通风机转子的平衡

通风机转子的平衡
通风机转子的平衡

1平衡概念

通风机转子由于叶轮部件材料的不均匀,叶片装配位置分布的偏差,以及皮带、联轴器等转动部件因铸造、加工不均匀的影响,使通风机转子转动时,出现不平衡。不平衡一般分为静不平衡和动不平衡两种。

1.1静不平衡

通风机转子放在两条平行的轨道上,使其自由转动,转子如能在任一位置停止,则该转子已属于平衡。如转子来回摆动,而总是恢复到一定位置指向地面,则该转子属于静不平衡。

设影响不平衡的多余重量为W1,W1的重心位置距转子旋转中心为r1,则W1r1的乘积称为重径积。如将多余的重量W1去掉,则转子会静平衡,或在转子多余重量W1的对位置加重块W2,使其重径积相等(如图1),即

W1r1=W2r2则转子保持静平衡。

1.2平衡

有许多叶轮很宽的转子,虽然已经获得静平衡,但当转子转动时,可能出现动不平衡。如图2转子,已经过静平衡校正,所配重块W1的重径积和多余重量W1的重径积相等;但所配重块W。的位置,却不与多余重量W。在一个垂直旋转轴的平面内。而相距d 距离。当转子转动时,两相等的离心力,产生一力偶M。

两个重径积相等的重块产生的离心力相等。

F=(W/g)ω2r

其力偶

M=Fd=(W/g)ω2rd=(W/g)(π/30)2n2rd=0.00001119Wr n2d (1)

式中W--所配重块 g

g--重力加速度 cm/sec2

n--转数 r/min

d--两离心力距离 cm

r--重块重心到旋转中心距 cm

校正动不平衡时,可取垂直轴中心线的两平面,设其距离为d1,配重块为W3,W4,如图3,当旋转时所得W3,W4的新力偶,与原有W1,W2之力偶相等,但方向相反。因此,转子得到完全平衡。

1.3静混合不平衡

在一个转子中经常遇到既静不平衡又动不平衡。如图4有3个多余重量W1,W2和W3,其中W1和W2的重径积相等,即

W1 r1=W2 r2

其力偶为

W=0.00001119W1r1n2d

转子上同时存在力偶M和偏重W3,当转子旋转时,转子产生的振动是一端重一端轻。校正办法如下:

在转子上任选两校正平面a、b并垂直旋转中心线,而a、b越接近两端越好。

在a、b面上加配重块分别为△1,△2,使其重径积相等,即

△1R1=△2R2

并使配重块的力偶M1等于多余重量的力偶M,即

实际操作时,须要通过试验方法,在选定两校正面内而多余重量的同方向去重,或在多余重量的相对方向重,就会得到完全静平衡与动平衡。

2通风机的静平衡

2.1静平衡的要求

在第一节中曾讨论过静平衡不能消除动不平衡所引起的力偶,然而实际上对通风机的

平衡要求,

通平衡要求,常认为叶轮宽度与叶轮直径的比值小于十分之一时,(即b/D<0.1)可仅用静平衡校正,精度足够;但这是一般规定。严格说:产生不平衡的主要因素是力偶,而力偶又是力臂和转数的函数。因此,做不做动平衡,应按转数决定。推荐的图6要求较低,仅供参改。a线下方为静平衡适用范围,b 线上方为动平衡适用范围,a、b线之间,对重要设备应做动平衡。

转子静平衡的精度可参改图7,对于要求精度高的通风机,可用下面极限线,对于要求精度不高的通风机,可用上面极限线。图中ε是转子重心至旋转中心距离(ε=1/1000mm)。一般许用不平衡度的规定,由不平衡重径积来确定,即

M=0.1εG

式中M--不平衡重径积g-cm

G--转子重量kg

ε--重心距

图7许用静不平衡精度图表

2.2静平衡所用设备及原理

静平衡所用设备种类很多,有平行导轨式、滚柱式、圆盘式等。现仅将导轨式与圆盘式加以介绍:

(1)平行导轨式静平衡机

平行导轨式静平衡机是最简单的静平衡设备。

这种静平衡机的结构,系由两条截面相同的轨道固定在支架上所组成。轨道截面形状有圆形、缺圆形等。轨道截面直径D一般为50~60mm。轨道表面硬度一般为50~60Rc之间。轨道截面形状可按被平衡的转子重量决定:转子重量不超过40~50kg时,可用圆形截面导轨。当转子重量大于上述数据时,则用缺圆截面导轨。缺圆截面导轨的轨面宽度b,推荐按下面常用经验公式确定:

b=(0.35PE)/(б2d)(cm)(2)

式中P--导轨面上所承受的压力 kg

E--弹性模数kg/cm2

б--许用挤压应力kg/cm2

d--在导轨面上滚动的平衡轴直径 cm

例如:转子与平衡轴总重为60kg,轴径d=20mm,用不淬火炭素钢材料。

平均分布在一条导轨上面的压力P:30kg,一般炭素钢E=2×106kg/cm2,设许用挤压应力б=3×103kg/cm2,则缺园轨面宽度b:b=(0.35PE)/(б2d)=(0.35×30×2×106)/[(3×103)2×2]=0.9 cm

实际上关于轨面宽度b,常按转子重量确定,推荐如下:

转子重量在l00kg以下——用圆柱导轨

转子重量在300kg以下——b=l0mm

转子重量在2000kg以下——b=30mm

转子平衡轴在导轨面上滚动时,有滚动摩擦力影响平衡精度。一般用下面公式确定滚动摩擦力:

T=(μ/r)P

式中μ——滚动摩擦系数(0.0l~0.05)

P——导轨面上所承受的压力kg

r——在轨道面上滚动的转子轴半径cm

滚动摩擦力矩

MT=T·r=(μ/r)P·r=μP(3)

从上式看出,滚动摩擦力矩只与正压力p和滚动摩擦系数有关,而滚动摩擦系数是由接触面的硬度和加工精度决定,即加工精度和材料硬度越高,则滚动摩擦系数越小。

(2)圆盘式静平衡机.

圆盘式平衡机的结构,为了减少圆盘的摩擦阻力,圆盘轴上都装有漆动轴承。由于圆盘平衡机的圆盘直径较大,而圆盘的中心又比较靠近,则两圆盘上的分力夹角α比较小(如图11),因此,减小了滚动轴承上的擦摩损失。

1.圆盘

2.小轴

3.内砂碗

图9圆盘式平衡机 4.外砂碗 5.支架

设转子重量为Pzh,平衡机一端轴承上所受压力之合力为P。其关系为:

P=Pzh/cosα(4)

从上式说明,在园盘上所受总压力P,总是大于所平衡转子重量Pzh。

转子在园盘式平衡机上平衡时,产生两种摩擦阻力,一种是轴在园盘上的滚动摩擦,其力矩由公式(3)确定。另一种是滚动轴承中的摩擦,其力矩由下列公式表示:

Mch=Pμ1r(5)

图11两园盘受力分布示意图

式中P——平衡机一端轴承上的总压力

μl——滚动轴承滚动摩擦系数(0.001~0.005)

r——滚珠中心至轴承中心距

设Mc为残余不平衡力矩。则

Mc=Pzh·ε

上述滚动摩擦力矩M。和滚动轴承内摩擦力矩Mch之和应与残余不平衡力矩Mc相等。即

Mc=MT+Mch

为了计算方便,把滚动轴承内摩擦力矩Mch,变到平衡轴颈上的力矩。即

Mch=Pμl r·RJ/R (5’)

将公式(4)代入公式(3)和公式(5’),则

MT=μP=μ(Pzh/cosα)M ch=μ1r(Ri/R)·(Pzh/cos α)

则残余不平衡力矩

Mc=P z h·ε=μ(Pzh/cosα)+μ1r(Ri/R)·(Pzh/cosα)

=[(μR+μ1rRi)/(R·cosα)]·Pzh

因此,得出转子重心至旋转中心的剩余不平衡距离:

ε=(μR+μ1rRi)/(R·cosα)(6)

式中μ——滚动摩擦系数(0.0l~0.05)

μ1——滚动轴承滚动摩擦系数(0.001~0.005)

R——圆盘半径

Rj——平衡轴颈半径

α——转子中心与圆盘中心所成夹角之半

例:圆盘式平衡机的圆盘半径R=150mm,滚动轴承滚珠中心至轴承中心距r=20mm,α=20。,滚动摩擦系数μ=0.02,μ1=0.002,转子重量为1500kg,轴颈半径RJ=60mm,求剩余不平衡重的中心距离。

如按平衡机的摩擦阻力矩分析,圆盘式平衡机比导轨式平衡机多出滚动轴承摩擦力矩,则圆盘式平衡机比导轨式平衡机的精度低。但阿盘式平衡机中心稳定,去重方便,平衡轴的两端可以不等。这又是圆盘式平衡机的优点。

3静平衡操作方法

无论导轨式平衡机或哑盘式平衡机,当转子的轴不符合平衡要求对,则须另备平衡轴。平衡轴与转子内孔配合处的精度。要术2级配合,两端轴颈尺寸相同(圆盘式平衡轴除外)。光洁虚△7以上。表面淬火硬度Rc=50。以上。

导轨应尽量相互平行,导轨的水平度应在0.05/1000以上。

转子放在平衡机上,用手轻轻扳动转子,使其任意停止。在转子最下面作一标记“l”。如图12a,为了消除摩擦阻力矩误差,将转子旋转90。使标记“l”与转子中心线成水平位置,然后放开,待停止摆动后,再在转子最下而作标记“2”如图12b。再将转子向另一方向转90。,同样使标记“l”与转子中心线成水平位置,放开,停止摆动后,仍在转子下面作一标记“3”,如图12c。如果1、2、3点重台,则偏重位置就在重合点。否则,偏重位置应在2和3点的中间。

偏重位置找出以后,用试加法以黄泥或其它粘性物,贴在偏重对称方向配平衡块的位置。经过多次试加,待转子在任一位置都能停止时。则认为配重块的重径积与偏重的重径积相等。

但是,通风机叶轮有一定宽度,在叶轮的那一面(前盘或后盘)固定配重块,须要按实际情况分析不平衡的主要原因。如前后盘钢板厚薄不均,叶片位置不等分。轴盘铸件多肉,等等,以便确定配重块同定位置:前盘、后盘或前、后盘分担。避免引起过大的动不平衡。

如在组装叶片之前,把已加工好的后盘作一次静平衡,维装叶片时要求叶片等分,等重叶片对称安装。当叶片与后盘结合后,也做一次静平衡。前盘装好以后,再加工内圆及外圆。最后,找整个叶轮静平衡,配重块焊在前盘上。按这样操作程序的叶轮,存在动不平衡的可能性很小。因此,没有动平衡设备的单位,可以用上述操作方法,代替动平衡。

汽轮机大轴偏心与晃度

晃动度的测量方法: 转子的晃动度的测量是在汽机轴承内进行。首先把测点打磨光滑,将千分表架固定在轴承或汽缸水平结合面上。为了测量最大晃动度的位置,需将圆周分为八等份,用笔按照逆时针方向编号。表的测量杆对准位置1并与表面垂直,适当压缩一部分使大针指“50”。按旋转方向盘动转子,顺次对准各点进行测量,并记录各测点的数值。最大晃动值是直径两端相对数值的最大差值,最大晃动度的1/2即为最大弯曲值。 晃动度与以下因素有关: 1、汽缸上下壁温差; 2、轴封供汽温度; 3、一侧轴封被严重磨损; 4、轴颈在运行中振动大及轴承钨金脱落; 5、轴端部件有摩擦和振动; 6、轴段或叶轮轮毂有单侧严重摩擦; 7、汽轮机振动大及大修过程中等。 汽轮机大轴偏心度的定义及影响因素: 汽轮机在启动或停机过程中,偏心测量已成为必不可少的测量项目。它能测量到由于受热或重力所引起的轴弯曲的幅度。偏心是在低转速的情况下,对轴弯曲的测量,这种弯曲可由下列情况引起:原有的机械弯曲,临时温升导致的弯曲,在静态下必然有些向下弯曲,有时也叫重力弯曲。转子的偏心位置,也叫做轴的径向位置,它经常用来指示轴承的磨损以及予加的负荷大小,例如由不对中导致的那种情况。它同时也用来决定轴的方位角,方位角可以说明转子是否稳定。 偏心检测系统DYW-P型偏心监控仪是精密测控仪表。具有报警与停机控制信号输出,设有电流输出通用接口,可与计算机等设备连接。该监控仪采用160×80(mm)通用机箱,LED数字显示,PVC彩色面膜和轻触摸键,外形美观,款式新颖,结构合理,安装简单,性能稳定,质量可靠,测量准确。 现场常发生的汽轮机偏心大有以下几种原因: 1、测量装置本身有问题,造成测量值摆动大,无法读取。建议汽机检修检查处理,将机械测量与热工测量进行校对; 2、汽轮对轮安装时原始张口不合格,超过80um,导致盘车时偏心大与原始值20um 以上。这种现象一般不易调校,要对对轮进行调整; 3、运行中偏心变大,可能存在动静碰磨、油膜振荡、汽温突降或水击、汽流激振、电磁干扰、轴承油膜刚度不足、汽轮机转子部件脱落或松动等因素。 4、汽轮机转子出现热弯曲或出现裂纹; 5、机组启动过程中汽缸温差,特别是上、下缸温差和法兰内、外壁温差超标会

转子动平衡

实验六转子动平衡 一、实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解; 2.掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备与工具 1.CS-DP-10型动平衡试验机; 2.试件(试验转子); 3.天平; 4.平衡块(若干)及橡皮泥(少许)。 三、实验原理与方法 本实验采用的CS-DP-10型动平衡试验机的简图如图1所示。待平衡的试件1安放在框形摆架的支承滚轮上,摆架的左端与工字形板簧3固结,右端呈悬臂。电动机4通过皮带带动试件旋转,当试件有不平衡质量存在时,则产生的离心惯性力将使摆架绕工字形板簧做上下周期性的微幅振动,通过百分表5可观察振幅的大小。 1. 转子试件 2. 摆架 3. 工字形板簧 4. 电动机 5. 百分表 6. 补偿盘 7. 差速器 8. 蜗杆 图1 CS-DP-10型动平衡试验机简图 试件的不平衡质量的大小和相位可通过安装在摆架右端的测量系统获得。这个测量系统由补偿盘6和差速器7组成。差速器的左端为转动输入端(n1)通过柔性联轴器与试件联接,右端为输出端(n3)与补偿盘联接。 差速器由齿数和模数相同的三个圆锥齿轮和一个蜗轮(转臂H)组成。当转臂蜗轮不转动时:n3=-n1,即补偿盘的转速n3与试件的转速n1大小相等转向相反;当通过手柄摇动蜗杆8从而带动蜗轮以n H转动时,可得出:n3=2n H-n1,即n3≠-n1,所以摇动蜗杆可改变补偿盘与试件之间的相对角位移。

图2所示为动平衡机工作原理图,试件转动后不平衡质量产生的离心惯性力F =ω2mr,它可分解为垂直分力F y和水平分力F x,由于平衡机的工字形板簧在水平方向(绕y轴)的抗弯刚度很大,所以水平分力F x对摆架的振动影响很小,可忽略不计。而在垂直方向(绕x轴)的抗弯刚度小,因此在垂直分力产生的力矩M = F y·l =ω2mrlsinφ的作用下,摆架产生周期性上下振动。 图2 动平衡机工作原理图 由动平衡原理可知,任一转子上诸多不平衡质量,都可以用分别处于两个任选平面Ⅰ、Ⅱ内,回转半径分别为rⅠ、rⅡ,相位角分别为θⅠ、θⅡ,的两个不平衡质量来等效。只要这两个不平衡质量得到平衡,则该转子即达到动平衡。找出这两个不平衡质量并相应的加上平衡质量(或减去不平衡质量)就是本试验要解决的问题。 设试件在圆盘Ⅰ、Ⅱ各等效着一个不平衡质量mⅠ和mⅡ,对x轴产生的惯性力矩为: MⅠ=0 ;MⅡ=ω2mⅡrⅡlsin(θⅡ+ωt) 摆架振幅y大小与力矩MⅡ的最大值成正比:y∝ω2mⅡrⅡl ;而不平衡质量mⅠ产生的惯性力以及皮带对转子的作用力均通过x轴,所以不影响摆架的振动,因此可以分别平衡圆盘Ⅱ和圆盘Ⅰ。 本实验的基本方法是:首先,用补偿盘作为平衡平面,通过加平衡质量和利用差速器改变补偿盘与试件转子的相对角度,来平衡圆盘Ⅱ上的离心惯性力,从而实现摆架的平衡;然后,将补偿盘上的平衡质量转移到圆盘Ⅱ上,再实现转子的平衡。具体操作如下: 在补偿盘上带刻度的沟槽端部加一适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转),从而改变补偿盘与试件转子的相对角度,观察百分表振动使其达到最小,停止转动手柄。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上,两者之间有很大间隙。蜗杆转动一定角度后,稍微反转一下,脱离与蜗轮的接触,这样才能使摆架自由振动,这时观察振幅。通过间歇性地使蜗轮向前转动和观察振幅变化,最终可找到振幅最小的位置。)停机后在沟槽内再加一些平衡质量,再开机左右转动手柄,如振幅已很小(百分表摆动±1~2格)可认为摆架已达到平衡。亦可将最后加在沟槽内的平衡质量的位置沿半径方向作一定调整,来减小振幅。将最后调整到最小振幅的手柄位置保持不动,停机后用手转动试件使补偿盘上的平衡质量转到最高位置。由惯性力矩平衡条件可知,圆盘Ⅱ上的不平衡质量mⅡ必在圆盘Ⅱ的最低位置。再将补偿盘上的平衡质量m p'按力矩等效的原则转换为位于圆盘Ⅱ上最高位置的平衡质量m p,即可实现试件转子的平衡。根据等效条件有:

汽轮机振动异常原因分析及解决方法

汽轮机振动异常原因分析及解决方法前言 汽轮机的振动大小,是评价汽轮机组运行可靠性的重要指标。对于高速转动的汽轮机来说,微小的振动是不可避免的,振动幅度不超过规定的标准属于正常振动。对汽轮机的运转没有影响,但是当振动超过规定限值时,对整个汽轮机组的运行是有害的,表明机组内部存在缺陷。本文所分析的就是这种振动过大的异常振动产生的原因和减小振动的方法。 一、汽轮机振动过大的危害 汽轮机组振动过大,会使机组内部部件的连接松动,基础台板和基础之间的刚性连接削弱,或使机组的动静部分发生摩擦,造成转子变形、弯曲、断裂,甚至是叶片损坏。当机头发生振动时,可能直接导致危机保安器动作,造成停机事故。当汽轮机动静叶片由于过大的振动而发生相对偏移时,会造成高低压端部轴封发生不正常磨损。低压缸端轴封的磨损破坏轴封的密封作用,使空气被吸入负压状态下的低压缸,破坏凝汽器的真空,直接影响汽轮机组的经济运行。高压缸端轴封的破坏会使高压缸的蒸汽大量向外泄露,降低高压缸做功能力,甚至会引起转子发生局部热弯曲。泄露的高压蒸汽如果进入轴封系统的油档中,使润滑油内混入水分,造成油膜失稳,也可能产生油膜振荡,造成轴瓦乌金熔化。当过大的振动造成轴弯曲时,可能使发电机滑环和电刷的磨损加剧、静子槽楔松动、绝缘被破坏,造成发电机或励磁机事故。当过大的振动造成某些紧固螺丝松脱、断裂时,甚至会造成整个汽轮机组的报废。所以,消除异常振动,是确保安全生产的重要环节。 二、汽轮机异常振动的原因分析与解决方法 汽轮机组负担着将热能转化为电能的任务,由于其长时间运行、关键部位长期磨损等特点,各种故障时常发生,其中,振动异常是汽轮机组常见故障中最频繁的一种,严重影响了电厂的正常发电。由于振动产生的原因非常复杂,汽轮机

(整理)风机机上平衡标准化1

一、准备工作(备件材料机具人员)责任人:检修区域工段长 时限要求:3-5小时 1.人员准备: 确认:检修区域技术员 2.材料准备: 确认:检修区域技术员 3.机具准备:

确认:检修区域技术员 二、安全措施: 责任人:检修区域工段长 时限要求: 1、内容:烧结机系统停止后,去主控室取抽烟机操作牌,要求停电; 确认:检修区域技术员 2、内容:车间安全员与安环部联系办理抽烟机检修动火证; 确认:检修区域技术员 3、内容:联系调度确认停电、操作开关确认零位,现场挂上“有人操作,禁止合闸”牌; 确认:检修区域技术员 4、内容:确认停电后,将平衡仪等安装好,将操作牌关回调度室,要求送机,准备转车, 开始做机上平衡,岗位人员现场配合; 确认:检修区域技术员 5、内容:风机转车时,人员离开风机室,运行平稳5分钟后,人员才能进入现场平衡操 作。 确认:检修区域技术员 6、内容:待风机完全静止后,确认风门关闭,进入风箱,进行盘车作业,要求互相关照, 预防碰伤。 确认:检修区域技术员 7、内容:风箱内使用电气焊机必须遵守特殊工种作业标准。 确认:检修区域技术员 三、概述 不平衡是旋转机械的主要故障之一,据资料介绍,转子不平衡引起的故障约占全部机械故障的50%,清除机械不平衡故障最方便的手段就是进行现场动平。907是一种经济型动平衡仪,它的功能由两部分组成:频谱分析和现场动平衡。它可以测量和存储振动的加速度、速度、位移、高频加速度包括的特征值及其波形,自动对这些数据值进行运算处理,从而在现场进行简易故障诊断和现场动平衡。 四、工作原理 1、转子单面不平衡:刚性转子是在远小于转子的一阶临界转速下工作,可忽略其挠

汽轮机转子运行故障分析及诊断

汽轮机转子运行故障分析及诊断 发表时间:2017-05-12T09:03:43.900Z 来源:《防护工程》2017年第1期作者:李钢 [导读] 在目前工业生产中,汽轮机作为重要的旋转设备,是工业生产中必不可少的机械设备。 辽宁大唐国际阜新煤制天然气有限责任公司辽宁阜新 123000 摘要:在目前工业生产中,汽轮机作为重要的旋转设备,是工业生产中必不可少的机械设备。其中汽轮机转子是汽轮机的主要零部件,使得汽轮机转子安全性、可靠性、适用性以及可维修性特点受到人们的关注,促使关于汽轮机转子运行故障机理与诊断技术也在飞速发展。在汽轮机转子运行过程中,发生的振动信号是判断汽轮机工作状态的重要指标,更是影响机械设备运行安全与操作人员人身安全的因素,因此对汽轮机转子运行故障分析及诊断的研究工作迫在眉睫。 关键词:汽轮机转子;运行故障;诊断 1概述 汽轮机组的振动是机组运行必须要监测的一个非常重要的参数,因为当机组振动超过规定的范围时,将会引起设备的损坏,甚至造成严重后果:(1)使转动部件损坏。当机组振动过大时,会使叶片、围带、叶轮等各部件的应力增加,从而产生很大的交变应力,导致疲劳而损坏;(2)使机组动、静部分发生磨损;(3)使各链接部件松动;(4)直接造成运行事故。当机组振动过大,同时又发生在高压缸端侧时,有可能危及保安器误动作而发生停机事故。因此,机组运行中要严格检测其振动值。 近几年来,大庆油田宏伟热机组频繁出现振动大引起的停机事件,这就使得我们不得不引起对汽轮机组振动故障的重视。 2汽轮机转子运行故障类型 在汽轮机转子运行过程中,振动信号发生是转子发生故障的前提表现,对此应在汽轮机转子运行过程中,对其振动信号进行准确测量,为了更好地判断汽轮机转子运行故障类型,对其进行分类阐述。振动频率:基频振动、倍频振动、整分数基频振动、比例基频振动、超低基频振动以及超高基频振动;振幅方位:横向振动(水平振动和垂直振动)、轴向振动与扭转振动;振动原因:转子平衡度较差、轴系不对称和零件松动、摩擦(密封件摩擦、转子和定子之间产生的摩擦)、轴承损坏、轴承内部油膜涡动与油膜振动、动力和水力的影响、轴承刚度较差、电气等;振动部位:转子和轴系振动(轴颈、轴纹叶片)、轴承(油膜滑动和波动)、壳体振动与轴承座振动、基础振动(基座、工作台、支架)、其他结构振动(阀门、阀杆、管道等)。 3结合实际案例对汽轮机转子运行故障及诊断进行分析 某市炼油厂,利用延迟焦化装置中采用汽轮机,其具体的汽轮机厂商为杭州汽轮机厂,类型为凝气反动式汽轮机,现采用ENTEK振动检测系统对汽轮机运行状态进行诊断与监测。其详细的汽轮机转子运行故障诊流程为:对汽轮机转子振动信号信息进行检测和采集、分析与处理、传输、推理以及控制等。因为振动信号检测是判断汽轮机转子运行故障的主要依据,振动信号分析与处理工作是判断汽轮机转子故障的关键环节,传输与推理是整体运行故障判断的核心,控制是汽轮机转子运行故障诊断的最终目标。同时在汽轮机转子内部安装电涡流传感器,将线缆与控制箱相连,控制箱自带的振动监测模块可完成高速度数字振动信号的传输与处理工作,再使用以太网将信号处理结果上传至上位机中,从而完成汽轮机转子运行故障的诊断工作。 3.1对ENTEK振动检测系统的利用 在该炼油厂使用的ENTEK振动检测系统性能参数如下所示:型号:NK25/NK28/NK12.5;额定功率:1178KW、常规功率:1071KW;额定转速:12176RPM、常规转速:9132RPM-12785RPM;最大进汽压力:1.2MPa(a)、常规进汽压力:1MPa(a);常规排汽压力:0.012MPa(a);最大进汽温度300摄氏度、常规进汽温度230摄氏度。 在ENTEK振动检测系统中,对于汽轮机转子运行故障的诊断,产生的信号数据直接送至XM模块中,经过以太网的传输,将信号传输至emonitor系统软件内部,在该软件界面中,实现传感器与信号数据的相接,使其成为振幅型数据,从而可知由emonitor系统软件连接的采集器、监测模块以及保护监测表共同组成具有共享能力的数据库,其共享数据库内自主携带故障诊断工作,能够依据实际需求,对汽轮机转子的运行故障类别进行准确定位,对此,操作人员以手动输送的方式,完成故障诊断报告的生成工作。 在此系统故障诊断环节中,由汽轮机转子振动值超出限定值而产生的故障,则需对汽轮机进行停机检修,同时加大对转子运行状态的监测工作,并对转子的转速进行妥善控制。汽轮机转子在初始运行期间,振动值均以达到限定值范围,但是由于难以在生产中对汽轮机进行检修。因此,采用转子减速与状态控制的方式,实现对汽轮机转子运行故障的诊断工作。 3.2报警和故障诊断 在对汽轮机转子振动信号数据分析过程中,应利用事先采集的信号设置与之相对应的报警界定,进而才能在振动值高出正常限定值时,及时对汽轮机转子的运行故障类型进行识别和分类,其详细的振动值高超报警流程为:输定报警值界限——输入采集数据限号——汽轮机转子运行——发生警报。首先,对转子平衡度较差故障诊断:水平与垂直倍频不平衡值均大于等于1、单倍频振动效果较为明显;其次,转子摩擦故障诊断:4倍频占据1倍频20%以上、5倍频与0.5倍频占据1倍频10%以上、2倍频占据1倍频50%以上、3倍频占据1倍频20%以上以及1倍频在界定值以上;最后,油膜涡动与油膜振动故障诊断:0.5倍频、1倍频其幅值均在2.0以上。 3.3摩擦振动故障排查措施分析 通常情况下,汽轮机转子运行的环境比较复杂,它在运行过程中不仅会受到高速旋转和气流冲击作用力,同时高温、潮湿以及高压的工作环境会对转子造成一定的破坏,影响机组转子的安全稳定运行。因此,应当对转子日常的保养和检查工作给予高度的重视,一旦检查过程中发现故障,维修技术人员应当立即采取解决措施,对产生摩擦振动的部件进行必要维修,而如果机组部件维修价值不高应当进行更换,以消除摩擦振动对汽轮机运行造成的不利影响。 3.4汽轮机积盐原因及处理措施 对于正常运行的汽轮机,其饱和蒸汽实际含盐量会与过热蒸汽含盐量相同或饱和蒸汽含盐量略高。若汽轮机的过热蒸汽含盐量比过饱和蒸汽含盐量高时,则说明汽轮机内部积盐现象已很严重,此时应及时停机,全面清洗汽轮机。在清洗时我们常用到两种处理方法手工除垢与喷砂除垢。如果用这两种除垢法不能完全去除汽轮机内部污垢,可用柠檬酸溶液配合软水来进一步清洗汽轮机。

汽轮机找中心经验

转子中心测量时已经是对汽轮机转子的扬度调整好后进行,通常以汽轮机转子为基准来找发电机转子的中心,这时主要考虑的是圆周值和端面值,圆周值当然是越小越好,我们做的时候一般控制在0.02mm以下,同时还要考虑汽轮机和发电机运行时各转子向上位移的膨胀量,来修正发电机转子是抬高还是要降低,端面值的要求也就可以决定是要求上开口还是要求下开口,我们做一般是保证左右开口为零,上下开口保证在2丝以内,这样在过临界时基本很少有振动增加。同时制造厂的相关资料也可以为我们的测量做出一些参考。 对轮中心做成上张口还是下张口要根据机组的具体形式而定。比如:三支点两转子找中心,一般都做成下张口,具体数值有厂家提供,这是从轴承负荷分配决定的。凝汽机组找中心一般做成上张口,是由于再找中心时凝汽器内有没有充水以及真空形成后后汽缸会下沉等因素决定的。总之,对轮找中心要根据具体情况具体分析,没有固定数值要求,要结合安装使用说明书和机组具体运行状态去做,才能打到满意效果。 在安装中找中心一般是在冷态下,与各机组的情况有关,不能一概而论,小机组转子是双支点轴承支撑,考虑运行中前轴承箱受热膨胀比后轴承箱多一般考虑上开口,此外,冷凝器的连接方式也有关系,有的是弹性连接没有太大的影响,有的是刚性连接,在找中时应灌水。而大机组采用双转子三轴承支撑,为了轴承负荷分配,一般制造厂家均有下开口的要求。关健在于热态运行中轴系要成为一条连续的光滑曲线,不能死搬教条,要根据不同情况进行调整。 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法: 1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬

振动案例第三篇:不对中振动

不对中三种类型 轴瓦中心标高偏差 联轴器不对中 转子与静子不同心

案例1:波型联轴器不对中振动 现象:XF电厂2号机组,300MW,东方生产。2001年10月大修启动,运行出现一系列振动瓦温问题。 分析:2002年1月5日,对机组临时检修后检测振动数据。获得#6、#7轴振动的升速过程、轴心轨迹和轴中心平均位置,发现振动特征及故障如下: (1)升速过程振动和3000r/min空载振动的2倍频分量十分显著。如图1、图2中,本次临检更换了上瓦碎裂的#7号轴承后,#6、#7轴振动性质相比机组大修后初次启动基本没改变。 (2)通频振动的轴心轨迹均为正向进动,但形状比较复杂。图3指出,轴颈上预载荷较为严重。 (3)轴中心平均位置随转速的变化均在间隙圆内,但#6轴中心位置有异常。如图4,转子顺时针旋转时,#6轴颈中心应从间隙圆低部向左上方浮起,而不是向右上方浮起。#6轴颈浮起量也偏小。故#6轴颈与轴承安装偏移及载荷偏大问题值得怀疑。由于发电机转子重量大大超过励磁机,此种偏移可能再度导致#7瓦损坏。 证实:后来检修检查发现,励发对轮严重不对中,一个螺栓剪断,引起#6、#7瓦振动及损坏。 案例2:齿型联轴器不对中振动 概述:某大型舰船内的主发电机组系耦合式高速旋转机械。该机组振动频谱中,包含三个振动幅值均较突出的故障频率,即主激励频率、主激励频率的精确2倍频及滞后性半频。最后诊断及检修证实,主激励频率的精确2倍频所代表的是活动式联轴器连接的汽轮机转子和高速齿轮轴的严重“不对中”故障,是机组振动随负荷急剧爬升、轴承油膜失稳及轴瓦损伤的根本原因。 分析:选取某时段机组从空负荷到带负荷50%N的振动数据。机组空负荷时振动良好,频谱成分也较单纯,而带负荷后主要频谱成分相对幅值变化异常,图1还给出机组中等负荷工况、部分最有代表性测点的振动频谱,能观察到1000Hz范围内各种频谱的分布。 f1=25.0 Hz 发电机转子主激振频率

简易找风机转子动平衡方法

简易找风机转子动平衡 方法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

简易找风机转子动平衡方作者:罗仁波 时间:2015年10月5日 摘要:引风机振动的原因很多,转子动不平衡是风机振动的原因之一。专业技术书籍中介绍的找风机转子动平衡的方法有多种,但在实际工作中使用这些方法都比较复杂,或需一些高精密仪器检测,但仪器昂贵,切操作困难,因此难以让检修人员所熟练掌握与应用。本人在此介绍一种在以往的长期工作实践中摸索总结得来的简易找风机转子动平衡方法。 论文主题: 风机动平衡的屈指可数。在冶金行业的各类风机中,除尘风机较多,外出做动平衡价格昂贵,且影响环保问题,检修量大,另外新叶轮在加工制造过程中由于各种因素,偶尔也会出现不平衡现象。这些不平衡通过找静平衡的方法是可以解决其中一部分的,而一些经过静平衡校验合格的风机转子在高速旋转时仍会发生试重测振动,这些转子的不平衡就必须通过找动平衡的方法才能加以彻底消除。在实际工作中,能够很好的解决设备各类疑难杂症的人员不是很多,能现场解决 一、常用风机找动平衡的几种方法 现场动平衡方法基本为:两点试重测量法、三点试重测法、闪光测相法、影响系数平衡法、计算法、简易平衡法。具体做法如下:两点法:

测出风机在工作转速下两轴承的振动振幅,若A侧振动大(振动值为Ao),则先平衡A侧,在转子上某一点(作记号1)加上试加质量M,测得振动值为A1,按相同半径将此试加质量M移动180°(作记号2),测得振动值为A2,根据测得的A0、A1、A2值,选适当的比例作图,求出应加平衡质量的位置和大小。做法下图: 作△ODM,使OM:OD:DM=A0:A1/2:A2/2,延长MD至C,使 CD=DM,并连接OC;以O为圆心,OC为半径作圆O;延长CO与O圆交于B,延长MO交圆于S,则OC为试加质量M引起的振动值(按比例放大后的振动值),平衡质量Ma为:Ma=M*OM/OC。由图中量得角∠COS为d,则平衡质量应加在第一次试加质量位置1的逆转向α角或顺转向d角处,具体方位由试验确定。 三点法 此法与两点法基本相同,只是用同一试加质量M按一定的加质量半 径依次加在互为120°的三个方向上,测得的三 个振动值为A1、A2、A3,作图如下: 以o为圆心,取适当的比例,以A1、A2、 A3为半径画三段弧A、B、C,在弧A、B、C上分 别取a、b、c点,使三点距离彼此相等,连接ab、bc、ca得等边三角形,并作三角形三个角的平分线交于s点,连接os,以s为圆心,sa(sa=sb=sc)为半径作圆,交os于s’点,s’点即平衡重量应加的位置,从图中看出,它在第一次与第二次加试块的位置

风机转子动平衡两点平衡法原理

风机转子动平衡 ——两点平衡计算法原理。 一、两点平衡法操作方法: 1)、测出风机在工作转速下两轴承的振动振幅,若A侧振动大(振动值为Ao),则先平衡A侧,在转子上某一点(作记号1)加上试加质量M,测得振动值为A1,按相同半径将此试加质量M移动180°(作记号2),测得振动值为A2,根据测得的A0、A1、A2值,选适当的比例作图,求出应加平衡质量的位置和大小。 2)、做图法如下图: 作△ODM,使OM:OD:DM=A0:A1/2:A2/2,延长MD至C,使CD=DM,并连接OC;以O为圆心,OC为半径作圆O;延长CO与O圆交于B,延长MO交圆于S。 则OC为试加质量M引起的振动值(按比例放大后)则平衡质量应加在第一次试加质量位置1的逆转向α角或顺转向d角处,具体方位由试验确定。

二、两点平衡计算法: 1、具体操作同上。 2、计算原理如下: 1)、根据平行四边形法则做矢量图如下: 2)、求出试重块M应产生的振幅 在三角形oca中Cosα=(A2+X2-C2)/2AX 在三角形0ad中cos(л-α)=(A2+X2 -B2)/2AX 因为:cosα+cos(л-α)=0 得:(A2+X2-C2)/2AX +(A2+X2 -B2)/2AX=0 (2A2+2X2-C2 -B2)/2AX=0 2A2/2AX+2X2/2AX-C2/2AX -B2/2AX=0 2X2/2AX=C2/2AX +B2/2AX-2A2/2AX 2X2/2AX=(C2 +B2-2A2)/2AX 2X2=C2 +B2-2A2 X2=(C2 +B2-2A2)/2 X=√[(C2 +B2-2A2)/2]

某空压机组不对中故障案例分析

某空压机组不对中故障案例分析 转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。 联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。 不对中故障的特征如下: 1. 转子径向振动出现二倍频,以一倍频和二倍频分量为主,轴系不对中越严重,二倍频所占的比例就越大,多数情况甚至出现二倍频能量超过一倍频能量; 2. 振动信号的原始时域波形呈畸变的正弦波; 3.联轴器两侧相邻两个轴承的油膜压力呈反方向变化,一个油膜压力变大,另一个则变小; 4. 联轴器不对中时,轴向振动较大,振动频率为一倍频,振动幅值和相位稳定; 5.联轴器两侧的轴向振动基本上是呈现出180°反相的; 6. 典型的轴心轨迹为月牙形、香蕉形,严重对中不良时的轴心轨迹可能出现“8”字形;涡动方向为同步正进动; 7. 振动对负荷变化敏感。当负荷改变时,由联轴器传递的扭矩立即发生改变,如果联轴器不对中,则转子的振动状态也立即发生变化。一般振动幅值随着负荷的增加而升高; 8. 轴承不对中包括偏角不对中和标高变化两种情况,轴承不对中时径向振动较大,有可能出现高次谐波,振动不稳定。由于轴承座的热膨胀不均匀而引起轴承的不对中,使转子的振动也要发生变化。但由于热传导的惯性,振动的变化在时间上要比负荷的改变滞后一段时间。 第一部分设备概述 这台机组由汽轮机驱动压缩机,汽轮机额定功率5714KW,额定转速为5874r /min,一阶临界转速为3850r/min。 正常进汽入口压力为8.93MPa,进汽温度为535℃;排汽压力为 3.92MPa,排汽温度为230℃,振动报警值为45μm,联锁停机值为75μm。压缩机形式为3MCL906,水平剖分式,中间由膜片联轴器联接。

《转子动平衡——原理、方法和标准》.pdf

技术讲课教案 主讲人:范经伟 技术职称(或技能等级):高级工所在岗位:锅炉辅机点检员 讲课时间: 2011年 06月24日

培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。 内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占 振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案: 第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、 动不平衡),而且还要知道转子的宽径比及转速决定了采 用单平面、双平面还是多平面进行动平衡操作。同时也要认识到转子是挠性的还是刚性的。

刚性转子与挠性转子 对于刚性转子,任何类型的不平衡问题都可以通过 任选的二个平面得以平衡。 对于挠性转子,当在一个转速下平衡好后,在另一 个转速下又会出现不平衡问题。当一个挠性转子首 先在低于它的70%第一监界转速下,在它的两端平 面内加配重平衡好后,这两个加好的配重将补偿掉 分布在整个转子上的不平衡质量,如果把这个转子 的转速提高到它的第一临界转速的70%以上,这个 转子由于位于转子中心处的不平衡质量所产生的离 心力的作用,而产生变形,如图10所示。由于转子的弯曲或变形,转子的重心会偏离转动中心线,而 产生新的不平衡问题,此时在新的转速下又有必要 在转子两端的平衡面内重新进行动平衡工作,而以 后当转子转速降下来后转子又会进入到不平衡状 态。为了能在一定的转速范围内,确保转子都能处 在平衡的工作状态下,唯一的解决办法是采用多平 面平衡法。 挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变 形不会产生过快的磨损或影响产品的质量,那么

汽轮机转子与构成

汽轮机转子及构成 1转子定义 汽轮机所有转动部件的组合体称为转子(图13)。它主要包括:主轴、叶轮(转鼓)、叶片、联轴器等部件。 图13 转子 转子的作用:汇集各级动叶栅所得到的机械能,并传给发电机。 转子受力分析:传递扭矩、离心力引起的应力、温度不均匀引起的热应力、轴系振动所产生的振动应力。 汽轮机转子在高温蒸汽中高速旋转,不仅要承受汽流的作用力和由叶片、叶轮本身离心力所引起的应力,而且还承受着由温度差所引起的热应力。 此外,当转子不平衡质量过大时,将引起汽轮机的振动,转子要承受轴系振 动所产生的振动应力。因此,转子的工作状况对汽轮机的安全、经济运行有着很大的影响。 2转子的分类 根据汽轮机的分类,转子分为两种:轮式转子、鼓式转子。前者用于冲动式汽轮机,后者用于反动式汽轮机,鼓式转子上的动叶直接安装在转鼓上。 按临界转速是否在运行转速围,分为刚性转子和柔性转子。在启动过程中,刚性转子启动就很方便,不存在跨临界区域,而柔性转子因需要快速的跨临界,故要求用户在实际启动过程中,要充分暖机,为快速跨临界作好准备。 1、轮式转子

轮式转子根据转子结构和制造工艺的不同,可分为:套装转子、整段转子、焊接转子以及组合转子。 1-油封环2-轴封套3-轴4-动叶栅5-叶轮6-平衡槽 图14 套装转子示意图 (1)套装转子 套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套在主轴上,各部件与主轴之间采用过盈配合,并用键传递力矩。主轴加工成阶梯形,中间直径大。 适用性:只适用于中、低参数的汽轮机和高参数汽轮机的中、低压部分,其工作温度一般在400℃以下。不宜用于高温高压汽轮机的高、中压转子。 ①优点:加工方便,材料利用合理,质量容易得到保证。 ②缺点:轮孔处应力较大,转子刚性差,高温下套装处易松动。 (2)整锻转子 叶轮和主轴及其他主要零部件由整体毛坯加工制成,没有热套部件。主轴的 中心通常钻有中心孔,其作用是: ①去掉锻件中残留的杂质及疏松部分; ②用来检查锻件的质量; ③减轻转子的重量。

汽轮机找中心要点

浅谈联轴器找正之我见 摘要:旋转设备在安装或维修后始终存在轴对中的问题,是机组安装检修过程中一个极其重要的环节,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证旋转设备各转子的中心线连成一条连续光滑的曲线,各轴承负荷分配符合设计要求,使旋转设备的静止部件与转子部件基本保持同心,将轴系的扬度调整到设计要求,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。因此在每次检修中必须进行转动机械设备轴中心找正工作,使两轴的中心偏差不超过规定数值。在我厂化工设备(不包括厂家给出冷态与热态的中心数据),其中心标准基本上都在0.05mm(即5丝)以内。现就对联轴器找中心的原理、步骤并对联轴器找中心在实际工作作中常见的一些方法、注意事项以及找正在实践中的应用作简单的介绍。 一、找中心的原理:测量时在一个转子对轮上装上磁性表座,另一个对轮上装上百分表,径向、轴向各一付,(为防止转子窜轴,轴向则需装二个表,相差180度)。连接对轮(一般一到二枚螺丝,拧紧即可),然后一起慢慢地转动转子,每隔90度停下来测量一组数据记下,测出上、下、左、右四处的径向a、轴向s四组数据,将数据记录在下图所示的方格内。 a1 a4 s1 s4 s2 s3 a2 a3

一般圆里面的为轴向数据s,外面的为径向数据a,在测得的数值中,若a1=a2=a3=a4,则表明两对轮同心;若s1=s2=s3=s4,表明两对轮的端面平行。若同时满足上述两个条件,则说明两轴的中心线重合;若所测数据不等,根据计算结果是否在标准范围内,超出标准则需对两轴进行找中心。 二、找中心步骤 1、检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础。 2、连接对轮,保证两对轮距离在标准范围内。 3、用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实。 4、先用直尺初步找正。主要是左右径向,相差太大用百分表测量误差太大,并容易读错数据。 5、安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心; 6、测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原来位置,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位置,并最好调到整位数。大针对零。 7、把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向a、轴向s 四组数据,将数据记录在右图内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位置径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。

轮胎动平衡机操作规程实用版

YF-ED-J7378 可按资料类型定义编号 轮胎动平衡机操作规程实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

轮胎动平衡机操作规程实用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一、安装车轮时,首先将弹簧和选择好的与被平衡车轮钢圈孔相对的锥体装到匹配器上,再将车轮装到锥体上,装好后盖,然后用快速螺母锁紧; 二、操作时,严格按规定程序进行操作,一定要注意保护匹配器及轴部,装卸车轮时,要轻拿轻放; 三、用卡规测量钢圈到机箱的距离,旋转对立的旋钮,使之对应于测量值; 四、打开机箱前右上方的电源开关,当显示板显示GB-10后,可按下“START”键,此时

平衡采样开始,传动部分带动车轮旋转,自动停稳后,其结果显示在显示板上; 五、用手缓慢转动车轮,其不平衡位置字符“∧”或“∨”会移动,如测量显示出现“点陈符”,同时会听到制动的声音,即停止转动车轮,这时垂直于轴线上方的外测钢圈位置,即是外侧应配重的位置,同样方法对于左侧,找出相对应配重的平衡位置,先在失重大的一侧进行平衡; 六、经过几次的配重,当不平衡量小于5克时,显示OK,说明已达满意效果; 七、试验结束时,关掉电源。

简易找风机转子动平衡方法

简易找风机转子动平衡方 作者:罗仁波 时间:2015年10月5日 摘要:引风机振动的原因很多,转子动不平衡是风机振动的原因之一。专业技术书籍中介绍的找风机转子动平衡的方法有多种,但在实际工作中使用这些方法都比较复杂,或需一些高精密仪器检测,但仪器昂贵,切操作困难,因此难以让检修人员所熟练掌握与应用。本人在此介绍一种在以往的长期工作实践中摸索总结得来的简易找风机转子动平衡方法。 论文主题: 风机动平衡的屈指可数。在冶金行业的各类风机中,除尘风机较多,外出做动平衡价格昂贵,且影响环保问题,检修量大,另外新叶轮在加工制造过程中由于各种因素,偶尔也会出现不平衡现象。这些不平衡通过找静平衡的方法是可以解决其中一部分的,而一些经过静平衡校验合格的风机转子在高速旋转时仍会发生试重测振动,这些转子的不平衡就必须通过找动平衡的方法才能加以彻底消除。在实际工作中,能够很好的解决设备各类疑难杂症的人员不是很多,能现场解决 一、常用风机找动平衡的几种方法 现场动平衡方法基本为:两点试重测量法、三点试重测法、闪光测相法、影响系数平衡法、计算法、简易平衡法。具体做法如下:两点法: 测出风机在工作转速下两轴承的振动振幅,若A侧振动大(振动值为Ao),则先平衡A侧,在转子上某一点(作记号1)加上试加质量M,测得振动值为A1,按相同半径将此试加质量M移动180°(作

记号2),测得振动值为A2,根据测得的A0、A1、A2值,选适当的比例作图,求出应加平衡质量的位置和大小。做法下图: 作△ODM,使OM:OD:DM=A0:A1/2:A2/2,延长MD至C,使CD=DM,并连接OC;以O为圆心,OC为半径作圆O;延长CO与O圆交于B,延长MO交圆于S,则OC为试加质量M引起的振动值(按比例放大后的振动值),平衡质量Ma为:Ma=M*OM/OC。由图中量得角∠COS为d,则平衡质量应加在第一次试加质量位置1的逆转向α角或顺转向d角处,具体方位由试验确定。 三点法 此法与两点法基本相同,只是用同一试加质量M按一定的加质量 半径依次加在互为120°的三个方向上,测得 的三个振动值为A1、A2、A3,作图如下: 以o为圆心,取适当的比例,以A1、A2、

汽轮机转子不平衡诊断及治理

汽轮机转子不平衡诊断及治理 发表时间:2018-07-03T10:22:54.897Z 来源:《电力设备》2018年第7期作者:齐莹莹 [导读] 摘要:工业生产是经济的重要组成部分,在生产过程中,汽轮机的装机容量在需求下不断提升。 (哈尔滨汽轮机厂有限责任公司黑龙江省哈尔滨 150046) 摘要:工业生产是经济的重要组成部分,在生产过程中,汽轮机的装机容量在需求下不断提升。由此,也使得汽轮机的结构愈加的复杂,零件也更加精密,因此出现故障的几率和引发故障的原因也不断增加,故障的诊断变得越来越有难度。而汽轮机转子出现不平衡就会极大地影响发电效率,造成发电量不足,所以说对汽轮机转子不平衡的问题的研究以及如何治理显得尤为重要。本文将会简单介绍汽轮机转子不平衡的现象,讲解如何诊断汽轮机转子不平衡状况,对汽轮机转子不平衡治理加以深入地研究分析,希望利用这些分析使得汽轮机转子的工作运营能够稳定,更好地完成工作,促进工业生产的更好发展。 关键词:汽轮机;转子;不平衡;诊断;治理 0引言 汽轮机的重要组成部分之一就是汽轮机转子。在现实问题中,汽轮机转子使得汽轮机发生故障导致运行出状况的主要原因有两个方面:一方面是转子重量偏离重心,另一方面就是转子破损。有资料分析显示,在旋转机械中有超过一半的故障是由转子不平衡引起的,汽轮机也包括在其中。因此,加大对汽轮机转子不平衡的诊断以及原理研究具有十分重要的现实意义,合理的治理方法地提出也刻不容缓。 1 汽轮机转子不平衡的种类 1.1 可汽轮机转子不平衡的种类 1.1.1原始不平衡 指的是在制造过程中就已经发生差错,例如装备达不到标准,用于制造的材料不均匀等,这些都会使汽轮机转子在出厂时因振幅过大而致使平衡精度不符合标准。 1.1.2渐发性不平衡 由于时间较长,汽轮机转子会出现不均匀的污垢沉积现象,灰尘等物质磨损叶片或叶轮,磨蚀转子,都会造成不平衡的幅度越来越大。 1.1.3突发性不平衡 转子零部件由于某种缘故脱落或者叶轮出现卡塞,机组真值突变。 1.2 汽轮机转子不平衡原理 在旋转过程中,汽轮机转子将会产生离心力,离心力的大小可以根据公式F=mew2来进行确定,其中e指的是转子的偏心距。离心力属于交变力,它最终导致了转子产生不平衡的状况。 1.3 汽轮机转子不平衡特征 在不一样的方向方面,汽轮机转子的刚度也不尽相同,严格来说的话,实际转轴的轨迹并不是一个十分标准的圆,而是接近椭圆的形状。不平衡的特征表现主要有以下五个方面: 第一点,转子不平衡振动波形可类似看作是正弦波形。 第二点,如果转子的实际转速低于临近转速,振幅就会以正相关的形式展现,如果转子的转速比临界转速高,那么振幅就会变成一个固定的值,而如果转子转速与临近值十分接近,就会产生共振现象,振幅会在这个时候出现峰值。 第三点,对汽轮机转子的频谱图进行分析,可以发现谐波能量主要集中自基频方面,这就使得实际的频谱图的表现形状展现为“枞树形”。 第四点,转轴的运行轨迹不是一个圆形,准确来说是一个类似椭圆的形状。 第五点,实际上,转子的转速应归为确定值,所以在相位方面不会有较大的波动。 下图展示的汽轮机转子的三维图。 汽轮机转子的三维图 2 汽轮机转子不平衡诊断方法 上面提到,转子不平衡的形式主要有三种,包括原始不平衡、渐变不平衡和突发性不平衡。在这三种不平衡之间不仅存在着许多直接、确定的联系,而且也有着较大的不同。在进行故障诊断的时候,主要从以下两个方面来进行判断 2.1 汽轮机转子振幅变化趋势 在原始不平衡方面,汽轮机转子会显现出清晰的表现特征,而在转子的渐变不平衡方面,当汽轮机还在运行的最初阶段时,不平衡的现象并不会显著地表现出来,只有在伴随着运行时间的推移之后,这样的不平衡现象才会愈加地凸显展示出来。再说转子的突发性不平衡方面,汽轮机转子会出现振动值突变的表现,而在这以后就会展现出比较严重的不平衡的现象。

汽轮机振动故障的原因分析与处理 张大鹏

汽轮机振动故障的原因分析与处理张大鹏 发表时间:2019-09-21T23:40:03.593Z 来源:《基层建设》2019年第19期作者:张大鹏 [导读] 摘要:汽轮发电机组是电厂系统中重要的设备。 青海桥头发电有限责任公司青海西宁 810100 摘要:汽轮发电机组是电厂系统中重要的设备。汽轮机的稳定运行直接关系到电力负荷情况,电力系统的稳定运行,对整个城市的经济发展都会产生直接影响。因此,电力企业为了维持电力系统的稳定运行,提出对汽轮机的养护,在此过程中电力企业也会提升自己在本行业的竞争力度。本文就汽轮机振动故障的原因分析与处理展开探讨。 关键词:汽轮机;振动故障;原因分析;处理措施 引言 汽轮机在电力系统中所起到的作用毋庸置疑,对于居民用电也有着直接影响,工业生产中各项电力器械的运行更是离不开电力系统稳定运行的支持。为例确保电力系统的稳定运行,有必要对汽轮机进行定期的检修与保养。汽轮机振动故障是汽轮机故障中比较常见的故障,也会对汽轮机产生较大影响的故障。本文将针对该故障进行原因分析,并在此基础上提出相应的解决措施。 1、汽轮机振动故障原因 1.1转子质量不平衡 汽轮机振动故障存在多种原因,其中最为常见的为转子质量不平衡。转子质量不平衡在汽轮机振动故障中占得比例高达80%,剩下的20%也不能认为完全与转子质量不平衡没有关系。分析转子质量不平衡的原因可以总结为以下几个方面:①材料的不均匀;②制造、设计和安装过程出现偏差;③使用过程中没有对转子进行定期养护导致材料受损。转子质量不平衡会使转子的惯性主轴与旋转轴线出现一定程度偏离,在这种情况下转动转子,离心力显然难以维持平衡,必然会出产振动的现象,从而使汽轮机发生故障。 1.2转子热弯曲故障 当汽轮机运行时,转子将会因为受热而出现弯曲状态,进而影响转子的平衡。热弯曲是汽轮机机组较为常见的震动故障,而引起转子产生热弯曲的原因也有很多,在汽轮发电机之中,较为常见的热弯曲故障有以下两种:汽轮机转子热弯曲、发电机转子热弯曲。汽轮机转子热弯曲的原因多是因为转子材质的不均匀、冷却系统故障等因素引起的;而发电机转子热弯曲故障却多是由转轴内应力过大、各零件间连接的不均匀等引起。 1.3摩擦振动 在长时间运行状态下,汽轮机转动部分如叶栅、叶轮主轴等会在外力和高温条件等作用下产生一定的热弯曲故障,进而对转动部分原来的稳定状态造成一定的破坏,最终产生摩擦振动故障。在这种情况下,汽轮机振动信号仍保持在工频状态,但是在转子以及其他因素的作用下会经常发生分频、倍频以及高频分量的现象,甚至有时还会有波形削顶这一异常现象的发生。另外,汽轮机转子产生摩擦振动故障情况下,其振动频率和幅值存在波动的基本特征,一旦这种故障存在时间过长,那么将会导致涡动现象的发生。 1.4油膜震荡 油膜震荡是汽轮机转子在高速旋转条件下产生的故障问题,也会影响转子的稳定性。转轴在旋转时是围绕轴线进行的,当转子出现失稳现象后,轴线会围绕平衡点进行涡动,涡动的频率一般为转子转速的1/2。如果涡动的速度达到临界转速时,共振会增大,严重时还会出现比较激烈的振动。油膜震荡还会引起机组振动,当振动的转速增加后,振幅也会大大增强。 1.5气流激振 火力发电厂中的大型汽轮机如果在长时间的超负荷运行之下,将会在短时间内迅速增加轴振动,如果其降负荷低于负荷点,则振动将会在短时间内快速下降。在不平衡的气流冲击影响之下,汽轮机组叶片将会出现气流激振的情况,而如果汽轮机组本身比较大且末级相对比较长,则气体在叶片的膨胀末端极有可能会出现流道混乱的情况,同样会使得汽轮机组产生振动异常的现象。 2、汽轮机振动故障的处理措施 2.1针对转子质量不平衡问题的解决措施 根据对转子质量不平衡的原因分析提出以下解决措施:首先,转子材料选择上应该选择符合相关标准和要求的材料,避免偷工减料等;其次,在转子的设计、制造和安装环节需要请专业的的人员和团队来进行,本单位执行人员必须具有该方面的专业素养;然后是在使用过程中要严格按照相关的操作流程、操作标准和操作要求来进行,并定期进行设备的养护,防止人为原因对设备质量平衡造成不良影响。通过全方位的努力来减少质量不平衡因素对汽轮机振动故障的影响。 2.2针对转子热变形的解决措施 转子热变形引起的振动与汽轮机振幅的增加有关,而引发转子热变形的主要原因是转子温度和蒸汽参数的变化。机组在冷态带负荷阶段,转子的温度升高,释放的材质内应力会引发转子热变形,倍频振动增大,相位也产生相应的变化。当转子接地的问题在火电厂中出现时,我们能够发现显著变形的情况发生在转子端部的线圈上,汽端的端部线圈的变形也较为严重,影响了汽轮机的正常工作。因而需要将护环下绝缘中的滑移层工艺加强,通常是将一层聚四氯乙烯的滑移材料覆盖在转子的表面,以便尽可能的将自由伸缩的阻力在线匝热膨胀的情况下减少。存在于护环下的工艺推拨角度也应当减少,所选择的线匝铜线必须有一定的银含量,其目的是为了将绕组线匝导线中的抗蠕变性能和屈服强度提高。在负荷的升降和机组的调峰工作中速度控制非常重要,不能太快。 2.3针对气流激振的解决措施 气流激振是在发电机运行过程中随时可能产生的现象,汽轮机组受其影响产生振动,要减少气流激振对汽轮机振动的影响,运行人员需要对发电机组的运行负荷情况进行充分了解,通过对高压调速气门的调整来消除气流激振的现象,从而防止汽轮机的异常振动,维持汽轮机的长时间稳定运行,最终提高发电机的工作效率。 2.4摩擦振动故障排查措施 摩擦振动的振动信号会因为转子热运动而产生新的平衡力,但却依然维持了工频为主频的振动信号频率,限制了倍频、高频和分频的产生,并伴随着严重的“削顶”现象,自然会严重的损害汽轮机机体;同时波动持续的时间会因为受到摩擦的影响而被延长,急剧的增大了相应的振幅,使得汽轮机受到了严重的损害;此外,振动摩擦会提升相应的临界速度,也会损害汽轮机机体。当产生严重摩擦的时候,振

相关文档
最新文档