人教版中职数学(拓展模块)2.2《双曲线

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①如图(A), |MF1|-|MF2|=常数
②如图(B),
|MF2|-|MF1|=常数 由①②可得:
| |MF1|-|MF2| | = 常数
(差的绝对值)
上面 两条合起来叫做双曲线
双曲线在生活中 ☆.☆
双曲线定义
平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.
变式训练 1:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 6 ,求动点 P 的轨迹方程.
(3)若2a=0,则轨迹是?
(3)线段F1F2的垂直平分线
如何建立适当的直角坐标系?
♦ 探讨建立平面直角坐标系的方案 yy y
M
y FO1 O O F2x xx
y
O
x
O 方案一x
方案二
原则:尽可能使方程的形式简单、运算简单;
(一般利用对称轴或已有的互相垂直的线段
所在的直线作为坐标轴.) (对称、“简
解:∵ F1F2 10 >6, PF1 PF2 6
∴ 由双曲线的定义可知,点 P 的轨迹是一条双曲线,
∵焦点为 F1(5, 0), F2(5, 0)
∴可设所求方程为:
x2 a2

y2 b2
1
(a>0,b>0).
∵2a=6,2c=10,∴a=3,c=5.
所以点 P 的轨迹方程为 x2 y2 1 . 9 16

0)
y2 x2 a2 b2 1(a b 0)
y2 a2

x2 b2
1(a
0,b 0)
焦点
a.b.c的关 系
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
F(±c,0) F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
双曲线及其标准方程(一)
1
y2 x2 a2 b2 1
F ( ±c, 0)
F(0, ± c)
c2 a2 b2
双曲线与椭圆之间的区别与联系
椭圆
双曲线
定义
|MF1|+|MF2|=2a
||MF1|-|MF2||=2a
方程
x2 y2 a2 b2 1(a b 0)
x2 a2

y2 b2
1(a
0,b
方程表示的曲线是双曲线
(2) (x 3)2 y2 (x 3)2 y2 5
方程表示的曲线是双曲线的右支
(3) (x 3)2 y2 (x 3)2 y2 6
方程表示的曲线是x轴上分别以F1和F2为端点, 指向x轴的负半轴和正半轴的两条射线。
题型二 利用双曲线的定义求轨迹问题 例2
| |MF1| - |MF2| | = 2a
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
M
说明
(1)2a< |F1F2| ;
思考:
(2)2a >0 ;
F1 o F2
(1)若2a= |F1F2|,则轨迹是? (1)两条射线
(2)若2a> |F1F2|,则轨迹是? (2)不表示任何轨迹
动圆M与圆C1:(x+3)2+y2=9外切,且与圆C2:
(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.
【解】 ∵圆 M 与圆 C1 外切,且与圆 C2 内切, ∴|MC1|=R+3,|MC2|=R-1, ∴|MC1|-|MC2|=4. ∴点 M 的轨迹是以 C1、C2 为焦点的双曲线的右支, 且有 a=2,c=3,b2=c2-a2=5, ∴所求轨迹方程为x42-y52=1(x≥2).
c2 a2 b2
x2 a2

y2 b2
1(a 0,b 0)
此即为 焦点在x 轴上的 双曲线 的标准
方程
若建系时,焦点在y轴上呢?
y
y
M
M
F1 O F2 x
F2 x
O
F1
x2 y2 1 a2 b2
y2 x2 a2 b2 1
(a 0,b 0)
问题
1、如何判断双曲线的焦点在哪个轴上?
4.化简
(x c)2 y2 (x c)2 y2 2a
2
2பைடு நூலகம்
(x c)2 y 2 2a (x c)2 y 2
cx a2 a (x c)2 y 2
(c2 a2 )x2 a2 y 2 a2 (c2 a2 )
看 x2 , y2 前的系数,哪一个为正,
则在哪一个轴上
2、双曲线的标准方程与椭圆的标准方程有何区 别与联系?
学习小结:
双曲线定义 | |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
双曲线图象
M
F1 o F2 x
M F2
x
F1
标准方程
焦点
a.b.c 的关系
x2 a2

y2 b2
双曲线及其标准方程
复习
1. 椭圆的定义
平面内与两定点F1、F2的距离的 和 等于常数
2a ( 2a>|F1F2|>0) 的点的轨迹.
Y
|MF1|+|MF2|=2a( 2a>|F1F2|>0)
O
2. 引入问题:
F1 c, 0
Mx, y
F2 c, 0 X
平面内与两定点F1、F2的距离的 差 等于常数 的点的轨迹是什么呢?
洁”)
双曲线的标准方程
求曲线方程的步骤: 1. 建系.
以F1,F2所在的直线为x轴,线段 F1F2的中点为原点建立直角坐标系 2.设点.
设M(x , y),则F1(-c,0),F2(c,0)
3.列式 |MF1| - |MF2|=±2a
y
M
F1 O F2 x
即 (x c)2 y2 (x c)2 y2 2a
【名师点评】 利用定义法求双曲线的标准方程,首先找 出两个定点(即双曲线的两个焦点);然后再根据条件寻找 动点到两个定点的距离的差(或差的绝对值)是否为常数, 这样确定c和a的值,再由c2=a2+b2求b2,进而求双曲线 的方程.
例 1 已 知 两 定 点 F1(5, 0) , F2(5, 0) , 动 点 P 满 足 PF1 PF2 6 , 求动点 P 的轨迹方程.
练习巩固:
1.
过双曲线
x2 3

y2 4
1的焦点且垂直x轴的弦的长度
83
为3
.
2. y2-2x2=1的焦点为
(0,
6 2
)、焦距是
.6
3.方程(2+)x2+(1+)y2=1表示双曲线的充要条件
是 -2<<-1
.
练习巩固:
下列方程各表示什么曲线? (1) (x 3)2 y2 (x 3)2 y2 4
相关文档
最新文档