7
4
2
5
1
86
5
3
7
4
树支:5,6,7,8,除了树支外,余下的支路称为连 支,1,2,3,4就是连支,只有把连支补上才会出现 回路。
树支和连支构成了图G的全部支路
图G中,结点数n=5
上图电路模型中,有6个电阻,两个电源,如果认 为每一个二端元件构成电路的一个支路,,图(b)就是该 电路的图。它共有5个结点和8条支路。
我们还可以把元件的串联组合作为一条支路,画出 它的图如图(c)。
R1
is2
us1 +
-
R3 R2
R4
R5
R6
(a)
(c)
它共有4个结点和7条支路。
所以当用不同的元件结构定义电路的一条支路时, 该电路的图将不同,结点数和支路数也将不同。
R1
is2
us1 +
-
R3 R2
R4
R5
R6
R1
is2
us1 +
-
R3 R2
R4
R5
R6
1
+ R1 -US1 R2
3
2
R3
R4
R5
1
3
2
24
1
5
3
§ 3-2KCL,KVL的独立方程数
2
1
1
4
2
3
3
5
4
6
这是一个电路的图,是 一个有向图,支路数=?
结点数=?
支路和结点加以编号 给出支路的方向(电流与电压参考方向关联)
(graph),如图所示。
R1
is2
us1 +
-
R3 R2
R4
R5
R6
在图的定义中,结点和支路各自是一个整体,任
一条支路必须终止在结点上,注意:移去一条支路并 不把结点也移去,允许有孤立结点的存在。但移去结 点,必须把与该结点连接的支路全部移去。
R1
is2
us1 +
-
R3 R2
R4
R5
R6
(a)
(b)
结点5,6和相应的支路构成
了2个结点的连通图,
3
4
结点1,2,3,4,5,6和相
6 应的支路构成了6个结点的
非连通图,
回路
从图G的某一个结点出发,沿一些支路 移动,到达另一个结点,形成了一条路径, 如果这条路径的起点和终点重合,且经过的 其它结点都各不相同,那么这条路径就是一 条闭合的路径,构成G的一个回路。
第3章 电阻电路的一般分析
3 .1 电路的图 3.2-3 .3 支路电流法 3.4 网 孔 电 流 法 3.5 回路电流法 3.6 结点电压法
§ 3-1电路的图
前面二章,我们学习了电路的基本定律, 欧姆定律,基尔霍夫定律,可以分析简单的电 路。
我们还学习了电阻电路的等效变换,通过 电阻的串并联和Y-的等效变换,电压源和电流 源的等值变换可以求解电路中的电压和电流等 物理量。
支路(1,5,8)构成回路
2
(2,5,6)(1,2,3,4)(1,2,6,8)
5
(4,7,8)(3,6,7)(1,5,7,4)
1
86
5
3 (3,4,8,6)(2,3,7,5)(1,2,6,7,4)
7
(1,2,3,7,8)(2,3,4,8,5)(1,5,6,3,4)
4
共有13个不同的回路,但独立回路
数远少于总回路数。
15
1
6
5
3
3
4
5
1
86
5
3
7
4
2
15
1
5
3
7
3
4
2
2
2
2
5
5
1
86
5
1 3
8
5
3
7
4
4
不是树,有回路
不是树,不连通
满足树的定义的连通图不止一个,构成
树
树的支路称为树支,观察以下几个树,我们
发现树支数均为4。
可见树就是用最少的树支把所有的结点 连在一起,并且不构成任何回路的图形。
树支数为n-1
2
由于这些约束关系与构成电路元件的性质无关, 因此,在研究这些约束关系时可以不考虑元件的特征。
我们可以用线段来代替电路中的每个元件,这段 线段称为支路,也可以说:这里的支路是一条抽象的 线段,把它画成直线或曲线无关紧要。
线段的端点称为结点,每条支路的两端都连到相 应的结点上。
这样得到的几何结构图称为“图形”或称为“图”