第十四章_整式的乘法与因式分解_复习课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中a, b既可以是数, 也可以是代数式.
即两个数的和与这两个数的差的积,等于这两个 数的平方差。这个公式叫(乘法的)平方差公式
说明:平方差公式是根据多项式乘以多 项式得到的,它是两个数的和与同样的 两个数的差的积的形式。
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
法则:多项式除以单项式,先把这个多项 式的每一项除以这个单项式,再把所得的商 相加。
(1)已知a 2

1 a2
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 , 则z应为多少?
x x x (4) 2002 =
1999 3
·
(5)
(
1 7
)1997
·7
1998
=
7
(6) (-abc )2·(-ab) =-a3b3c2
4.单项式与单项式相乘的法则:
单项式与单项式相乘,把它们 的系数、相同字母分别相乘,对于 只在一个单项式里含有的字母,则 连同它的指数作为积的一个因式。
5 .多项式与多项式相乘:
(4) 1 x3m y2n x2m1y2 3 x2m1y3) (0.5x2m1y2 )
3
4
定义 把一个多项式化成几个整式的积的形式,象
这样的式子变形叫做把这个多项式因式分解
或分解因式。

与整式乘法的关系: 互为逆过程,互逆关系
分解因式 方法

公 二次三项型乘法公式 式
(x+p)(x+q)= x2+(p+q)x+pq
注意:
• (1)(a-b)=-(b-a) • (2 )(a-b)2=(b-a)2 • (3) (-a-b)2=(a+b)2 • (4) (a-b)3=-(b-a)3
口答练习一
(1) (x-2y)(x+2y) =x2-4y 2
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4)4 a44 a8,[(b2)3]4 b234 b24
(x2)2n1 x4n2,(a4)m (am )4 (a2m )2
3、积的乘方
法则:积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘。 符号表示:
a a a 数学符号表示:
m
n
mn
(其中m、n为正整数)
练习:判断下列各式是否正确。
a3 a3 2a3,b4 b4 b8, m2 m2 2m2
(x)3 (x)2 (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
法则:两数和(或差)的平方,等于它们的 平方和,加上(或减去)它们的积的2倍。
平方差公式

(a+b)(a-b) = a2-b2
三 完全平方公式
) 乘
(a+b)2 = a2+2ab +b2
(ab)n anbn , (其中n为正整数), (abc)n anbncn (其中n为正整数)
练习:计算下列各式。
(2xyz)4 , ( 1 a2b)3, (2xy2 )3, (a3b2 )3 2
口答练习
(1) x3·x2= x5 (3) x ·(x2 )3= x7
(2) (a6 )2+(a4)3= 2a12
(一)整式的乘法
1、同底数幂的乘法 3、积的乘方 5、单项式乘以多项式 7、平方差公式
2、幂的乘方 4、单项式乘以单项式 6、多项式乘以多项式 8、完全平方公式
(二)整式的除法
1、同底数幂相除
2、单项式除以单项式 3、多项式除以单项式
知你 识回
忆 起 了 吗 ? 就 这 些
(二)整式的乘法
1、同底数幂的乘法 法则:同底数幂相乘,底数不变,指数相加。
B 分别为( )
(A)1,-1(B)1,1(C)-1,1 (D)0,0
解:因为 2a2-2ab +b2-2a+1=0 所以 a2-2ab +b2+a2-2a+1=0 (a -b)2+(a-1)2=0 (a -b)2 =0 且 (a-1)2=0
所以 a=1,b=1
(四).添括号的法则:
• 添括号时,如果括号前面是正号,括 到括号里的各项都不变符号;如果括 号前面是负号,括到括号里的各项都 要改变符号。
(五).整式的除法:
(1)、同底数幂的除法
一般地,我们有
a a a m n
mn (其中a≠0,m、n为
正整数,并且m>n )
即:同底数幂相除,底数不变,指数相减。
a0 1(a 0)
即任何不等于0的数的0次幂都等于1
(2)、单项式除以单项式
法则:单项式除以单项式,把它们的系数、同 底数幂分别相除作为商的一个因式,对于只在被 除式里含有的字母,则连同它的指数作为商的一 个因式。 (3)、多项式除以单项式
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
(2)6(a b)5 [1 (a b)2] 3
(3)(5x2 y3 4x3 y2 6x) (6x)
(2)
Байду номын сангаас
(x-
1y)(
2
x-
1 2
y
) =x2-xy +
1 4
y2
A (3)如果a+
1
a
=3,则a2+
1
a2
=(
)
(A) 7 (B) 9 (C) 10 (D) 11
解:
因为
a+
1
a
=3
所以
(a+
1
a
2
)
=9
所以
a2 + 2 +
1
a2
=9

a2+
1
a2
=7
(4) 若2a2-2ab +b2-2a+1=0, 则a、b
( a+b)(m+n) = a(m+n)+b(m+n)
=am+an+bm+bn
(a+b)( m+n)=am+an+bm+bn
• 法则: 多项式与多项式相乘,先用一个多项 式的每一项乘另一个多项式的每一项,再把 所得的积相加.
(三).乘法公式:
(1)、平方差公式
一般的,我们有:
(a b)(a b) a2 b2
相关文档
最新文档