《解一元一次方程》一元一次方程PPT优秀课件

合集下载

(完整版)一元一次方程的解法PPT课件

(完整版)一元一次方程的解法PPT课件

2345 + 12x = 5129.

利用等式的性质,在方程①两边都减去2345,

2345+12x-2345= 5129-2345,

12x=2784.

方程②两边都除以12,得x=232 .
因此,热气球在后12h飞行的平均速度为232 km/h.
我们把求方程的解的过程叫做解方程. 在上面的问题中,我们根据等式性质1,在方程① 两边都减去2345,相当于作了如下变形:
-22334455 + 12x = 5129
从变形前后的两个方程可以看出,这种变形, 就是把方程中的某一项改变符号后,从方程的一边 移到另一边,我们把这种变形叫做移项.
必须牢记:移项要变号.
在解方程时,我们通过移项,把方程中含未知 数的项移到等号的一边,把不含未知数的项移到等 号的另一边.
例1 解下列方程:
解方程
应改为 4 x +6 =2+x 2(2x+3)=2+x
解 去括号,得 4x+3=2+x 应改为 4 x – x = 2-6
移项,得 4x +x = 2-3
化简,得
5x = -1
应改为 3x =-4
方程两边都除以5 ,得
方程两边都除以3,得
x
=
-
1 5
应改为
x
=
-4 3
2. 解下列方程.
(1) (4y+8)+2(3y-7)= 0 ; (2) 2(2x -1)-2(4x+3)= 7; (3) 3(x -4)= 4x-1.
y

(2)
5
+3x 2

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得

解一元一次方程(移项)ppt课件

解一元一次方程(移项)ppt课件

200分 300分
全球通
130 17元0元
神州行 120元 180元
问题:什么情况 下用“全球通” 优惠一些?什
么情况下用 “神州行”优
惠一些?
(2)设累计通话t分钟,则用“全球通”要收费(50+0.4t)元,用 “神州行”要收费0.6t。如果两种收费一样,则 0.6t=50+0.4t解此方程得: 0.2t=50 ∴ t=250
把某项从等式一边移到另一边时有什么变化?
一般地,把方程中的项改变符号后,从方程的一边移到另一边,这种变形叫做移项
上面方程的变形,相当于把原方程左边的20变为-20移到右 边,把右边的4x变为-4x移到左边.
问题4
移项的依据是什么? 等式的性质1.
注:一般的我们把含未知数的项移到等号的 左边,把常数项移到等号的右边。
3x +20 =x 4 -25 1、使方程右边不含x 的项
等式两边减4x,得:
3x+20-4x=4x-25-4x 3x+20-4x=-25
2、使方程左边不含常数项 等式两边减2Байду номын сангаас,得:
3x+20-4x-20=-25- 3x-4x=20-25-20
3x+20 = 4x- 25
3x-4x=-25-20
(2)设累计通话 t 分,则按方式一要收费 (30+0.3t) 元, 按方式二要收费 0.4t 元,如果两种计费方式的收费一样,
0 . 4 t 3 则 0 0 . 3 t .
移项,得 0 .4 t 0 .3 t 3.0
合并同类项,得 0.1t30 .
系数化为1,得 t 30.0
由上可知,如果一个月内通话300分,那 么两种计费方式的收费相同.

解一元一次方程课件PPT

解一元一次方程课件PPT
概念和解题方法。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。

课件《一元一次方程》优秀PPT课件 _人教版6

课件《一元一次方程》优秀PPT课件 _人教版6

典型例题
例3.解方程 9-3x=-5x+5. 解:移项,得 5x-3x=-9+5.
合并同类项,得 2x=-4. 系数化为1,得 x=-2.
随堂练习
1.下列解方程 2(x 15) 3 5(x 7) 时, 去括号正确的是( C ).
A. 2x 15 3 5x 35 B. 2x 30 3 5x 7 C. 2x 30 3 5x 35
解:去括号: 4x+2+x=17.
移项:
4x+x=17-2.
合并同类项: 5x=15.
方程两边同除以5: x=3.
典型例题
例2 解方程-2(x-1)=4. 解法一:去括号: -2x+2=4. 移项: -2x=4-2. 合并同类项: -2x=2. 方程两边同除以5: x=-1. 解法二:方程两边同除以-2,得x-1=-2. 移项: x=-2+1,即x=-1.
随堂练习
3.甲、乙两人登一座山,甲每分登高10米,并且先出发30分, 乙每分登高15米,两人同时登上山顶.甲用多少时间登山?这座山 有多高?
随堂练习
解:设甲用x分登山. 列方程:10x=15(x-30). 去括号: 10x=15x-450. 移项: 10x-15x=-450. 合并: -5x=-450. 系数化为1: x=90. 把x=90代入10x=900. 答:甲用90分登山,这座山高为900米.
复习巩固
3.(1)一元一次方程的解法我们学了哪几步? 移项,合并同类项,系数化为1.
(2)合并同类项及移项的依据是什么? 等式的性质.
(3)“移项”要注意什么? 移项要注意变号.
探究新知
小明家来客人了,爸爸给了小明20元钱,让他买1听果奶和4听
可乐.从商店回来后,小明交给爸爸3元钱.如果我们知道1听可乐

一元一次方程课件20张PPT

一元一次方程课件20张PPT

WENKU DESIGN
代数问题
代数式化简
通过一元一次方程,我们 可以对代数式进行化简, 简化计算过程。
解方程
一元一次方程是解代数方 程的基础,通过解一元一 次方程,我们可以找到代 数方程的解。
方程组求解
利用一元一次方程,我们 可以求解更复杂的方程组, 找到多个未知数的值。
实际问题
比例问题
利润和折扣问题
培养学生对数学的兴趣 和热爱,提高数学素养。
PART 02
一元一次方程的基本概念
REPORTING
WENKU DESIGN
定义与形式
定义
一元一次方程是只含有一个未知 数,且该未知数的次数为1的方程 。
形式
ax + b = 0,其中a和b是已知数, x是未知数。
方程的解与根
解的概念
满足方程的未知数的值称为方程的解。
移项法
总结词
通过将方程两边的同类项进行移动,使得未知数的系数为1,从 而求解未知数。
详细描述
移项法是一元一次方程中最常用的解法之一。具体操作是将含 有未知数的项移到等号的左边,常数项移到等号的右边,使得 未知数的系数为1,从而可以通过简单的除法计算得出未知数的 值。
合并同类项法
总结词
通过将方程两边的同类项进行合并,简化方程的形式,从而更容易求解未知数。
历史背景
一元一次方程是数学中一 个基础而重要的概念,起 源于古代数学,是代数和 数学分析的基础。
重要性
一元一次方程在日常生活 和科学研究中有着广泛的 应用,是解决实际问题的 重要工具。
课程目标
01
掌握一元一次方程的基 本概念和性质。
02
学会解一元一次方程的 方法。

《一元一次方程》PPT优质课件

《一元一次方程》PPT优质课件
D、3x+1=2属于一元一次方程,故此选项正确.
故选:D.
课堂练习
2.已知x =1是关于x的方程2-ax = x+a的解,则a的值是(
1
3
A.2
B.-1 C. 2 D.1

【答案】A
【分析】把x=1代入方程2-ax=x+a得到关于a的一元一次方程,解之即可.
【详解】
解:把x=1代入方程2-ax=x+a 得:2-a=1+a,
故答案是:﹣2.
课堂练习
4.一个两位数,个位上的数是1,十位上的数是x,把1与x对调,新两位
数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?

客车行驶的时间可表示为: 70 ℎ
时间=路程/速度
卡车行驶的时间可表示为:


60
而小汽车比大货车早1h经过B地,也就是大货车行驶时间
比小汽车多 1 h。


=1

60
70
新知探究
比较用算术方法和列方程解题的特点?
用算术方法解
用方程解
未知数不参加列式
未知数用字母表示来列式
根据题中的已知数和未知数间的关
重点难点
重点:列出方程,了解方程的概念。
难点:从实际问题中寻找相等的关系。
02
新 课 导 入
新知探究
一辆客车和一辆卡车同时从A地出发同向行驶,客车的行驶速度是70 km/h,卡车的
行驶速度是60 km/h,客车比卡车早1 h到达B地. A,B两地间的路程是多少?
A
B
你会用算术方法解决这个问题吗?
B.3x+1>2

C.y=2x+1 D.3x+1=2

3.1.1一元一次方程 课件(共26张PPT)人教版数学七年级上册

3.1.1一元一次方程 课件(共26张PPT)人教版数学七年级上册
A.-1
B.-
C )
C.
D.±1
3.(2022·龙华区期末)若x=1是关于x的方程ax+3b=1的解,则3a+
9b=
3
.
4.(人教7上P83T1)列等式表示下列问题:
(1)比a大5的数等于8;
解:(1)a+5=8.
(2)b的三分之一等于9;

解:(2) b=9.

(3)x的2倍与10的和等于18;
D

C.y-n=3
D.y-3
(2)(2023·惠阳)在下列方程中,是一元一次方程的是(
A.2xy=4
B.x2=1
C.2x=0
C

D.x+y=2
(3)(2022·惠城期末)如果x2a-1 +9=0是一元一次方程,那么a

1
.
知识点2 方程的解
【例2】检验x=3和x=-1是否为方程1-2x=3的解.
解:当x=3时,1-2x=1-2×3=-5≠3,
知识点1 方程和一元一次方程的判别
【例1】下列式子是方程的有
的有
②④⑥⑨
②③④⑥⑦⑧⑨
.(填序号)
①2x+3
②x+3=1
③x2=x+1
④2x+1=4
⑤m+3>0
⑥m-7=9
1
⑦ +a=0
a
⑧m+2n=5
⑨y+5=2y-4
,是一元一次方程
【变式1】(1)下列不是方程的是(
A.x=5
B.2x-1=7
1 1
(3)某数的 与 的和等于10;
2 3


解:(3) x+ =10.


5.(教材P83T1改编)设某数为x,根据题意列出方程(不必求解):

一元一次方程 课件ppt

一元一次方程 课件ppt
例子:例如,解方程 2x + 5 = 7,首先移项得 2x = 7 - 5,然后合并同类项得 2x = 2,最后系数化为1得 x = 1。
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点

《一元一次方程》PPT优秀课件

《一元一次方程》PPT优秀课件
列方程: 1700 .150x 2450 .
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.

解一元一次方程PPT教学课件市公开课一等奖省优质课获奖课件

解一元一次方程PPT教学课件市公开课一等奖省优质课获奖课件

解 一元一次方 程
第12页
6.课堂小结,感悟收获
解 一元一次方 程
经过以上问题, 你以为本节课收 获是什么?
第13页
第7页
巩固练习一
解 一元一次方 程
⑴ 6+x=8,移项得 x =8+6

x=8-6
(2)3x=8-2x,移项得3x+2x=-8

3x+2x=8
(3) 5x-2=3x+7,移项得5x+3x=7+2

5x-3x=7+2
第8页
巩固练习二
解以下方程: (1)6x – 2 = 10
(2) 2x x 3
改变符号移到等号右边?
方程90x+22=30.1与90x=30.1-22差异在哪里?
第3页
2.合作质疑,探索新知
问题二:
1、解方程 4x-15=9.
解 一元一次方 程
2、解方程 2x=5x-21.
第4页
2.合作质疑,探索新知
问题二:
解 一元一次方 程
3、在解方程2x=5x-21时,能否直接把等号右边 5x改变符号移到等号左边?为何?
(3)5x+3=4x+7
解 一元一次方 程
第9页
练一练:
解以下方程:
1、2x-8=3x;
2、6x-7=4x-5;
3、4x-7=3x+7;
4、1 x 6 3 x
2
4
解 一元一次方 程
第10页
4.自主归纳,形成方法
解 一元一次方 程
学生自主归纳:怎样解一元一次方程?
第11页
5.反思设计,分组活动
第5页

《解一元一次方程》一元一次方程PPT课件(第2课时利用移项解一元一次方程)

《解一元一次方程》一元一次方程PPT课件(第2课时利用移项解一元一次方程)

探究新知
学生活动三 【一起探究】
解下列方程 (1)3x + 7 = 32 – 2x
解:移项,得
3x + 2x = 32 – 7 合并同类项,得
5x = 25 系数化为1,得 x = 5
探究新知
(2)x-3= 3 x+1 2
解:移项,得 x- 3 x=1+3. 2
合并同类项,得 - 1 x=4. 2
课后作业 完成课后练习题.
合并同类项,得-
3x 5
=3.
系数化为1,得x=-5.
巩固练习
(2)移项,得4x-5x=-4+3.
合并同类项,得-x=-1. 系数化为1,得x=1. (3)移项,得3x - 2x+3x=1 - 4. 合并同类项,得4x=-3. 系数化为1,得x=- 34.
巩固练习
6.将一堆糖果分给幼儿园某班的小朋友,如果每人2颗, 那么就多8颗;如果每人3颗,那么就少12颗,这个班共有 多少名小朋友? 解:设这个班共有x名小朋友.根据题意,
探究新知
学生活动一 【一起归纳】
上面方程的变形,相当于把原方程左边的20变为 –20移到右边,把右边的4x变为–4x移到左边.
像上面那样把等式一边的某项变号后移到另一边, 叫做移项.
探究新知
学生活动二 【一起探究】
思考:上面解方程中“移项”起了什么作用? 通过移项,含未知数的项与常数项分别位
于方程左右两边,使方程更接近于x=a的形式.
则货物的重量:4×3+2=14(吨)
巩固练习
1.下列移项正确的是 ( C ) A. 由2+x=8,得到x=8+2 B. 由5x=-8+x,得到5x+x= -8 C. 由4x=2x+1,得到4x-2x=1 D. 由5x-3=0,得到5x=-3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据问题的条件,客车和卡车从A地到B地的行驶时间,
x x 可以分别表示为 h和 h. 70 60 x x 因为客车比卡车早1h经过B地,所以 比 小1 ,即 70 60
x x 1 60 70

列方程时,要先设未知数(通常用x、y、z等字母表示未知数),然后根据问题中的相等关 系,写出含有未知数的பைடு நூலகம்式——方程。
观察上面所列方程,看看它们具有什么共同特点
1700+150x=2450,
0.52x-(1-0.52)x=80 ,
x x 1 60 70
4x=24 .

上面各方程只含有一个未知数(元),未知数的次数都是1 (次),这样的方程叫做一元一次方程。
归纳
上面分析的过程可以表示如下: 设未知数 找等量关系 列方程
例1 根据下列问题,设未知数并列方程: (1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多 少? (2)一台计算机已使用1 700小时,预计每月再使用150小时, 经过多少月这台计算机的使用时间达到规定的检修时间2 450小时? (3)某校女生占全体学生数的52﹪,比男生多80人,这个学校 有多少学生?
2600 …
于是我们知道当x=5时,1 700+150x的值是2 450,方程 1 700+150=2 450中的未知数的值应是5.
解方程就是求出使方程中等号左右两边相等的未知数的值, 这个值就是方程的解。 思考 Χ=1000和 χ=2000中哪一个是方程0.52χ -(1-0.52)χ=80的解?
1 ( x 2 x) 5 40 2
方法2,设大水杯的单价是x元,则小水杯 的单价是(x-5)元.由题意,得 10x=15(x-5)
1.列方程时,要先设未知数(通常用x、y、z等字母 表示未知数),然后根据问题中的 相等关系,写出含有未知数的等式——方程。
2.含有一个未知数(元),未知数的次数都是 1(次),这样的方程叫做一元一次方程。 3.解方程就是求出使方程中等号左右两边相等 的未知数的值,这个值就是方程的解。
p
根据下列问题,设未知数,列出方程.
80
1. 环形跑道一周长400m,沿跑道跑多少周,可以跑3000m? 2. 甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种 铅笔各买了多少枝? 3.一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。 4.用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两 种水杯的单价各是多少元?
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
1、聪明出于勤奋,天才在于积累。 2、三更灯火五更鸡,正是男儿读书时。黑发不知 勤学早,白首方悔读书迟。 3、鸟欲高飞先振翅,人求上进先读书。 4、勤学如春起之苗,不见其增,日有所长;辍学 如磨刀之石,不见其损,日有所亏。
1.解:设沿跑道跑x周.由题意,得 400x=3000 . 2.解:设甲种铅笔买了x支,则乙种铅笔买了 (20-x)支,由题意,得 0.3x+0.6(20-x)=9
3.解:设上底为x cm,则下底为(x+2)cm, 由题意,得
4.解:方法1,设小水杯的单价是x元,则 大水杯的单价是(x+5)元.由题意,得 10(x+5)=15x
• • • • • •
• • • • • • •
● 一个不注意小事情的人,永远不会成功大事业。──卡耐基 ● 一个能思考的人,才真是一个力量无边的人。──巴尔扎克 ● 一个人的价值,应当看他贡献了什么,而不应当看他取得了什么。 ──爱因斯坦 ● 一个人的价值在于他的才华,而不在他的衣饰。 ──雨果 ● 一个人追求的目标越高,他的才力就发展得越快,对社会就越有 益。──高尔基 ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列 宁 ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 ● 完成工作的方法,是爱惜每一分钟。──达尔文 ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
解:(1)设正方形的边长为χcm, 列方程 4χ=24。 (2)设χ月后这台计算机的使用时间达到2450小时,那么在x月后使用了150χ
小时.
列方程 1 700+150χ=2 450。 (3)设这个学校的学生为x,那么女生数为0.52χ,男生数为(1-.52)χ. 列方程 0.52χ-(1-0.52)χ=80。
实际问题
一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程, 是用数学解决实际问题的一种方法。
对于方程4χ=24,容易知道χ=6可以使等式成立, 对于方程1 700+150χ=2 450,你知道χ等于什么时,等式成立?我们来试一试:
思 考
先来填下面的表格
x







1 700+150x 1850 2000 2150 2300 2450
问题
一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速 度是70 km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地.A,B两地 间的路程是多少?
分析:
如果设A,B两地相距 匀速运动中, 时间
x km, 你能分别列式表客车和卡车从A地到B地的行驶时间吗?
路程 . 速度
相关文档
最新文档