微分计算方法

微分计算方法
微分计算方法

实验报告

课程名称:计算方法

院系:数学科学系

专业班级:数应1001

学号:1031110101

学生姓名:曹信信

指导教师:沈林

开课时间:2012至2013学年第一学期

一、学生撰写要求

按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。

学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。

二、教师评阅与装订要求

1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。

2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。

3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。本学期实验项目全部完成后,给定实验报告综合成绩。

4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩;

5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。装订时统一靠左侧按“两钉三等分”原则装订。

3、

)[QS,FCNTS] =quad(L,- pi/4, pi/4,1.e-4,2)

9 -0.7853981634 4.26596866e-01 0.2506021480

2)ans =

1.0000 0.7500 0.6000 1.2500 4.0625 ans =

数值微分的计算方法

数值微分的计算方法 内容摘要 求解数值微分问题,就是通过测量函数在一些离散点上的值,求得函数的近似导数。本文就所学知识,归纳性地介绍了几种常用的数值微分计算方法。并举例说明计算,实验结果表明了方法的有效性。 关键词 数值微分 Taylor 展开式 Lagrange 插值 三对角矩阵 引言:数值微分即根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。常见的可以用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值,由此也可导出多点数值微分计算公式。当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。 1.Taylor 展开式方法 理论基础:Taylor 展开式 ()()()() ()() ()()()00000002 2! ! n n x x x x f x f x x x f x f x f x n --'''=+-+ ++ + 我们借助Taylor 展开式,可以构造函数()f x 在点0x x =的一阶导数和二阶导数的数值微分公式。取步长0h >则 ),() (2 )()()(0011' '20' 00h x x f h x hf x f h x f +∈++=+ξξ (1) 所以 ),() (2 )()()(0011' '000'h x x f h h x f h x f x f +∈--+= ξξ (2) 同理 ),() (2 )()()(0022' '20' 00x h x f h x hf x f h x f -∈+-=-ξξ (3) ),() (2 )()()(0022' '000'x h x f h h h x f x f x f -∈+--= ξξ (4) 式(2)和式(4)是计算()' 0f x 的数值微分公式,其截断误差为()O h ,为提高精度,将 Taylor 展开式多写几项 ),() (24 )(6)(2)()()(0011) 4(40'''30''20' 00h x x f h x f h x f h x hf x f h x f +∈++++=+ξξ ),() (24 )(6)(2)()()(0022) 4(40'''30''20' 00x h x f h x f h x f h x hf x f h x f -∈+-+-=-ξξ 两式相减得 )()(6 2)()()(40' ''2000' h O x f h h h x f h x f x f +---+= (5) 上式为计算)(0'x f 的微分公式,其截断误差为O(h 2 ),比式(2)和(4)精度高。 两式相加,如果],[)(00) 4(h x h x C x f +-∈,则有

081数值计算方法—常微分方程(组)

科学计算—理论、方法 及其基于MATLAB 的程序实现与分析 微分方程(组)数值解法 §1 常微分方程初值问题的数值解法 微分方程(组)是科学研究和工程应用中最常用的数学模型之一。如揭示质点运动规律的Newton 第二定律: ()()()?????'='==0 00022x t x x t x t F dt x d m (1) 和刻画回路电流或电压变化规律的基尔霍夫回路定律等,但是,只有一些简单的和特殊的常微分方程及常微分方程组,可以求得用公式给出的所谓“解析解”或“公式解”,如一阶线性微分方程的初值问题: () ()0 0y y t f ay dt dy =+= (2) 的解为: ()()()τττd f e y e t y t t a at ?-+=00 (3) 但是,绝大多数在实际中遇到的常微分方程和常微分方程组得不到“解析解”,因此,基于如下的事实:

1、绝大多数的常微分方程和常微分方程组得不到(有限形式的)解析解; 2、实际应用中往往只需要知道常微分方程(组)的解在(人们所关心的)某些点处的函数值(可以是满足一定精度要求的近似值); 如果只需要常微分方程(组)的解在某些点处的函数值,则没有必要非得通过求得公式解,然后再计算出函数值不可,事实上,我们可以采用下面将介绍的常微分方程(组)的初值问题的数值解法,就可以达到这一目的。 一般的一阶常微分方程(组)的初值问题是指如下的一阶常微分方程(组)的定解问题: ()()0 00,y t y t t t y t F dt dy f =≤≤= (7) 其中 ()()()()???? ?? ? ??=t y t y t y t y n 21 (8) ()()()()???? ?? ? ??=y t f y t f y t f y t F n ,,,,21 (9) 常微分方程(组)的初值问题通常是对一动态过程(动态系统、动力系统)演化规律的描述,求解常微分方程(组)的初值问题就是要了解和掌握动态过程演化规律。 §1.1 常微分方程(组)的Cauch 问题数值解法概论

微积分的基本运算

第4章微积分的基本运算 本章学习的主要目的: 1.复习高等数学中有关函数极限、导数、不定积分、定积分、二重积分、级数、方程近似求解、常微分方程求解的相关知识. 2.通过作图和计算加深对数学概念:极限、导数、积分的理解. 3.学会用MatLab软件进行有关函数极限、导数、不定积分、级数、常微分方程求解的符号运算; 4.了解数值积分理论,学会用MatLab软件进行数值积分;会用级数进行近似计算. 1 有关函数极限计算的MatLab命令 (1)limit(F,x,a) 执行后返回函数F在符号变量x趋于a的极限 (2)limit(F,a) 执行后返回函数F在符号变量findsym(F)趋于a的极限 (3)limit(F) 执行后返回函数F在符号变量findsym(F)趋于0的极限 52

53 (4)limit(F,x,a,’left’) 执行后返回函数F 在符号变量x 趋于a 的左极限 (5)limit(F,x,a,’right’) 执行后返回函数F 在符号变量x 趋于a 的右极限 注:使用命令limit 前,要用syms 做相应符号变量说明. 例7 求下列极限 (1)42 20 x cos lim x e x x -→- 在MatLab 的命令窗口输入: syms x limit((cos(x)-exp(-x^2/2))/x^4,x,0) 运行结果为 ans =-1/12 理论上用洛必达法则或泰勒公式计算该极限: 方法1 =-+-=---=-- - →- →-→2 2 222 20 x 3 22 x 4 2 20 x 12cos lim 4) (sin lim cos lim x x e e x x x e x x e x x x x x 12112112)2(2 lim 1211cos lim 222 220x 2 2 22220 x -=--+=--++-- →- - →x x x e x x x x x e e x 方法2 4 42 224420x 4 2 20 x ))(2) 2()2(1()(!421lim cos lim x x o x x x o x x x e x x +-+---++-=-→- →

积分、微分、比例运算电路

模拟电路课程设计报告 题目:积分、微分、比例运算电路 一、设计任务与要求 ①设计一个可以同时实现积分、微分和比例功能的运算电路。 ②用开关控制也可单独实现积分、微分或比例功能 ③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。此电路设计要求同时实现比例、积分、微分运算等功能。即在一个电路中利用开关或其它方法实现这三个功能。

方案一: 用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。 缺点:开关线路太多,易产生接触电阻,增大误差。此运算电路结构复杂,所需元器件多,制作难度大,成本较高。并且由于用同一个信号源且所用频率不一样,因此难以调节。 流程图如下: 图1 方案二: 用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。 优点:电路简单,所需成本较低。 电路图如下: 积分运算电路 微分运算电路 比例运算电路 比例求和运算电路

图2 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 其流程图为: 图3 直流电源电路图如下: 电源变 压器 整流电路 滤波电路 稳压电路

V1220 Vrms 50 Hz 0?? U11_AMP T1 7.32 1D21N4007 D3 1N4007D4 1N4007 C13.3mF C23.3mF C3220nF C4220nF C5470nF C6470nF C7220uF C8220uF U2LM7812CT LINE VREG COMMON VOLTAGE U3LM7912CT LINE VREG COMMON VOLTAGE D51N4007D61N4007 LED2 LED1 R11k|?R21k|?23 4 5 D1 1N400715 16 6 7 14 17 图4 原理分析: (1)电源变压器: 由于要产生±12V 的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V 的变压器。 (2)整流电路: 其电路图如下: 图5 ①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,

郑州大学研究生课程数值分析复习---第八章 常微分方程数值解法

郑州大学研究生课程(2012-2013学年第一学期)数值分析 Numerical Analysis 习题课 第八章常微分方程数值解法

待求解的问题:一阶常微分方程的初值问题/* Initial-Value Problem */: ?????=∈=0 )(] ,[),(y a y b a x y x f dx dy 解的存在唯一性(“常微分方程”理论):只要f (x , y ) 在[a , b ] ×R 1 上连续,且关于y 满足Lipschitz 条件,即存在与x , y 无关的常数L 使 对任意定义在[a , b ] 上的y 1(x ) 和y 2(x ) 都成立,则上述IVP 存在唯一解。 1212|(,)(,)||| f x y f x y L y y ?≤?一、要点回顾

§8.2 欧拉(Euler)法 通常取(常数),则Euler 法的计算格式 h h x x i i i ==?+1?? ?=+=+) (),(001x y y y x hf y y i i i i i =0,1,…,n ( 8.2 )

§8.2 欧拉(Euler)法(1) 用差商近似导数 )) (,()()()()(1n n n n n n x y x hf x y x y h x y x y +=′+≈+?? ?=+=+) (),(01a y y y x hf y y n n n n 差分方程初值问题向前Euler 方法h x y x y x y n n n ) ()()(1?≈ ′+)) (,() ()(1n n n n x y x f h x y x y ≈?+))(,()(n n n x y x f x y =′

数值分析_第五章_常微分方程数值解法

图5畅2 令珔h =h λ,则y n +1=1+珔 h +12珔h 2 +16珔h 3+124 珔 h 4y n .由此可知,绝对稳定性区域在珔h =h λ复平面上满足 |1+珔 h +12珔h 2+16珔h 3+124珔h 4 |≤1的区域,也就是由曲线 1+珔h + 12珔h 2+16珔h 3+124 珔h 4=e i θ 所围成的区域.如图5畅2所示. 例22 用Euler 法求解 y ′=-5y +x ,y (x 0)=y 0,  x 0≤x ≤X . 从绝对稳定性考虑,对步长h 有何限制? 解 对于模型方程y ′=λy (λ<0为实数)这里λ=抄f 抄y =-5.由 |1+h λ|=|1-5h |<1 得到对h 的限制为:0<h <0畅4. 四、习题 1畅取步长h =0畅2,用Euler 法解初值问题 y ′=-y -x y 2 , y (0)= 1.  (0≤x ≤0畅6), 2畅用梯形公式解初值问题 y ′=8-3y ,  (1≤x ≤2),

取步长h=0畅2,小数点后至少保留5位. 3畅用改进的Euler公式计算初值问题 y′=1x y-1x y2, y(1)=0畅5,  1<x<1畅5, 取步长h=0畅1,并与精确解y(x)= x 1+x比较. 4畅写出用梯形格式的迭代算法求解初值问题 y′+y=0, y(0)=1 的计算公式,取步长h=0畅1,并求y(0畅2)的近似值,要求迭代误差不超过10-5. 5畅写出用四阶经典Runge唱Kutta法求解初值问题 y′=8-3y, y(0)=2 的计算公式,取步长h=0畅2,并计算y(0畅4)的近似值,小数点后至少保留4位. 6畅证明公式 y n+1=y n+h9(2K1+3K2+4K3). K1=f(x n,y n), K2=f x n+h2,y n+h2K1, K3=f x n+34h,y n+34h K2, 至少是三阶方法. 7畅试构造形如 y n+1=α(y n+y n-1)+h(β0f n+β1f n-1)

常用微分公式

(1)dx dx =nx n -1 ,n ∈N 。 (2)d x dx n x n N n n =∈-11 1,。 (3)dc dx =0,其中c 为常数。(4)(sin x )/=cos x (5)(cos x )/=-sin x 另一种表示:① (x n )/=nx n -1 ② /)(n x =1n 1 1-x ③ (c )/=0 证明: (2)设a 为f (x )=n x 定义域中的任意点, 则f /(a )=a x →lim f (x )-f (a ) x -a =a x →lim a x a x n n --=a x →lim ] )(....)())[((121---++?+--n n n n n n n n n n n a a x x a x a x =1) (1-n n a n =1n (n a -1)=1n (1 1-a ) (4)设a 为任意实数,f (x )=sin x f (x )-f (a )x -a = sin x -sin a x -a = a x a x a x -+-2cos 2sin 2 计算f /(a )= a x →lim f (x )-f (a )x -a =a x →lim ( a x a x a x -+-2cos 2sin 2)=cos a 。 (1)(3)(5)自证 (1)f (x )与g (x )为可微分的函数。?f (x )+g (x )为可微分的函数。 且d dx (f (x )+g (x ))= d dx (f (x ))+ d dx (g (x ))成立。 另一种表示:(f (x )+g (x ))/=f /(x )+g /(x ) 证明:令h (x )=f (x )+g (x ),设a 为h (x )定义域中的任一点 h /(a )=a x →lim h (x )-h (a )x -a =a x →lim a x a g a f x g x f ---+) ()()()( =a x →lim (f (x )-f (a )x -a + g (x )-g (a )x -a )=a x →lim (f (x )-f (a )x -a )+a x →lim (g (x )-g (a )x -a ) =f /(a )+g /(a ) 例:求=+)(35x x dx d ? 推论:dx d (f 1(x )+f 2(x )+...+f n (x )) = dx x df dx x df dx x df n )() ()(21+???++

数值积分与微分方法

数值积分与微分 摘要 本文首先列举了一些常用的数值求积方法,一是插值型求积公式,以N e w t o n C o t e s -公式为代表,并分析了复合型的Newton Cotes -公式;另一个是Gauss Ledendre -求积公式,并给出几个常用的Gauss Ledendre -求积公式。其次,本文对数值微分方法进行分析,主要是差分型数值微分和插值型数值微分,都给出了几种常用的微分方法。然后,本文比较了数值积分与微分的关系,发现数值积分与微分都与插值或拟合密不可分。 本文在每个方法时都分析了误差余项,并且在最后都给出了MATLAB 的调用程序。 关键词:插值型积分Gauss Ledendre -差分数值微分插值型数值微分 MATLAB

一、常用的积分方法 计算积分时,根据Newton Leibniz -公式, ()()()b a f x dx F b F a =-? 但如果碰到以下几种情况: 1)被积函数以一组数据形式表示; 2)被积函数过于特殊或者原函数无法用初等函数表示 3)原函数十分复杂难以计算 这些现象中,Newton Leibniz -公式很难发挥作用,只能建立积分的近似计算方法,数值积分是常用的近似计算的方法。 1.1 插值型积分公式 积分中的一个常用方法是利用插值多项式来构造数值求积公式,具体的步骤如下: 在积分区间上[,]a b 上取一组节点:01201,,,,()n n x x x x a x x x b ≤<<≤ 。已知()k x f 的函数值,作()x f 的n 次插值多项式,则 (1) ()10()()()()() (1)!n n x n n k k n k f f L x R x f x l x w x n ++==+=++∑ 其中,()k l x 为n 次插值基函数,则得 (1)+10()(()())1 =[()]()[()](1)!b b n n a a n b b n k k n a a k f x dx L x R x dx l x dx f x f x w x dx n ξ+==+++? ?∑??() 公式写成一般形式: ()()[]n b k k n a k f x dx A f x R f ==+∑? 其中, 01100110 ()()()() ()()()()()b b k k k k a a k k k k k k x x x x x x x x A l x dx dx x x x x x x x x -+-+----==----?? (1)+11 [][()](1)!b n n n a R f f x w x dx n ξ+=+?() 显然,当被积函数f 为次数小于等于n 的多项式时,其相应的插值型求积公式为准确公式,即: ()() n b k k a k f x dx A f x ==∑? 1.1.1 求积公式的代数精度 定义:求积公式对于任何次数不大于m 的代数多项式()f x 均精确成立,而对于 1()m f x x +=不精确成立,则称求积公式具有m 次代数精度。 定理:含有1n +个节点(0,1,,)k x k n = 的插值型求积公式的代数精度至少为n 。

偏微分方程数值解法

《偏微分方程数值解法》 课程设计 题目: 六点对称差分格式解热传导方程的初边 值问题 姓名: 王晓霜 学院: 理学院 专业: 信息与计算科学 班级: 0911012 学号: 091101218 指导老师:翟方曼 2012年12月14

日 一、题目 用六点对称差分格式计算如下热传导方程的初边值问题 222122,01,01(,0),01 (0,),(1,),01x t t u u x t t x u x e x u t e u t e t +???=<<<≤?????=≤≤??==≤≤??? 已知其精确解为 2(,)x t u x t e += 二、理论 1.考虑的问题 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauch y 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数,

数值微分与数值积分练习题

第五章 数值微分与数值积分 一.分别用向前差商,向后差商和中心差商公式计算()f x =2x =的导数的近似值。其中,步长0.1h =。 【详解】 00()()(20.1)(2)=0.349 2410.10.1 f x h f x f f h +?+?===向前差商 00()()(2)(20.1)=0.358 0870.10.1 f x f x h f f h ????===向后差商 00()()(20.1)(20.1)= 0.353 664220.10.2f x h f x h f f h +??+??===×中心差商 二.已知数据 x 2.5 2.55 2.60 2.65 2.70 ()f x 1.58114 1.59687 2 1.62788 1.64317 求( 2.50),(2.60),(2.70)f f f ′′′的近似值。 【详解】 0.05h =,按照三点公式 3(2.50)4(2.55)(2.60)3 1.581144 1.59687 1.61245(2.50)0.316 10020.050.1 f f f f ?+??×+×?′≈==×(2.65)(2.55)1.627881.59687(2.60)0.310 10020.050.1 f f f ??′≈==× (2.60)4(2.65)3(2.70)241.6278831.64317(2.70) 4.179 90020.050.1 f f f f ?+?×+×′≈==× 三.已知如下数据 x 3 4 5 6 7 8 ()f x 2.937 6 6.963 213.600 0 23.500 8 37.318 4 55.705 6

常微分方程数值解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。[教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步 推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截

计算方法6_微分方程

习题6 6.1 试用三种方法导出线性二步方法 122+++=n n n hf y y 6.2 用Taylor 展开法求三步四阶方法类,并确定三步四阶显式方法. 6.3 形如 ∑=++=k i k n k j n j f h y 0βα 的k 阶方法称为Gear 方法,试确定一个三步Gear 方法,并给出其截断误差主项。 6.4 试用显式Euler 法及改进的Euler 法 )],(),([2 11n n n n n n n hf y t f y t f h y y +++=++ 6.5 给出线性多步法 ])13()3[(4 )1(212n n n n n f f h y y y +++=--++++αααα 为零稳定的条件,并证明该方法为零稳定时是二阶收敛的. 6.6 给出题(6.5)题中1=α时的公式的绝对稳定域. 6.7 指出Heun 方法 0 0 0 0 1/3 1/3 0 0 2/3 0 2/3 0 1/4 0 3/4 的相容阶,并给出由该方法以步长h 计算初值问题(6.45)的步骤. 6.8 试述刚性问题的基本特征,并给出s 级Runge-Kutta 方法为A -稳定的条件. 6.9 设有???=='00 )(),(y x y y x f y ,试构造形如 )()(11011--++++=n n n n n f f h y y y ββα 的二阶方法,并推导其局部截断误差首项。

6.10设有常微分方程初值问题???=='00 )(),(y x y y x f y 的单步法)],(2),([3 111+++++=n n n n n n y x f y x f h y y ,证明该方法是无条件稳定的。

数值分析第四章数值积分与数值微分习题答案汇编

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h A h -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4 ()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h A h -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值积分与数值微分 编程计算

解:卫星轨道的示意图如右上图所示,,a b 分别是椭圆轨道的长半轴和短半轴,地球位于椭圆的一个焦点处,焦距为c ,地球半径为r ,近地点和远地点与地球表面的距离分别是1s 和2s . 由图中可知,上述数据存在如下关系: 12122,a s s r c a s r =++=-- 由椭圆性质 b =,将12,,s s r 的数据代入以上各式可得7782.5a km =,7721.5b km =. 椭圆的参数方程为: c o s ,s i n x a t y b t == , (02)t π≤<

根据计算参数方程弧长的公式,椭圆长度可表为如下积分: /2 22221/20 4(sin cos )L a t b t dt π=+? 由于该积分无法求得解析解,下面我们编写MATLAB 程序对其进行数值求解。 s1=439;s2=2384;r=6371; a=(s1+s2)/2+r a = 7.7825e+003 >> c=a-s1-r; >> b=sqrt(a^2-c^2) b = 7.7215e+003 y=inline('sqrt(7782.5^2*sin(t).^2+7721.5^2*cos(t).^2)'); %建立积分内联函数 >> t=0:pi/10:pi/2; y1=y(t); format long >> L1=4*trapz(t,y1) %梯形积分 L1 = 4.870744099902405e+004 >> L2=4*quad(y,0,pi/2,1e-6) %辛普森积分 L2 = 4.870744099903280e+004 求解结果显示:两种方法计算求得的积分结果相当接近,轨道长度约为:4 4.8710km ?.

计算方法--常微分方程求解实验

实验五 常微分方程求解实验 一、 实验目的 通过本实验学会对给定初值我呢他,用欧拉法、改进欧拉法、四阶龙格-库塔法求数值解和误差,并比较优缺点.对给定刚性微分方程,求其数值解,并与精确解比较,分析计算结果. 二、 实验题目 1. 解初值问题各种方法比较 实验题目:给定初值问题 ?? ???=≤<+=,0)1(, 21,e d d y x x x y x y x 精确解为)e -e (x x y =,按 (1) 欧拉法,步长;1.0,025.0==h h (2) 改进欧拉法,步长;01.0,05.0==h h (3) 四阶标准龙格-库塔法,步长;1.0=h 求在节点)10,,2,1(1.01 =+=k k x k 处的数值解及误差,比较各方法的优缺点. 2. 刚性方程计算 实验题目:给定刚性微分方程 ?? ???=≤<-+-=-,2)0(, 50,600e 8.1199600d d 1.0y x y x y x 其精确解为12e e )(-0.1x -600x -+=x y .任选取一显示方法,取不同的步长求解,并分析计算 结果. 三、 实验原理 1.欧拉格式 由数值微分的向前差商公式可以解决初值问题(6.1)()()? ??=≤≤=0 0', ,,y x y b x a y x f y 中的导数的 数值计算问题: ()()() ()() ,'1h x y x y h x y h x y x y n n n n -= -+≈ + 由此可得 ()()().'1n n n x hy x y x y +≈+

(6.1)实际上给出 ()()()()()().,','n n n x y x f x y x y x f x y =?= 于是有 ()()()().,1n n n n x y x hf x y x y +≈+ 再由()()11,++≈≈n n n n x y y x y y 得 ().,1,0,,111 =+=+++n y x hf y y n n n n (6.2) 递推公式(6.2)称为欧拉格式。 2.改进欧拉格式 先对欧拉格式(6.2)对1+n y 进行计算,并将结果记为1+n y ,再代入(6.7) ()()[]111,,2 +++++ =n n n n n n y x f y x f h y y 可得“预报-校正”形式的差分格式: ()()()[] ?? ? ? ?++=+=++++.,,2,,1111n n n n n n n n n n y x f y x f h y y y x hf y y 公式(6.8)称为改进欧拉格式。 3.四阶经典龙格-库塔格式: ()()()?? ?? ? ? ??? ???? +=???? ??+=???? ??+==++++=++++.,,2,,2,,,,226 31422131212143211 hK y x f K K h y x f K K h y x f K y x f K K K K K h y y n n n n n n n n n n 四、 实验内容 1. 解初值问题各种方法比较 实验程序: function shiyan51 h=0.1; dyfun=inline('y./x+x*exp(x)'); [x,y1]=maeuler1(dyfun,[1,2],0,h); [x,y2]=maeuler(dyfun,[1,2],0,h); [x,y3]=marunge4(dyfun,[1,2],0,h); y=x.*(exp(x)-exp(1));

常微分计算题及解答

常微分计算题及解答 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

计 算 题(每题10分) 1、求解微分方程2 '22x y xy xe -+=。 2、试用逐次逼近法求方程 2y x dx dy +=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解 4、求方程组d x d t y d y d t x y ==+?????2的通解 5、求解微分方程24y xy x '+= 6、试用逐次逼近法求方程 2y x dx dy -=通过点(1,0)的第二次近似解。 7、求解方程''+-=-y y y e x '22的通解 8、求方程组dx dt x y dy dt x y =+=+?????234的通解 9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程 2y x dx dy -=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解 12、求方程组dx dt x y dy dt x y =+=+?????2332的通解 13、求解微分方程()x x y y e '-= 14、试用逐次逼近法求方程 22x y dx dy +=通过点(0,0)的第三次逼近解. 15、求解方程22x y y y e -'''+-=-的通解 16、求解方程 x e y y y -=-+''32 的通解 17、求方程组?????-+=-+=y x dt dy dt dx x y dt dy dt dx 243452的通解18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程 2dy x y dx =-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ????.

数值微分计算方法实验课件

数值微分计算方法实验 郑发进 2012042020022 【摘要】数值微分(numerical differentiation )根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。通常用差商代替微商,或者用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值。例如一些常用的数值微分公式(如两点公式、三点公式等)就是在等距步长情形下用插值多项式的导数作为近似值的。此外,还可以采用待定系数法建立各阶导数的数值微分公式,并且用外推技术来提高所求近似值的精确度。当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。如果离散点上的数据有不容忽视的随机误差,应该用曲线拟合代替函数插值,然后用拟合曲线的导数作为所求导数的近似值,这种做法可以起到减少随机误差的作用。数值微分公式还是微分方程数值解法的重要依据。 关 键 词 中心差分公式;理查森外推法;牛顿多项式微分; 一、实验目的 1.通过本次实验熟悉并掌握各种数值微分算法。 2.掌握如何通过程序设计实现数值微分算法,从而更好地解决实际中的问题。 二、实验原理 1. 精度为2()O h 的中心差分公式: 设[]3,f C a b ∈,且[],,,x h x x h a b -+∈,则 ()()() '2f x h f x h f x h +--≈ 而且存在数()[],c c x a b =∈,满足

()()() ()',2trunc f x h f x h f x E f h h +--≈ + 其中 ()()() ()322,6 trunc h f c E f h O h =-= 项(),trunc E f h 称为截断误差。 2. 精度为4()O h 的中心差分公式: 设[]5,f C a b ∈,且[]2,,,,2,x h x h x x h x h a b --++∈,则 ()()() '2f x h f x h f x h +--≈ 而且存在数()[],c c x a b =∈,满足 ()()()()()2882'12f x h f x h f x h f x h f x h -+++--+-≈ 其中 ()()() ()5 44,30 trunc h f c E f h O h == 项(),trunc E f h 称为截断误差。 3.理查森外推法: 利用低阶公式推出高阶求解数值微分的公式,定理如下: 设()0'f x 的两个精度为2()k O h 的近似值分别为()1k D h -和()12k D h -,而且 它们满足 ()()2220112'k k k f x D h c h c h +-=+++ 和 ()()21220112'244k k k k k f x D h c h c h ++-=+++ 这样可得到改进的近似值表达式

常微分方程、积分与微分的运算,答案

实验4 常微分方程、积分与微分的运算,答案 1、用solve 函数求下列非线性方程组的解 ?????=-+=-+0 2)sin(0 2)cos(y x xe y ye x [x,y]=solve('cos(x)+y*exp(x)-2=0','sin(y)+x*exp(y)-2=0') x = .80871239676291248869235921095744 y = .58332318056058057050322825668096 2、对于二阶微分方程)sin(22t y y y =+'+'' (1)利用ode45方法,求当1)0(=y ,1)0(-='y 在300≤≤t 时y 的数值图解。 (2)利用dsolve 函数求当1)0(=y ,1)0(-='y 时的特解y ,画出300≤≤t 时y 的曲线,并与(1)中y 的数值图解作比较。 (1) 建立ff.m 函数 function dx=ff(t,x) dx=[x(2);-2*x(2)-x(1)+2*sin(t)]; 建立调用函数 x0=[0 1]; [t,x]=ode45('ff',[0,30],x0) plot(t,x(:,1)) (2)

求y 的解: >> y=dsolve('D2y+2*Dy+y=2*sin(t)','y(0)=0','Dy(0)=1','t') y = exp(-t)+2*exp(-t)*t-cos(t) 作曲线: >> t=0:0.1:30; >> y=exp(-t)+2*exp(-t).*t-cos(t); >> plot(t,y) 3、分别用Simpson 法、 Newton-Cotes 法、梯形法trapz 以及符号积分函数int 计算定积分?π 0sin dx x 。 先建立ff.m 函数 function f=ff(x) f=sin(x); Simpson 法: 在主窗口调用: [S,n]=quad('ff',0,pi) S = 2.0000 n = 33 Newton-Cotes 法: [S,n]=quad8('ff',0,pi) S = 2.0000 n = 18

数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程

Matlab 应用 使用Euler 和Rungkutta 方法解臂状摆的能量方程 背景 单摆是常见的物理模型,为了得到摆角θ的关于时间的函数,来描述单摆运动。由角动量定理我们知道 ε J M = 化简得到 0sin 22 =+θθl g dt d 在一般的应用和计算中,只考虑摆角在5度以内的小摆动,因为可以吧简化为θ,这样比较容易解。实际上这是一个解二阶常微分方程的问题。

在这里的单摆是一种特别的单摆,具有均匀的质量M 分布在长为2的臂状摆上, 使用能量法建立方程 W T = h mg ?=2J 2 1ω 化简得到 θθcos 35499.722=dt d 重力加速度取9.80665 1使用欧拉法 令dx dy z =,这样降阶就把二阶常微分方程转化为一阶微分方程组,再利用向前Euler 方法数值求解。 y(i+1)=y(i)+h*z(i); z(i+1)=z(i)+h*7.35499*cos(y(i)); y(0)=0 z(0)=0 精度随着h 的减小而更高,因为向前欧拉方法的整体截断误差与h 同阶,(因为是用了泰勒公式)所以欧拉方法的稳定区域并不大。

2.RK4-四阶龙格库塔方法 使用四级四阶经典显式Rungkutta公式 稳定性很好,RK4法是四阶方法,每步的误差是h5阶,而总积累误差为h4阶。所以比欧 拉稳定。

运行第三个程序:在一幅图中显示欧拉法和RK4法,随着截断误差的积累,欧拉法产生了 较大的误差 h=0.01 h=0.0001,仍然是开始较为稳定,逐渐误差变大

总结:RK4是很好的方法,很稳定,而且四阶是很常用的方法,因为到五阶的时候精度并没有相应提升。通过这两种方法计算出角度峰值y=3.141593,周期是1.777510。

相关文档
最新文档