基因敲除新技术Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity

基因敲除新技术Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity
基因敲除新技术Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity

Double Nicking by RNA-Guided CRISPR Cas9for Enhanced

Genome Editing Speci?city

F.Ann Ran,1,2,3,4,5,11Patrick D.Hsu,1,2,3,4,5,11Chie-Yu Lin,1,2,3,4,6Jonathan S.Gootenberg,1,2,3,4

Silvana Konermann,1,2,3,4Alexandro E.Trevino,1David A.Scott,1,2,3,4Azusa Inoue,7,8,9,10Shogo Matoba,7,8,9,10 Yi Zhang,7,8,9,10and Feng Zhang1,2,3,4,*

1Broad Institute of MIT and Harvard,7Cambridge Center,Cambridge,MA02142,USA

2McGovern Institute for Brain Research

3Department of Brain and Cognitive Sciences

4Department of Biological Engineering

Massachusetts Institute of Technology,Cambridge,MA02139,USA

5Department of Molecular and Cellular Biology,Harvard University,Cambridge,MA02138,USA

6Harvard/MIT Division of Health Sciences and Technology

7Howard Hughes Medical Institute

8Program in Cellular and Molecular Medicine

9Department of Genetics

10Harvard Stem Cell Institute

Harvard Medical School,Boston,MA02115,USA

11These authors contributed equally to this work

*Correspondence:zhang@

/10.1016/j.cell.2013.08.021

SUMMARY

Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9nuclease from the microbial CRISPR-Cas system is targeted to speci?c genomic loci by a20 nt guide sequence,which can tolerate certain mis-matches to the DNA target and thereby promote undesired off-target mutagenesis.Here,we describe an approach that combines a Cas9nickase mutant with paired guide RNAs to introduce targeted dou-ble-strand breaks.Because individual nicks in the genome are repaired with high?delity,simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of speci?cally recognized bases for target cleavage.We demonstrate that using paired nicking can reduce off-target activity by50-to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacri?cing on-target cleav-age ef?ciency.This versatile strategy enables a wide variety of genome editing applications that require high speci?city.

INTRODUCTION

The ability to perturb the genome in a precise and targeted fashion is crucial for understanding genetic contributions to biology and disease.Genome engineering of cell lines or animal models has traditionally been accomplished through random mutagenesis or low-ef?ciency gene targeting.To facilitate genome editing,programmable sequence-speci?c DNA nuclease technologies have enabled targeted modi?cation of endogenous genomic sequences with high ef?ciency,particu-larly in species that have proven traditionally genetically intrac-table(Carlson et al.,2012;Geurts et al.,2009;Takasu et al., 2010;Watanabe et al.,2012).The RNA-guided Cas9nucleases from the microbial CRISPR(clustered regularly interspaced short palindromic repeat)-Cas systems are robust and versatile tools for stimulating targeted double-stranded DNA breaks(DSBs)in eukaryotic cells(Chang et al.,2013;Cho et al.,2013;Cong et al.,2013;Deltcheva et al.,2011;Deveau et al.,2010;Friedland et al.,2013;Gratz et al.,2013;Horvath and Barrangou,2010; Jinek et al.,2013;Mali et al.,2013b;Wang et al.,2013),where the resulting cellular repair mechanisms—nonhomologous end-joining(NHEJ)or homology-directed repair(HDR)pathways—can be exploited to induce error-prone or de?ned alterations (Hsu and Zhang,2012;Perez et al.,2008;Urnov et al.,2010). The Cas9nuclease from Streptococcus pyogenes can be directed by a chimeric single-guide RNA(sgRNA)(Jinek et al., 2012)to any genomic locus followed by a50-NGG protospacer-adjacent motif(PAM).A20nt guide sequence within the sgRNA directs Cas9to the genomic target via Watson-Crick base pairing and can be easily programmed to target a desired genomic locus (Deltcheva et al.,2011;Deveau et al.,2010;Gasiunas et al.,2012; Jinek et al.,2012).Recent studies of Cas9speci?city have demon-strated that,although each base within the20nt guide sequence contributes to overall speci?city,multiple mismatches between the guide RNA and its complementary target DNA sequence can be tolerated depending on the quantity,position,and base identity of mismatches(Cong et al.,2013;Fu et al.,2013;Hsu et al.,2013;Jiang et al.,2013),leading to potential off-target Cell154,1–10,September12,2013a2013Elsevier Inc.1

DSBs and indel formation.These unwanted mutations can poten-tially limit the utility of Cas9for genome editing applications that require high levels of precision,such as generation of isogenic cell lines for testing causal genetic variations (Soldner et al.,2011)or in vivo and ex vivo genome-editing-based therapies.To improve the speci?city of Cas9-mediated genome editing,we developed a strategy that combines the D10A mutant nickase version of Cas9(Cas9n)(Cong et al.,2013;Gasiunas et al.,2012;Jinek et al.,2012)with a pair of offset sgRNAs complementary to opposite strands of the target site.Whereas nicking of both DNA strands by a pair of Cas9nickases leads to site-speci?c DSBs and NHEJ,individual nicks are predominantly repaired by the high-?delity base excision repair pathway (BER)(Dianov and Hu

¨bscher,2013).A paired nickase strategy was described while this manuscript was under review,which suggests the possibility for engineering a system to ameliorate off-target activity (Mali et al.,2013a ).In a manner analogous to dimeric zinc ?nger nucle-ases (ZFNs)(Miller et al.,2007;Porteus and Baltimore,2003;Sander et al.,2011;Wood et al.,2011)and transcription-acti-vator-like effector nucleases (TALENs)(Boch et al.,2009;Chris-tian et al.,2010;Miller et al.,2011;Moscou and Bogdanove,2009;Reyon et al.,2012;Sanjana et al.,2012;Wood et al.,2011;Zhang et al.,2011),wherein DNA cleavage requires syner-gistic interaction of two independent speci?city-encoding DNA-binding modules directing FokI nuclease monomers,this double-nicking strategy minimizes off-target mutagenesis

by

C

B Figure 1.Effect of Guide Sequence Exten-sion on Cas9Activity

(A)Cas9with matching or mismatching sgRNA sequences targeting a locus (target 1)within the human EMX1gene.

(B)SURVEYOR assay gel showing comparable modi?cation of target 1by sgRNAs bearing 20and 30nt long guide sequences.

(C)Northern blot showing that extended sgRNAs are largely processed to 20nt guide-length sgRNAs in HEK293FT cells.

each individual Cas9n-sgRNA complex while maintaining on-target modi?cation rates similar to those of wild-type Cas9.Here,we de?ne crucial parameters for the selection of sgRNA pairs that facilitate effective double nicking,compare the speci?city of wild-type Cas9and Cas9n with double nicking,and demonstrate a variety of experimental applications that can be achieved using double nicking in cells as well as in mouse zygotes.RESULTS

Extension of Guide Sequence Does Not Improve Cas9Targeting Speci?city

Cas9targeting is facilitated by base pair-ing between the 20nt guide sequence

within the sgRNA and the target DNA (Deltcheva et al.,2011;Deveau et al.,2010;Gasiunas et al.,2012;Jinek et al.,2012).We reasoned that cleavage speci?city might be improved by increasing the length of base pairing between the guide RNA and its target locus.To test this,we generated U6-driven expression cassettes (Hsu et al.,2013)to express three sgRNAs with 20(sgRNA 1)or 30nt guide sequences (sgRNAs 2and 3)targeting a locus within the human EMX1gene (Figure 1A).

We and others have previously shown that,although single-base mismatches between the PAM-distal region of the guide sequence and target DNA are well tolerated by Cas9,multiple mismatches in this region can signi?cantly affect on-target activ-ity (Fu et al.,2013;Hsu et al.,2013;Mali et al.,2013a;Pattanayak et al.,2013).To determine whether additional PAM-distal bases (21–30)could in?uence overall targeting speci?city,we designed sgRNAs 2and 3to contain additional bases consisting of either 10perfectly matched or 8mismatched bases (bases 21–28).Surprisingly,we observed that these extended sgRNAs medi-ated similar levels of modi?cation at the target locus in HEK293FT cells regardless of whether the additional bases were complementary to the genomic target (Figure 1B).Sub-sequent northern blots revealed that the majority of both sgRNA 2and 3were processed to the same length as sgRNA 1,which contains the same 20nt guide sequence without additional ba-ses (Figure 1C).

2Cell 154,1–10,September 12,2013a2013Elsevier

Inc.

Cas9Nickase Generates Ef?cient NHEJ with Paired,Offset Guide RNAs

Given that extension of the guide sequence failed to improve Cas9targeting speci?city,we sought an alternative strategy for increasing the overall base-pairing length between the guide sequence and its DNA target.Cas9enzymes contain two conserved nuclease domains,HNH and RuvC,which cleave the DNA strand complementary and noncomplementary to the guide RNA,respectively.Mutations of the catalytic residues (D10A in RuvC and H840A in HNH)convert Cas9into DNA nickases (Cong et al.,2013;Gasiunas et al.,2012;Jinek et al.,2012).As single-strand nicks are preferentially repaired by the

high-?delity BER pathway (Dianov and Hu

¨bscher,2013),we reasoned that two Cas9-nicking enzymes directed by a pair of sgRNAs targeting opposite strands of a target locus could mediate DSBs while minimizing off-target activity (Figure 2A).A number of factors may affect cooperative nicking leading to indel formation,including steric hindrance between two adjacent Cas9molecules or Cas9-sgRNA complexes,overhang type,

and

C

B

A

Figure 2.Double Nicking Facilitates Ef?-cient Genome Editing in Human Cells

(A)Schematic illustrating DNA double-stranded breaks using a pair of sgRNAs guiding Cas9D10A nickases (Cas9n).The D10A mutation renders Cas9able to cleave only the strand complemen-tary to the sgRNA;a pair of sgRNA-Cas9n com-plexes can nick both strands simultaneously.sgRNA offset is de?ned as the distance between the PAM-distal (50)ends of the guide sequence of a given sgRNA pair;positive offset requires the sgRNA complementary to the top strand (sgRNA a)to be 50of the sgRNA complementary to the bottom strand (sgRNA b),which always creates a 50overhang.

(B)Ef?ciency of double-nicking-induced NHEJ as a function of the offset distance between two sgRNAs.Sequences for all sgRNAs used can be found in Table S1.n =3;error bars show mean ±SEM.

(C)Representative sequences of the human EMX1locus targeted by Cas9n.sgRNA target sites and PAMs are indicated by blue and magenta bars,respectively.(Bottom)Selected sequences showing representative indels.See also Tables S1and S2.

sequence context;some of these may be characterized by testing multiple sgRNA pairs with distinct target sequences and offsets (the distance between the PAM-distal [50]ends of the guide sequence of a given sgRNA pair).To systematically assess how sgRNA offsets might affect subsequent repair and generation of in-dels,we ?rst designed sets of sgRNA pairs targeted against the human EMX1genomic locus separated by a range of offset distances from approximately à200to 200bp to create both 50and 30

overhang products (Figure 2A and Table S1available online).We then assessed the ability of each sgRNA pair with the D10A Cas9mutant (referred to as Cas9n;H840A Cas9mutant is referred to as Cas9H840A)to generate indels in human HEK 293FT cells.Robust NHEJ (up to 40%)was observed for sgRNA pairs with offsets from à4to 20bp,with modest indels forming in pairs offset by up to 100bp (Figure 2B,left).We subsequently recapitulated these ?ndings by testing similarly offset sgRNA pairs at two other genomic loci,DYRK1A and GRIN2B (Figure 2B,right).Of note,across all three loci examined,only sgRNA pairs creating 50overhangs with less than 8bp overlap between the guide sequences (offset greater than à8bp)were able to mediate detectable indel formation (Figure 2C).

Importantly,each guide used in these assays is able to ef?-ciently induce indels when paired with wild-type Cas9(Table S1),indicating that the relative positions of the guide pairs are the most important parameters in predicting double-nicking activity.Because Cas9n and Cas9H840A nick opposite strands of DNA,substitution of Cas9n with Cas9H840A with a given

Cell 154,1–10,September 12,2013a2013Elsevier Inc.

3

A

B

C D

E F

(legend on next page) 4Cell154,1–10,September12,2013a2013Elsevier Inc.

sgRNA pair should result in the inversion of the overhang type.For example,a pair of sgRNAs that will generate a 50overhang with Cas9n should,in principle,generate the corresponding 30overhang instead.Therefore,sgRNA pairs that lead to the gener-ation of a 30overhang with Cas9n might be used with Cas9H840A to generate a 50overhang.Further work will be needed to identify the necessary design rules for sgRNA pairing to allow double nicking by Cas9H840A.

Double Nicking Mediates Ef?cient Genome Editing with Improved Speci?city

Having established that double nicking (DN)mediates high-ef?-ciency NHEJ at levels comparable to those induced by wild-type Cas9(Table S1),we next studied whether DN has improved speci?city over wild-type Cas9by measuring their off-target ac-tivities.We co-delivered Cas9n with sgRNAs 1and 9,spaced by a +23bp offset,to target the human EMX1locus in HEK 293FT cells (Figure 3A).This DN con?guration generated on-target indel levels similar to those generated by the wild-type Cas9paired with each sgRNA alone (Figure 3B,left).Strikingly,unlike with wild-type Cas9,DN did not generate detectable modi?cation at a previously validated sgRNA 1off-target site,OT-4,by SUR-VEYOR assay (Hsu et al.,2013;Figure 3B,right),suggesting that DN can potentially reduce the likelihood of off-target modi?cations.

Using deep sequencing to assess modi?cation at ?ve different sgRNA 1off-target loci (Figure 3A),we observed signi?cant mutagenesis at all sites with wild-type Cas9+sgRNA 1(Fig-ure 3C).In contrast,cleavage by Cas9n at 5off-target sites tested was barely detectable above background sequencing ing the ratio of on-to off-target modi?cation levels as a metric of speci?city,we found that Cas9n with a pair of sgRNAs was able to achieve >100-fold greater speci?city relative to wild-type Cas9with one of the sgRNAs (Figure 3D).We conducted additional off-target analysis by deep sequencing for two sgRNA pairs (offsets of +16and +20bp)targeting the VEGFA locus,with similar results (Figure 3E).DN at these off-target loci (Table S5)was able to achieve 200-to >1,500-fold greater speci?city than the wild-type Cas9(Figure 3F and Table S1).Taken together,these results demonstrate that Cas9-mediated double nicking minimizes off-target mutagenesis and is suitable for genome editing with increased speci?city.

Double Nicking Facilitates High-Ef?ciency Homology-Directed Repair,NHEJ-Mediated DNA Insertion,and Genomic Microdeletions

DSBs can stimulate homology-directed repair (HDR)to enable highly precise editing of genomic target sites.To evaluate DN-induced HDR,we targeted the human EMX1locus with pairs of sgRNAs offset by à3and +18bp (generating 31and 52bp 50overhangs),respectively,and introduced a single-stranded oligodeoxynucleotide (ssODN)bearing a Hin dIII restriction site as the HDR repair template (Figure 4A).Each DN sgRNA pair successfully induced HDR at frequencies higher than those of single-guide Cas9n nickases and comparable to those of wild-type Cas9(Figure 4B).Furthermore,genome editing in embry-onic stem cells or patient-derived induced pluripotent stem cells represents a key opportunity for generating and studying new disease paradigms as well as developing new therapeutics.Because single-nick approaches to inducing HDR in human embryonic stem cells (hESCs)have met with limited success (Hsu et al.,2013),we attempted DN in the HUES62hES cell line and observed successful HDR (Figure 4C).

To further characterize how offset sgRNA spacing affects the ef?ciency of HDR,we next tested in HEK 293FT cells a set of sgRNA pairs in which the cleavage site of at least one sgRNA is situated near the site of recombination (overlapping with the HDR ssODN donor template arm).We observed that sgRNA pairs generating 50overhangs and having at least one nick occur-ring within 22bp of the homology arm are able to induce HDR at levels comparable to those of wild-type Cas9-mediated HDR and signi?cantly greater than those of single Cas9n-sgRNA nick-ing.In contrast,we did not observe HDR with sgRNA pairs that generated 30overhangs or double nicking of the same DNA strand (Figure 4D).

The ability to create de?ned overhangs could enable precise insertion of donor repair templates containing compatible over-hangs via NHEJ-mediated ligation (Maresca et al.,2013).To explore this alternative strategy for transgene insertion,we tar-geted the EMX1locus with Cas9n and an sgRNA pair designed to generate a 43bp 50overhang near the stop codon and sup-plied a double-stranded oligonucleotide (dsODN)duplex with matching overhangs (Figure 5A).The annealed dsODN insert,containing multiple epitope tags and a restriction site,was suc-cessfully integrated into the target (1out of 37screened by Sanger sequencing of cloned amplicons).This ligation-based strategy thus illustrates an effective approach for inserting dsODNs encoding short modi?cations such as protein tags or recombination sites into an endogenous locus.

Additionally,we targeted combinations of sgRNA pairs (four sgRNAs per combination)to the DYRK1A locus in HEK 293FT cells to facilitate genomic microdeletions.We generated a set of sgRNAs to mediate 0.5kb,1kb,2kb,and 6kb deletions (Fig-ure 5B and Table S2;sgRNAs 32,33,and 54–61)and veri?ed successful multiplex nicking-mediated deletion over these ranges via PCR screen of predicted deletion sizes.

Figure 3.Double Nicking Facilitates Ef?cient Genome Editing in Human Cells

(A)Schematic illustrating Cas9n double nicking (red arrows)the human EMX1locus.Five off-target loci with sequence homology to EMX1target 1were selected to screen for Cas9n speci?city.

(B)On-target modi?cation rate by Cas9n and a pair of sgRNAs is comparable to those mediated by wild-type Cas9and single sgRNAs (left).Cas9-sgRNA 1complexes generate signi?cant off-target mutagenesis,whereas no off-target locus modi?cation is detected with Cas9n (right).

(C)Five off-target loci of sgRNA 1are examined for indel modi?cations by deep sequencing of transfected HEK 293FT cells.n =3;error bars show mean ±SEM.(D)Speci?city comparison of Cas9n with double nicking and wild-type Cas9with sgRNA alone at the off-target sites.Speci?city ratio is calculated as on-target/off-target modi?cation rates.n =3;error bars show mean ±SEM.

(E and F)Double nicking minimizes off-target modi?cation at two additional human VEGFA loci while maintaining high speci?city (on/off-target modi?cation ratio).n =3;error bars show mean ±SEM.

Cell 154,1–10,September 12,2013a2013Elsevier Inc.

5

A

B C

D

Figure4.Double Nicking Allows Insertion into the Genome via HDR in Human Cells

(A)Schematic illustrating HDR mediated via a single-stranded oligodeoxynucleotide(ssODN)template at a DSB created by a pair of Cas9n enzymes.A12nt sequence(red),including a Hin dIII restriction site,is inserted into the EMX1locus at the position marked by the gray dashed lines;distances of Cas9n-mediated nicks from the HDR insertion site are indicated on top in italics.

(B)Restriction digest assay gel showing successful insertion of Hin dIII cleavage sites by double-nicking-mediated HDR in HEK293FT cells.Top bands are unmodi?ed template;bottom bands are HindIII cleavage product.

(C)Double nicking promotes HDR in the HUES62human embryonic stem cell line.HDR frequencies are determined by deep sequencing.n=3;error bars show mean±SEM.

(legend continued on next page) 6Cell154,1–10,September12,2013a2013Elsevier Inc.

Double Nicking Enables Ef?cient Genome Modi?cation in Mouse Zygotes

Recent work demonstrated that co-delivery of wild-type Cas9mRNA along with multiple sgRNAs can mediate single-step gen-eration of transgenic mice carrying multiple allelic modi?cations (Wang et al.,2013).Given the ability to achieve genome modi?-cation in vivo using several sgRNAs at once,we sought to assess the ef?ciency of multiple nicking by Cas9n in mouse zygotes.Cytoplasmic coinjection of wild-type Cas9or Cas9n mRNA and sgRNAs into single-cell mouse zygotes allowed successful targeting of the Mecp2locus (Figure 6A).To identify the optimal concentration of Cas9n mRNA and sgRNA for ef?cient gene tar-geting,we titrated Cas9mRNA from 100to 3ng/ul while main-taining the sgRNA levels at a 1:20Cas9:sgRNA molar ratio.All concentrations tested for Cas9double-nicking-mediated modi-?cations in at least 80%of embryos screened,similar to levels achieved by wild-type Cas9(Figure 6B).Taken together,these results suggest a number of applications for double-nicking-based genome editing.

(D)HDR ef?ciency depends on the con?guration of Cas9or Cas9n-mediated nicks.HDR is facilitated when a nick occurs near the center of the ssODN homology arm (HDR insertion site),leading to a 50resulting overhang.Nicking con?gurations are annotated with position and strand (red arrows)and length of overhang (black lines)(left).The distance (bp)of each nick from the HDR insertion site is indicated at the end of the black lines in italics,and the positions of the sgRNAs are illustrated in bold on the schematic of the EMX1locus.HDR ef?ciency mediated by double nicking with paired sgRNAs (top)or single sgRNAs with either Cas9or Cas9n are shown (bottom and Table S2).n =3;error bars show mean ±

SEM.

A

B

Figure 5.Multiplexed Nicking Facilitates Non-HR-Mediated Gene Integration and Genomic Deletions

(A)Schematic showing insertion of a double-stranded oligodeoxynucleotide (dsODN)donor fragment bearing overhangs complementary to 50overhangs created by Cas9double nicking.The dsODN was designed to remove the native EMX1stop codon and contains a HA tag,33FLAG tag,Hin dIII restriction site,Myc epitope tag,and a stop codon in frame,totaling 148bp.Successful insertion was veri?ed by Sanger sequencing as shown (1out of 37clones screened).Amino acid translation of the modi?ed lo-cus is shown below the DNA sequence.

(B)Co-delivery of four sgRNAs with Cas9n generates long-range genomic deletions in the DYRK1A locus (from 0.5to 6kb).Deletion was detected using primers (Table S6)spanning the target region.

DISCUSSION

Given the permanent nature of genomic modi?cations,speci?city is of paramount importance to sensitive applications such as studies aimed at linking speci?c genetic variants with biological processes or disease phenotypes and gene therapy.Here,we have explored strategies to improve the tar-geting speci?city of Cas9.Although simply extending the guide sequence length of sgRNA failed to improve targeting speci-?city,combining two appropriately offset sgRNAs with Cas9n effectively generated in-dels while minimizing unwanted cleavage because individual off-target single-stranded nicks are repaired with high ?delity via base excision repair.Given that signi?cant off-target mutagen-esis has been previously reported for Cas9nucleases in human cells (Fu et al.,2013;Hsu et al.,2013),the DN approach could provide a generalizable solution for rapid and accurate genome editing.The characterization of spacing parameters governing successful Cas9double-nickase-mediated gene targeting re-veals an effective offset window >100bp long,allowing for a high degree of ?exibility in the selection of sgRNA pairs.Previous computational analyses have revealed an average targeting range of every 12bp for the Streptococcus pyogenes Cas9in the human genome based on the 50NGG PAM (Cong et al.,2013),suggesting that appropriate sgRNA pairs should be readily identi?able for most loci within the genome.We have additionally demonstrated DN-mediated indel frequencies com-parable to wild-type Cas9modi?cation at multiple genes and loci in both human and mouse cells,con?rming the reproducibility of this strategy for high-precision genome engineering (Table S1).

Cell 154,1–10,September 12,2013a2013Elsevier Inc.

7

The Cas9double nicking approach is,in principle,similar to ZFN-and TALEN-based genome editing systems,in which cooperation between two heminuclease domains is required to achieve double-stranded break at the target site.Systematic studies of ZFN and TALEN systems have revealed that the tar-geting speci?city of a given ZFN and TALEN pair can be highly dependent on the nuclease architecture (homo-or heterodimeric nucleases)or target sequence,and in some cases TALENs can be highly speci?c (Ding et al.,2013).Although the wild-type Cas9system has been shown to exhibit high levels of off-target mutagenesis,the DN system is a promising solution and brings RNA-guided genome editing to similar speci?city levels as ZFNs and TALENs.

Additionally,the ease and ef?ciency with which Cas9can be targeted renders the DN system especially attractive.However,DNA targeting using DN will likely face similar off-target challenges as ZFNs and TALENs,in which cooperative nicking at off-target sites might still occur,albeit at a signi?cantly reduced likelihood.Given the extensive characterization of Cas9speci-?city and sgRNA mutation analysis (Fu et al.,2013;Hsu et al.,2013),as well as the NHEJ-mediating sgRNA offset range identi-?ed in this study,computational approaches may be used to evaluate the likely off-target sites for a given pair of sgRNAs.To facilitate sgRNA pair selection,we developed an online web tool that identi?es sgRNA combinations with optimal spacing for dou-ble nicking applications (/).Although Cas9n has been previously shown to facilitate HDR at on-target sites (Cong et al.,2013),its ef?ciency is substantially lower than that of wild-type Cas9.The double nicking strategy,by comparison,maintains high on-target ef?ciencies while reducing off-target modi?cations to background levels.

Never-A

B

Figure 6.Cas9Double Nicking Mediates Ef?cient Indel Formation in Mouse Embryos

(A)Schematic illustrating Cas9n double nicking the mouse Mecp2locus.Representative indels are shown for mouse blastocysts coinjected with in-vitro-transcribed Cas9n-encoding mRNA and sgRNA pairs matching targets 92and 93.

(B)Ef?cient blastocyst modi?cation is achieved at multiple concentrations of sgRNAs (1.5to 50ng/ul)and wild-type Cas9or Cas9n (3to 100ng/ul).

theless,further characterizations of DN off-target activity,particularly via whole-genome sequencing and targeted deep sequencing of cells or whole organisms generated using the DN approach,are urgently needed to evaluate the utility of Cas9n DN in biotechnological or clinical applications that require ultrahigh-preci-sion genome editing.Additionally,Cas9n has been shown to induce low levels of in-dels at on-target sites for certain sgRNAs (Mali et al.,2013b ),which may result from residual double-strand break activ-ities and may be circumvented by further structure-function studies of Cas9cata-lytic activity.Overall,Cas9n-mediated multiplex nicking serves as a customizable platform for highly precise and ef?cient tar-geted genome engineering and promises to broaden the range of applications in biotechnology,basic science,and medicine.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection

Human embryonic kidney (HEK)cell line 293FT (Life Technologies)cell line was maintained in Dulbecco’s modi?ed Eagle’s medium (DMEM)supple-mented with 10%fetal bovine serum (HyClone),2mM GlutaMAX (Life Technol-ogies),100U/ml penicillin,and 100m g/ml streptomycin at 37 C with 5%CO 2incubation.

Cells were seeded onto 24-well plates (Corning)at a density of 120,000cells/well,24hr prior to transfection.Cells were transfected using Lipofect-amine 2000(Life Technologies)at 80%–90%con?uency following the manu-facturer’s recommended protocol.A total of 500ng Cas9plasmid and 100ng of U6-sgRNA PCR product was transfected.

Human embryonic stem cell line HUES62(Harvard Stem Cell Institute core)was maintained in feeder-free conditions on GelTrex (Life Technologies)in mTesR medium (StemCell Technologies)supplemented with 100ug/ml Nor-mocin (InvivoGen).HUES62cells were transfected with Amaxa P3Primary Cell 4-D Nucleofector Kit (Lonza)following the manufacturer’s protocol.SURVEYOR Nuclease Assay for Genome Modi?cation

HEK 293FT and HUES62cells were transfected with DNA as described above.Cells were incubated at 37 C for 72hr posttransfection prior to genomic DNA extraction.Genomic DNA was extracted using the QuickExtract DNA Extrac-tion Solution (Epicenter)following the manufacturer’s protocol.In brief,pel-leted cells were resuspended in QuickExtract solution and were incubated at 65 C for 15min,68 C for 15min,and 98 C for 10min.

The genomic region ?anking the CRISPR target site for each gene was PCR ampli?ed (Table S3),and products were puri?ed using QiaQuick Spin Column (QIAGEN)following the manufacturer’s protocol.400ng total of the puri?ed PCR products were mixed with 2m l 103Taq DNA Polymerase PCR buffer

8Cell 154,1–10,September 12,2013a2013Elsevier

Inc.

(Enzymatics)and ultrapure water to a?nal volume of20m l and were subjected to a reannealing process to enable heteroduplex formation:95 C for10min;

95 C to85 C ramping at–2 C/s;85 C to25 C at–0.25 C/s;and25 C hold for1min.After reannealing,products were treated with SURVEYOR nuclease and SURVEYOR enhancer S(Transgenomics)following the manufacturer’s recommended protocol were and analyzed on4%–20%Novex TBE polyacryl-amide gels(Life Technologies).Gels were stained with SYBR Gold DNA stain (Life Technologies)for30min and were imaged with a Gel Doc gel imaging system(Bio-Rad).Quanti?cation was based on relative band intensities.Indel percentage was determined by the formula1003(1–(1–(b+c)/(a+b+c))1/2), wherein a is the integrated intensity of the undigested PCR product and b and c are the integrated intensities of each cleavage product.

Northern Blot Analysis of TracrRNA Expression in Human Cells Northern blots were performed as previously described(Cong et al.,2013).In brief,RNAs were extracted using the mirPremier microRNA Isolation Kit (Sigma)and were heated to95 C for5min before loading on8%denaturing polyacrylamide gels(SequaGel,National Diagnostics).Afterward,RNA was transferred to a prehybridized Hybond N+membrane(GE Healthcare)and was crosslinked with Stratagene UV Crosslinker(Stratagene).Probes were labeled with[g-32P]ATP(Perkin Elmer)with T4polynucleotide kinase(New England Biolabs).After washing,membrane was exposed to phosphor screen for1hr and scanned with phosphorimager(Typhoon).

Deep Sequencing to Assess Targeting Speci?city

HEK293FT cells were plated and transfected as described above72hr prior to genomic DNA extraction.The genomic region?anking the CRISPR target site for each gene was ampli?ed(see Table S4for primer sequences)by a fusion PCR method to attach the Illumina P5adapters as well as unique sample-speci?c barcodes to the target.PCR products were puri?ed using EconoSpin 96-well Filter Plates(Epoch Life Sciences)following the manufacturer’s recom-mended protocol.

Barcoded and puri?ed DNA samples were quanti?ed by Qubit2.0Fluorom-eter(Life Technologies)and were pooled in an equimolar ratio.Sequencing libraries were then sequenced with the Illumina MiSeq Personal Sequencer (Life Technologies).

Sequencing Data Analysis,Indel Detection,and Homologous Recombination Detection

MiSeq reads were?ltered by requiring an average Phred quality(Q score)of at least30,as well as perfect sequence matches to barcodes and amplicon for-ward primers.Reads from on-and off-target loci were analyzed by performing Ratcliff-Obershelp string comparison,as implemented in the Python dif?ib module,against loci sequences that included30nt upstream and downstream of the target site(a total of80bp).The resulting edit operations were parsed, and reads were counted as indels if insertion or deletion operations were found.Analyzed target regions were discarded if part of their alignment fell outside of the MiSeq read itself or if more than?ve bases were uncalled. Negative controls for each sample provided a gauge for the inclusion or exclusion of indels as putative cutting events.For quanti?cation of homo-logous recombination,reads were?rst processed as in the indel detection work?ow and were then checked for presence of homologous recombination template CCAGGCTTGG.

Microinjection into Mouse Zygotes

Cas9mRNA and sgRNA templates were ampli?ed with T7promoter sequence-conjugated primers.After gel puri?cation,Cas9and Cas9n were transcribed with mMESSAGE mMACHINE T7Ultra Kit(Life Technologies). sgRNAs were transcribed with MEGAshortscript T7Kit(Life Technologies). RNAs were puri?ed by MEGAclear Kit(Life Technologies)and frozen at–80 C. MII-stage oocytes were collected from8-week-old superovulated BDF1fe-males by injecting7.5I.U.of PMSG(Harbor,UCLA)and hCG(Millipore).They were transferred into HTF medium supplemented with10mg/ml bovine serum albumin(BSA;Sigma-Aldrich)and were inseminated with capacitated sperm obtained from the caudal epididymides of adult C57BL/6male mice.Six hours after fertilization,zygotes were injected with mRNAs and sgRNAs in M2media (Millipore)using a Piezo impact-driven micromanipulator(Prime Tech Ltd.,Ibaraki,Japan).The concentrations of Cas9and Cas9n mRNAs and sgRNAs are described in the text and Figure6B.After microinjection,zygotes were cultured in KSOM(Millipore)in a humidi?ed atmosphere of5%CO2and 95%air at37 C.

Genome Extraction from Blastocyst Embryos

Following in vitro culture of embryos for6days,the expanded blastocysts were washed with0.01%BSA in PBS and were individually collected into 0.2ml tubes.Five microliters of genome extraction solution(50mM Tris-HCl [pH8.0],0.5%Triton X-100,and1mg/ml Proteinase K)were added and the samples were incubated in65 C for3hr followed by95 C for10min.Samples were then ampli?ed for targeted deep sequencing as described above.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and six tables and can be found with this article online at /10. 1016/j.cell.2013.08.021.

ACKNOWLEDGMENTS

We thank Joshua Weinstein and Yinqing Li for statistical consultation,Xuebing Wu and Phillip Sharp for assistance with northern blotting experiments,Su Vora for help with the manuscript,and the entire Zhang lab for their support and advice.P.D.H.is a James Mills Pierce Fellow.C.-Y.L.is supported by T32GM007753from the National Institute of General Medical Sciences.

D.A.S.is an NSF predoctoral fellow.A.I.and S.M.are research fellows for Research Abroad of the Japan Society for the Promotion of Science.Y.Z.is supported by NIH grants GM68804and U01DK089565and is an Investigator of the Howard Hughes Medical Institute.F.Z.is supported by an NIH Director’s Pioneer Award(1DP1-MH100706),a NIH Transformative R01grant(1R01-DK097768),the Keck,McKnight,Damon Runyon,Searle Scholars,Klingen-stein,Vallee,and Simons Foundations,Bob Metcalfe,and Jane Pauley.

Received:July25,2013

Revised:August13,2013

Accepted:August14,2013

Published:August29,2013

REFERENCES

Boch,J.,Scholze,H.,Schornack,S.,Landgraf,A.,Hahn,S.,Kay,S.,Lahaye, T.,Nickstadt,A.,and Bonas,U.(2009).Breaking the code of DNA binding speci?city of TAL-type III effectors.Science326,1509–1512.

Carlson,D.F.,Tan,W.F.,Lillico,S.G.,Stverakova,D.,Proudfoot,C.,Christian, M.,Voytas,D.F.,Long,C.R.,Whitelaw,C.B.A.,and Fahrenkrug,S.C.(2012). Ef?cient TALEN-mediated gene knockout in livestock.Proc.Natl.Acad.Sci. USA109,17382–17387.

Chang,N.,Sun,C.,Gao,L.,Zhu,D.,Xu,X.,Zhu,X.,Xiong,J.W.,and Xi,J.J. (2013).Genome editing with RNA-guided Cas9nuclease in zebra?sh embryos. Cell Res.23,465–472.

Cho,S.W.,Kim,S.,Kim,J.M.,and Kim,J.S.(2013).Targeted genome engi-neering in human cells with the Cas9RNA-guided endonuclease.Nat. Biotechnol.31,230–232.

Christian,M.,Cermak,T.,Doyle,E.L.,Schmidt,C.,Zhang,F.,Hummel,A., Bogdanove, A.J.,and Voytas, D.F.(2010).Targeting DNA double-strand breaks with TAL effector nucleases.Genetics186,757–761.

Cong,L.,Ran,F.A.,Cox,D.,Lin,S.,Barretto,R.,Habib,N.,Hsu,P.D.,Wu,X., Jiang,W.,Marraf?ni,L.A.,and Zhang,F.(2013).Multiplex genome engineering using CRISPR/Cas systems.Science339,819–823.

Deltcheva,E.,Chylinski,K.,Sharma,C.M.,Gonzales,K.,Chao,Y.,Pirzada, Z.A.,Eckert,M.R.,Vogel,J.,and Charpentier,E.(2011).CRISPR RNA matura-tion by trans-encoded small RNA and host factor RNase III.Nature471, 602–607.

Cell154,1–10,September12,2013a2013Elsevier Inc.

9

Deveau,H.,Garneau,J.E.,and Moineau,S.(2010).CRISPR/Cas system and its role in phage-bacteria interactions.Annu.Rev.Microbiol.64,475–493.Dianov,G.L.,and Hu

¨bscher,U.(2013).Mammalian base excision repair:the forgotten archangel.Nucleic Acids Res.41,3483–3490.

Ding,Q.,Lee,Y.K.,Schaefer,E.A.,Peters,D.T.,Veres,A.,Kim,K.,Kuper-wasser,N.,Motola,D.L.,Meissner,T.B.,Hendriks,W.T.,et al.(2013).A TALEN genome-editing system for generating human stem cell-based disease models.Cell Stem Cell 12,238–251.

Friedland,A.E.,Tzur,Y.B.,Esvelt,K.M.,Colaia

′covo,M.P.,Church,G.M.,and Calarco,J.A.(2013).Heritable genome editing in C.elegans via a CRISPR-Cas9system.Nat.Methods 10,741–743.

Fu,Y.,Foden,J.A.,Khayter,C.,Maeder,M.L.,Reyon,D.,Joung,J.K.,and Sander,J.D.(2013).High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.Nat.Biotechnol.Published online June 23,2013./10.1038/nbt.2623.

Gasiunas,G.,Barrangou,R.,Horvath,P.,and Siksnys,V.(2012).Cas9-crRNA ribonucleoprotein complex mediates speci?c DNA cleavage for adaptive immunity in A 109,E2579–E2586.Geurts,A.M.,Cost,G.J.,Freyvert,Y.,Zeitler,B.,Miller,J.C.,Choi,V.M.,Jen-kins,S.S.,Wood,A.,Cui,X.X.,Meng,X.D.,et al.(2009).Knockout rats via embryo microinjection of zinc-?nger nucleases.Science 325,433–433.Gratz,S.J.,Cummings,A.M.,Nguyen,J.N.,Hamm,D.C.,Donohue,L.K.,Har-rison,M.M.,Wildonger,J.,and O’Connor-Giles,K.M.(2013).Genome engineering of Drosophila with the CRISPR RNA-guided Cas9nuclease.Genetics 194,1029–1035.

Horvath,P.,and Barrangou,R.(2010).CRISPR/Cas,the immune system of bacteria and archaea.Science 327,167–170.

Hsu,P.D.,and Zhang,F.(2012).Dissecting neural function using targeted genome engineering technologies.ACS Chem.Neurosci.3,603–610.Hsu,P.D.,Scott,D.A.,Weinstein,J.A.,Ran,F.A.,Konermann,S.,Agarwala,V.,Li,Y.,Fine,E.J.,Wu,X.,Shalem,O.,et al.(2013).DNA targeting speci?city of RNA-guided Cas9nucleases.Nat.Biotechnol.Published online July 21,2013./10.1038/nbt.2647.

Jiang,W.,Bikard,D.,Cox,D.,Zhang,F.,and Marraf?ni,L.A.(2013).RNA-guided editing of bacterial genomes using CRISPR-Cas systems.Nat.Biotechnol.31,233–239.

Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J.A.,and Charpentier,E.(2012).A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science 337,816–821.

Jinek,M.,East,A.,Cheng,A.,Lin,S.,Ma,E.,and Doudna,J.(2013).RNA-pro-grammed genome editing in human cells.eLife 2,e00471.

Mali,P.,Aach,J.,Stranges,P.B.,Esvelt,K.M.,Moosburner,M.,Kosuri,S.,Yang,L.,and Church,G.M.(2013a).CAS9transcriptional activators for target speci?city screening and paired nickases for cooperative genome engineer-ing.Nat.Biotechnol.Published online August 1,2013./10.1038/nbt.2675.

Mali,P.,Yang,L.,Esvelt,K.M.,Aach,J.,Guell,M.,DiCarlo,J.E.,Norville,J.E.,and Church,G.M.(2013b).RNA-guided human genome engineering via Cas9.Science 339,823–826.

Maresca,M.,Lin,V.G.,Guo,N.,and Yang,Y.(2013).Obligate ligation-gated recombination (ObLiGaRe):custom-designed nuclease-mediated targeted integration through nonhomologous end joining.Genome Res.23,539–ler,J.C.,Holmes,M.C.,Wang,J.,Guschin,D.Y.,Lee,Y.L.,Rupniewski,I.,Beausejour, C.M.,Waite, A.J.,Wang,N.S.,Kim,K.A.,et al.(2007).An

improved zinc-?nger nuclease architecture for highly speci?c genome editing.Nat.Biotechnol.25,778–785.

Miller,J.C.,Tan,S.,Qiao,G.,Barlow,K.A.,Wang,J.,Xia,D.F.,Meng,X.,Paschon,D.E.,Leung,E.,Hinkley,S.J.,et al.(2011).A TALE nuclease architec-ture for ef?cient genome editing.Nat.Biotechnol.29,143–148.

Moscou,M.J.,and Bogdanove,A.J.(2009).A simple cipher governs DNA recognition by TAL effectors.Science 326,1501.

Pattanayak,V.,Lin,S.,Guilinger,J.P.,Ma,E.,Doudna,J.A.,and Liu,D.R.(2013).High-throughput pro?ling of off-target DNA cleavage reveals RNA-pro-grammed Cas9nuclease speci?city.Nat.Biotechnol.Published online August 11,2013./10.1038/nbt.2673.

Perez,E.E.,Wang,J.B.,Miller,J.C.,Jouvenot,Y.,Kim,K.A.,Liu,O.,Wang,N.,Lee,G.,Bartsevich,V.V.,Lee,Y.L.,et al.(2008).Establishment of HIV-1resis-tance in CD4+T cells by genome editing using zinc-?nger nucleases.Nat.Biotechnol.26,808–816.

Porteus,M.H.,and Baltimore,D.(2003).Chimeric nucleases stimulate gene targeting in human cells.Science 300,763.

Reyon,D.,Tsai,S.Q.,Khayter,C.,Foden,J.A.,Sander,J.D.,and Joung,J.K.(2012).FLASH assembly of TALENs for high-throughput genome editing.Nat.Biotechnol.30,460–465.

Sander,J.D.,Dahlborg,E.J.,Goodwin,M.J.,Cade,L.,Zhang,F.,Cifuentes,D.,Curtin,S.J.,Blackburn,J.S.,Thibodeau-Beganny,S.,Qi,Y.,et al.(2011).Selection-free zinc-?nger-nuclease engineering by context-dependent assembly (CoDA).Nat.Methods 8,67–69.

Sanjana,N.E.,Cong,L.,Zhou,Y.,Cunniff,M.M.,Feng,G.,and Zhang,F.(2012).A transcription activator-like effector toolbox for genome engineering.Nat.Protoc.7,171–192.

Soldner,F.,Laganiere,J.,Cheng,A.W.,Hockemeyer,D.,Gao,Q.,Alagappan,R.,Khurana,V.,Golbe,L.I.,Myers,R.H.,Lindquist,S.,et al.(2011).Generation of isogenic pluripotent stem cells differing exclusively at two early onset Par-kinson point mutations.Cell 146,318–331.

Takasu,Y.,Kobayashi,I.,Beumer,K.,Uchino,K.,Sezutsu,H.,Sajwan,S.,Carroll,D.,Tamura,T.,and Zurovec,M.(2010).Targeted mutagenesis in the silkworm Bombyx mori using zinc ?nger nuclease mRNA injection.Insect Biochem.Mol.Biol.40,759–765.

Urnov,F.D.,Rebar,E.J.,Holmes,M.C.,Zhang,H.S.,and Gregory,P.D.(2010).Genome editing with engineered zinc ?nger nucleases.Nat.Rev.Genet.11,636–646.

Wang,H.,Yang,H.,Shivalila,C.S.,Dawlaty,M.M.,Cheng,A.W.,Zhang,F.,and Jaenisch,R.(2013).One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell 153,910–918.

Watanabe,T.,Ochiai,H.,Sakuma,T.,Horch,H.W.,Hamaguchi,N.,Nakamura,T.,Bando,T.,Ohuchi,H.,Yamamoto,T.,Noji,S.,et al.(2012).Non-transgenic genome modi?cations in a hemimetabolous insect using zinc-?nger and TAL effector mun.3.Published online August 21,2012./10.1038/ncomms2020.

Wood,A.J.,Lo,T.W.,Zeitler,B.,Pickle,C.S.,Ralston,E.J.,Lee,A.H.,Amora,R.,Miller,J.C.,Leung,E.,Meng,X.,et al.(2011).Targeted genome editing across species using ZFNs and TALENs.Science 333,307.

Zhang,F.,Cong,L.,Lodato,S.,Kosuri,S.,Church,G.M.,and Arlotta,P.(2011).Ef?cient construction of sequence-speci?c TAL effectors for modulating mammalian transcription.Nat.Biotechnol.29,149–153.

10Cell 154,1–10,September 12,2013a2013Elsevier

Inc.

基因敲除技术研究新进展2011

基因敲除技术研究新进展 黄薇,严放北京大学医学部心血管研究所 gene knockout)技术是20世纪80年代发展起来的一门新技术。应用DNA同源重组技术将灭活的基因导入小鼠胚em cells,ES cells)以取代目的基因,再筛选出已靶向灭活的细胞,微注射入小鼠囊胚。该细胞参与胚胎发育形成可得到纯合基因敲除小鼠。基因敲除小鼠模型的建立使许多与人类疾病相关的新基因的功能得到阐明,使现代生物学进展。基于基因敲除技术对医学生物学研究做出的重大贡献,在该领域取得重大进展的三位科学家,70岁的美国人chi)、82岁的美国人奥利弗?史密西斯(Oliver Smithies)和66岁的英国人马丁?埃文斯(Martin Evans)分享了2 80年代末期的基因敲除技术为第一代技术,属完全性基因敲除,不具备时间和区域特异性。关于第二代区域和组织于1993年。Tsien等[1]于1996年在《Cell》首先报道了第一个脑区特异性的基因敲除动物,被誉为条件性基因敲除oxP系统为基础,Cre在哪种组织细胞中表达,基因敲除就发生在哪种组织细胞中。 imizu等[2]于《Science》报道了以时间可调性和区域特异性为标志的第三代基因敲除技术,其同样以Cre/LoxP系统re的表达。该技术使目的基因的敲除在时间上可人为控制,避免了死胎或动物出生后不久即死亡等现象的出现。 实验室Cui[3]等又报道了第四代基因工程技术,即可诱导的区域性蛋白质敲除技术,用这一技术构建的模式动物可在定蛋白质的功能,从根本上改变了前三代基因敲除技术对蛋白质代谢速度的内在依赖性,达到空前的时间精度,成组研究最先进的工具之一。 以来上述基因敲除技术只能在小鼠上完成,因为只有小鼠的ES细胞能在体外培养中无限增殖并同时保持多分化潜能以及猴等大动物模型在疾病研究中更接近于人类,大动物更有益于某些繁琐的手术操作,同时血浆及组织样本量较大家介绍近两年来基因敲除技术在大动物模型上的突破及进展。 一、大鼠ES细胞基因打靶技术 ,大鼠的生理和药理特性与人类更相近,是研究人类疾病的一种重要动物模型,在心血管疾病和糖尿病等领域的作S细胞在体外难以长期维持自我更新,用传统培养方法无法获得具有生殖传代能力的大鼠ES细胞[5]。因此在过去二物模型远不及小鼠发展迅速。2010年Tong等[6]于《Nature》报道了p53基因敲除大鼠,这在基因敲除技术上又是

基因敲除技术

第23卷武 夷 科 学V o.l23 2007年12月WUY I SCIENCE J OURNA L D ec.2007 文章编号:1001 4276 (2007)01 0187 04 几种常用的基因敲除技术 李今煜,陈健铭,彭振坤 (福建农林大学生命科学学院,福建福州350002) 摘要: 摘要:随着功能基因组学研究的深入发展,基因敲除技术逐渐成为基因功能研究的重要手段,本文就常用的三种基因敲除技术,即同源重组、插入突变、RNA干扰各自的原理、适用的范围和优缺点作简要介绍。关键词: 基因敲除;同源重组;插入突变;RNA干扰 中图分类号: Q343.1 文献标识码: A 随着越来越多生物的全基因组被测序,功能基因组学成为时下研究的热点。研究基因功能的方法主要有两种思路,一是通过增强其表达,取得表达产物进行研究,二是减弱或者终止其表达,观察整体功能的变化,进而推测相应的基因功能。前者因为不能反映基因产物的真实表达情况,而逐渐被抛弃。后者将基因与生物的整体功能联系起来考察,并能为基因的功能提供直接证据,因而其技术不断得到发展和完善,其中最常用的就是基因敲除(gene knockou t)技术。 基因敲除技术除最早的同源重组技术外,新的原理和技术也逐渐被应用,比较成功的有基因的插入突变和RNA,i它们同样可以达到基因敲除的目的。下面就这几种基因敲除技术简要进行介绍。 1 利用同源重组进行基因敲除 基因敲除是在同源重组技术及胚胎干细胞(e mbryon i c ste m cel,l ES细胞)技术的基础上逐步完善发展起来,主要是利用DNA转化技术,将含有目的基因和靶基因同源片段的重组载体导入靶细胞,通过载体与靶细胞染色体上同源序列间的重组,将外源基因整合入内源基因组内,使外源基因得以表达。通过研究靶细胞或者个体在目的基因插入前后遗传特性的改变,达到研究基因功能的目的[1]。 基因敲除技术已从最初简单的完全敲除发展到条件敲除阶段,现正朝着特定组织基因敲除、特定时间基因敲除的可调控敲除方向发展。完全基因敲除是通过同源重组直接将靶基因在细胞或者动物个体中的活性完全消除;而条件基因敲除则是将某个基因的修饰限制于特定类型的细胞或个体发育特定的阶段,即通过位点特异的重组系统实现特定基因敲除[2],现阶段以噬菌体的C re/Loxp系统和酿酒质粒的FLP/FRT系统应用得最为广泛[3]。 虽然基因敲除技术的广泛使用使其成为研究基因功能重要的技术手段,但目前仍然存在 收稿日期:2007-09-26 基金项目:福建省自然科学基金计划资助项目(项目编号:2006J0052)。 作者简介:李金煜(1976-),女,硕士,研究方向:主要从事生物化学与分子生物学领域的研究。

CRISPR cas9基因敲除原理及其应用

CRISPR/Cas9基因敲除原理及其应用 CRISPR(clustered,regularly interspaced,short palindromic repeats)是一种来自细菌降解入侵的病毒DNA或其他外源DNA的免疫机制。在细菌及古细菌中,CRISPR系统共分成3类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统只需要一种Cas蛋白即可,这为其能够广泛应用提供了便利条件[1]。 目前,来自Streptococcus pyogenes的CRISPR-Cas9系统应用最为广泛。Cas9蛋白(含有两个核酸酶结构域,可以分别切割DNA两条单链。Cas9首先与crRNA及tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的DNA双链进行切割,使DNA双链断裂。 由于PAM序列结构简单(5’-NGG-3’),几乎可以在所有的基因中找到大量靶点,因此得到广泛的应用。CRISPR-Cas9系统已经成功应用于植物、细菌、酵母、鱼类及哺乳动物细胞,是目前最高效的基因组编辑系统[1]。 通过基因工程手段对crRNA和tracrRNA进行改造,将其连接在一起得到sgRNA(single guide RNA)。融合的RNA具有与野生型RNA类似的活力,但因为结构得到了简化更方便研究者使用。通过将表达sgRNA的原件与表达Cas9的原件相连接,得到可以同时表达两者的质粒,将其转染细胞,便能够对目的基因进行操作[2,3]。

目前常用的CAS9研究方法是通过普通质粒,质粒构建流程如下:Cas9质粒构建 设计2条单链oligo序列; 退火形成双链DNA pGK1.1 将双链DNA连接到载体 中 转化G10competent cell 筛选阳性克隆;测序验证 序列;质粒大提;电转染 靶细胞 在细胞内crRNA识别靶 位点,Cas9对靶位点进行 随机剪切 Cruiser TM酶切细胞池,计 算突变率;Cruiser TM酶切 初筛阳性克隆;将阳性克 隆测序验证;做敲除序列 比对分析。

基因敲除技术研究进展

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目:基因敲除技术研究进展 作者:王振宇 学号:201207744 指导教师:谢放 完成日期:2014-7-16

基因敲除技术研究进展 摘要基因敲除是自20世纪80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。在总结已有研究成果的基础上,本文对基因敲除技术的概况、原理方法应用以及近年来基因敲除技术的研究进展作一个简单的综述。 关键词基因敲除 RNA i生物模型基因置换基因打靶同源重组1. 基因敲除技术简介 基因敲除(Gene knockout)是指一种遗传工程技术,针对某个序列已知但功能未知的序列,改变生物的遗传基因,令特定的基因功能丧失作用,从而使部分功能被屏障,并可进一步对生物体造成影响,进而推测出该基因的生物学功能。 它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。基因敲除借助分子生物学、细胞生物学和动物胚胎学的方法,通过胚胎干细胞这一特殊的中间环节将小鼠的正常功能基因的编码区破坏,使特定基因失活,以研究该基因的功能;或者通过外源基因来替换宿主基因组中相应部分,以便测定它们是否具有相同的功能,或将正常基因引入宿主基因组中置换突变基因以达到靶向基因治疗的目的。基因敲除是揭示基因功能最直接的手段之一。通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段(即基因打靶),从而达到基因敲除的目的。随着基因敲除技术的发展,除了基因打靶技术外,近年来新的原理和技术也逐渐被应用,比较成功的有RNA干扰技术,同样也可以达到基因敲除的目的。简单的说基因敲除是指将目标基因从基因组中删除。基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是小鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。这项技术的诞生可以说是分子生物学技术上继转基因技术后的又一革命。尤其是条件性、诱导性基因打靶系统的建立,使得对基因靶位时间和空间上的操作更加明确、效果更加精确、

基因敲除小鼠的制作方法

.. 一、常规基因敲除鼠(Conventional Knockout) 常规基因敲除是通过基因打靶,把需要敲除的基因的几个重要的外显子或者功能区域用Neo Cassette 替换掉。这样的小鼠其全身所有的组织和细胞中都不表达该基因产物。此类基因敲除鼠一般用于研究某个基因在对小鼠全身生理病理的影响,而且这个基因没有胚胎致死性。 二、条件性基因敲除小鼠(Conditional Knockout) 条件性基因敲除小鼠是通过基因打靶,把两个loxP 位点放到目的基因一个或几个重要的外显子的两边。该小鼠和表达Cre酶小鼠杂交之前,其目的基因表达完全正常。当和组织特异性表达Cre酶的小鼠进行杂交后,可以在特定的组织或细胞中敲除该基因,而该基因在其他组织或细胞表达正常。 条件性基因敲除鼠适用范围为:(1)该基因有胚胎致死性;(2)用于研究该基因在特定的组织或细胞中的生理病理功能。 三、基因敲入小鼠(Knockin) 基因敲入小鼠是通过基因打靶,把目的基因序列敲入到小鼠的相应基因位点,使用小鼠的表达调控元件指导目的基因表达。 此类基因敲入鼠一般用于药物的筛选,信号通路的研究等。 获得嵌合体及之后品系纯化详细流程: 基因敲除其他方法: 一、ZFN技术制作基因敲除鼠 ZFN能够识别并结合指定的基因序列位点,并高效精确地切断。随后细胞利用天然的DNA 修复过程来实现DNA的插入、删除和修改,这样研究人员就能够随心所欲地进行基因组编辑。这在过去是无法想象的,传统的基因敲除技术依赖细胞内自然发生的同源重组,其效率只有百万分之一,而ZFN的基因敲除效率能达到10%。利用这些技术进行小鼠基因的定点敲除和敲入,可以把时间从一年缩短到几个月。 这项技术中设计特异性的ZFN是最关键的环节,目前研究者采用计算生物学方法设计高特异性的ZFN,但ZFN的脱靶(off target),也就是把不该切的地方切了的问题仍是一个挑战。也正因为这个原因,利用ZFN技术进行小鼠的基因修饰还无法完全取代传统技术。 二、TALEN技术制作基因敲除鼠 TALEN 技术是一种崭新的分子生物学工具。科学家发现,来自一种植物细菌的TAL蛋白的核酸结合域的氨基酸序列与其靶位点的核酸序列有恒定的对应关系。利用TAL的序列模块,可组装成特异结合任意DNA序列的模块化蛋白,从而达到靶向操作内源性基因的目的,它克服了ZFN方法不能识别任意目标基因序列,以及识别序列经常受上下游序列影响等问题,而具有ZFN相等或更好的灵活性,使基因操作变得更加简单方便。然而同样因为脱靶的问题,利用TALEN技术进行小鼠的基因修饰仍然无法取代传统技术。 ;.

基因敲除技术的最新进展doc - 丁香园

基因敲除技术的最新进展  yunfenglin 干细胞与组织工程讨论版  【摘要】 自从上世纪80年代初的胚胎干细胞技术的成熟,在短短的20年里,关于基因敲除动物模型的报道呈几何数增长。现在的技术已经可以产生在时间和空间上都可以人为控制的,从点突变到染色体组大片段的删除和重排的各种基因突变小鼠,这样就可以让研究每个基因的具体功能成为可能。本文将首先简介基因敲除技术的技术背景、基本原理、基本步骤;然后将重点介绍现在基因敲除的常用策略及其利弊;接着将探讨基因打靶结果不理想的常见因素,包括基因背景、基因重复、基因补偿、和基因补充;最后介绍基因打靶技术的技术热点,包括组织特异性打靶、诱导性打靶。并探讨基因打靶技术在颌面外科的应用前景。 【关键词】基因敲除、条件性基因打靶、组织特异性基因打靶、诱导性基因打靶 技术背景 基因打靶技术是20世纪80年代发展起来的[1],是建立在基因同源重组技术基础以及胚胎干细胞技术基础上的一种新分子生物学技术。所谓胚胎干细胞(Embryonic Stem cell,ES)是从着床前胚胎(孕3—5天)分离出的内细胞团(Inner cell mass,ICM)细胞[2],它具有向各种组织细胞分化的多分化潜能,能在体外培养并保留发育的全能性。在体外进行遗传操作后,将它重新植回小鼠胚胎,它能发育成胚胎的各种组织。而基因同源重组是指当外源DNA片段大且与宿主基因片段同源性强者并互补结合时,结合区的任何部分都有与宿主的相应片段发生交换(即重组)的可能,这种重组称为同源重组。[3] 基因打靶就是通过同源重组将外源基因定点整合入靶细胞基因组上某一确定的位点,以达到定点修饰改造染色体上某一基因的目的的一种技术[4]。它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。这项技术的诞生可以说是分子生物学技术上继转基因技术后的又一革命。尤其是条件性、诱导性基因打靶系统的建立,使得对基因靶位时间和空间上的操作更加明确、效果更加精确、可靠,它的发展将为发育生物学、分子遗传学、免疫学及医学等学科提供了一个全新的、强有力的研究、治疗手段,具有广泛的应用前景和商业价值。现在基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。2000年初的敲除了决定表面抗原的猪的模型的成功建立更是为异种器官移植排除了一道重要的障碍,展示了基因敲除技术的美好前景。 基本步骤 利用基因打靶技术产生转基因动物的程序一般为: a.ES细胞的获得:现在基因敲除一般应用于鼠,而最常用的鼠的种系是129及其杂合体,因为这类小鼠具有自发突变形成畸胎瘤和畸胎肉瘤的倾向,是基因敲除的理想实验动物。而其他遗传背景的胚胎干细胞系逐渐被发展应用,最近来自于C57BL/6×CBN/JNCrj F1小鼠的胚胎干细胞系成功地用于基因敲除。c57BL/6小鼠种系等已经广泛的应用于免疫学领域,并以此为背景建立了许多成功的转基因模型。[5,9,11] b.基因载体的构建:把目的基因和与细胞内靶基因特异片段同源的DNA分子都重组到带有标记基因(如neo基因,TK基因等)的载体上,此重组载体即为打靶载体。因基因打靶的目的不同,此载体有不同的设计方法,可分为替换性载体和插入型载体[6,7]。如为了把某一外源基因引入染色体DNA的某一位点上,这种情况下应设计的插入型载体要包括外源

基因敲除技术的原理、方法和应用

基因敲除技术的原理、方法和应用 2010-01-24 17:03:43 来源:易生物实验浏览次数:6302 网友评论 0 条 1.基因敲除概述 2.实现基因敲除的多种原理和方法: 2.1.利用基因同源重组进行基因敲除 2.2利用随机插入突变进行基因敲 除。 2.3.RNAi引起的基因敲除。 3.基因敲除技术的应用及前景 4.基因敲除技术的缺陷 关键词:基因敲除 1.基因敲除概述: 基因敲除是自80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段,从而达到基因敲除的目的。随着基因敲除技术的发展,除了同源重组外,新的原理和技术也逐渐被应用,比较成功的有基因的插入突变和iRNA,它们同样可以达到基因敲除的目的。 2.实现基因敲除的多种原理和方法: 2.1.利用基因同源重组进行基因敲除 基因敲除是80年代后半期应用DNA同源重组原理发展起来的。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985 年,首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型 [1]。直到现在,运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中最普遍的使用方法。 2.1.1利用同源重组构建基因敲除动物模型的基本步骤(图1): a.基因载体的构建:把目的基因和与细胞内靶基因特异片段同源的DNA 分子都重组到带有标记基因(如neo 基因,TK 基因等)的载体上,成为重组载体。基因敲除是为了使某一基因失去其生理功能,所以一般设计为替换型载体。

基因敲除技术现状及应用

医学分子生物学杂志,2007,4(1):862 90 J Med Mol B i ol,2007,4(1):86290 通讯作者:汤华(电话:022*********,E 2mail:htang2002@yahoo 1 co m ) Corres ponding author:T ANG Hua (Tel:86222223542603, E 2mail: htang2002@yahoo 1co m ) 基因敲除技术现状及应用 万海英 综述 汤华 审阅 天津医科大学天津市生命科学中心实验室 天津市,300070 【摘要】 功能基因组学的研究进展使基因敲除技术显得尤为重要。基因敲除技术从载体构建到细胞的筛选到动物模型的建立各方面都得到了发展。其中C re 2LoxP 系统可以有效的控制打靶的发育阶段和组织类型,实现特定基因在特定时间和(或)空间的功能研究;转座子系统易于操作,所需时间短,具有高通量的特点,可以携带多种抗性标记,方便了同时进行多基因功能研究;基因捕获技术提供了获得基因敲除小鼠的高效方法,方便了进行小鼠基因组文库的研究。此外,进退策略、双置换法、标记和交换法、重组酶介导的盒子交换法也从不同方向发展了基因敲除技术。 【关键词】 基因敲除;C re 2LoxP 系统;转座子;基因捕获【中图分类号】 R34918 St a tus Quo and Appli ca ti on of Gene Knockout WAN Haiying,T ANG Hua Tianjin M edical U niversity,Tianjin L ife Science Center ,Tianjin,300070,China 【Abstract 】 Gene knockout is i m portant f or functi onal genom ics 1Great p r ogress has been made in the vect or constructi on of gene knockout,screening of ai m ed cells and ani m al models and the devel op 2ments in these fields hel p t o s olve the p r oble m s in the study of genom ic functi ons 1Cre 2LoxP syste m can effectively contr ol the devel opment stage and hist ol ogy of gene knockout,thereby making it possi 2ble t o study gene functi on in a given ti m e and /or s pace 1Trans pos on syste m is easy t o mani pulate,quick and can achieve high thr oughput,carry multi p le resistance marker gene,which makes si m ulta 2neous study of multi p le genes possible 1Gene trapp ing p r ovides a highly efficient method of obtain knockout m ice and can facilitate the research of m ice geno m ic library 1I n additi on,the techniques such as “hit and run ”,“double rep lace ment ”,“tag and exchange ”and “recombinase 2mediated cas 2sette exchange ”all contribute t o the devel opment of gene knockout technol ogy 1【Key words 】 gene knockout,Cre 2LoxP syste m,trans pos on;gene trapp ing 基因敲除又称为基因打靶,是指从分子水平上将一个基因去除或替代,然后从整体观察实验动物,推测相应基因功能的实验方法。基因敲除技术是功能基因组学研究的重要研究工具。 基因敲除技术是在20世纪80年代后半期应用DNA 同源重组原理发展起来的。胚胎干细胞(e m 2bry onic ste m cell ,ES 细胞)分离和体外培养的成功及哺乳动物细胞中同源重组的存在奠定了基因敲除 的技术基础和理论基础[1] 。基因敲除主要包括下列技术:①构建重组载体;②重组DNA 转入受体细 胞核内;③筛选目的细胞;④转基因动物。 基因敲除传统的重组载体主要有插入性载体系统和替换性载体系统。插入性载体系统构建载体时主要包括要插入的基因片段(目的基因)、同源序列片段、标志基因片段等成分,替换性载体系统主要包括同源序列片段、替换基因的启动子、报道基因等成分。基于正负双向筛选(positive and negative selecti on,P NS )策略的传统方法的基因敲除需要满足:对基因组提取处理用于构建载体;需要位于打靶区两翼的具有特异性和足够长度的同源片段,并便于用其作为探针用Southern 印迹证实;neo 基因(新霉素磷酸转移酶基因)的整合;同源重组区域外侧tk 基因(胸苷激酶基因)在随机重组时的活性;打靶结构外特异的基因探针;合适的酶切位点,

基因敲除技术样本

基因敲除技术 点击次数: 2605 发布日期: -5-25 来源: 本站仅供参考, 谢 绝转载, 否则责任自负 1.概述: 基因敲除是自80年代末以来发展起来的一种新型分子生物学技术, 是经过一定的途径使机体特定的基因失活或缺失的技术。一般意义上的基因敲除主要是应用DNA同源重组原理, 用设计的同源片段替代靶基因片段, 从而达到基因敲除的 目的。随着基因敲除技术的发展, 除了同源重组外, 新的原理和技术也逐渐被应用, 比较成功的有基因的插入突变和iRNA, 它们同样能够达到基因敲除的目的。2.实现基因敲除的多种原理和方法: 2.1.利用基因同源重组进行基因敲除 基因敲除是80年代后半期应用DNA同源重组原理发展起来的。80年代初, 胚胎干细胞( ES细胞) 分离和体外培养的成功奠定了基因敲除的技术基础。1985年, 首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到 1987年, Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型[1]。直到现在, 运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中最普遍的 使用方法。 2.1.1利用同源重组构建基因敲除动物模型的基本步骤(图1):

图1.基因同源重组法敲除靶基因的基本步骤 a.基因载体的构建: 把目的基因和与细胞内靶基因特异片段同源的DNA 分子 都重组到带有标记基因(如neo 基因, TK 基因等)的载体上, 成为重组载体。基因敲除是为了使某一基因失去其生理功能, 因此一般设计为替换型载体。 b.ES 细胞的获得: 现在基因敲除一般采用是胚胎干细胞, 最常见的是鼠, 而兔, 猪, 鸡等的胚胎干细胞也有使用。常见的鼠的种系是129及其杂合体, 因为这类小鼠具有自发突变形成畸胎瘤和畸胎肉瘤的倾向, 是基因敲除的理想实验动物。而其它遗传背景的胚胎干细胞系也逐渐被发展应用。[2, 3] c.同源重组: 将重组载体经过一定的方式(电穿孔法或显微注射)导入同源的胚胎干细胞(ES cell)中, 使外源DNA与胚胎干细胞基因组中相应部分发生同源重组, 将重组载体中的DNA序列整合到内源基因组中, 从而得以表示。一般地, 显微注射命中率较高, 但技术难度较大, 电穿孔命中率比显微注射低, 但便于使用。[4,5] d.选择筛选已击中的细胞: 由于基因转移的同源重组自然发生率极低, 动物的重组概率为10-2~10-5, 植物的概率为10-4~10-5。因此如何从众多细胞中筛出真正发生了同源重组的胚胎干细胞非常重要。当前常见的方法是正负筛选法( PNS法) , 标记基因的特异位点表示法以及PCR法。其中应用最多的是PNS法。[6]

微生物基因敲除技术分析

微生物基因敲除技术分析 牟福朋 20071401105 山东大学生命科学学院 摘要:基因敲除技术是上个世纪80年代出现的新型分子生物学实验技术。到现在经过近30年的发展,已经出现了很多前沿技术。微生物由于它本身特有的性质一直成为基因敲除的热点。本文主要考察基因敲除技术的现状及其发展方向,并对基因敲除的应用提出自己的观点。关键词:基因敲除微生物前沿进展 一常规基因敲除 1 常规基因敲除的步骤 基因敲除的一般流程见图1。用引物扩增目的基因之后,使用内切酶切开基因,连入有相同粘性末端的抗生素基因如四环素抗性基因或者报告基因例如lacZ等;将载体转化入目的菌内,通过筛选,筛选出含有标记基因的菌株,然后要通过PCR等进行复证。 使用双标记法可以判断发生交换的次数。如果只发生第一次重组,则两个标记都会被插入宿主DNA中;而若发生了两次重组,则阴性标记会被丢失,细菌要么是野生型的,要么能检测到阳性标记。 图1 常规基因敲除的主要流程和机理 2 常规基因敲除的成功率分析 首先,DNA的同源重组频率不是很高。况且,此处要求发生两次同源重组,这使得重组概率大大下降。加长两端的同源序列有助于重组,但这样一来内切酶效率就得不到保证。这一问题解决的方法,主要是进行大量的培养,实验中,往往可以得到较多的敲除子。 第二,图中可以看出,在第一次重组和第二次重组之间,由于敲出基因载体的整个插入,基因仍然有一部分是完好的(载体的一段和宿主的另一端融合而成)。解决这一问题的方法已如前述:即引入两个标记。 3 常规基因敲除的主要缺点 ①速度慢,效率低。基因敲除需要一般的基因工程方法来进行转化和表达,周期较长,在这个过程中载体是关键;

基因敲除小鼠技术

转基因、基因敲入/敲除动物技术已经成为现代生命科学基础研究和药物研发领域不可或缺的重要技术,该技术从上世纪七八十年代诞生以来,已有近四十年的历史,经典技术如DNA原核显微注射、胚胎干细胞显微注射技术一直以来经久不衰,并逐渐从基 础研究实验室转向商业模式,成为一项高度标准化的新兴产业 一、技术介绍与研究进展 转基因、基因敲入/敲除动物技术已经成为现代生命科学基础研究和药物研发领域不可或缺的重要技术,该技术从上世纪七八十年代诞生 以来,至今已有近四十年的历史,经典技术如DNA原核显微注射、胚胎干细胞显微注射技术一直以来经久不衰,在小鼠模型构建方面日趋完善,并且如同剪切酶和抗体等 常规分子生物学试剂的制备技术一样,逐渐从基础研究实验室转向商业模式,成为一项高度标准化的新兴产业,催生了数以百计的创新药物和数以千计的优秀文章。尽管 如此,传统技术仍然存在一些难以克服的缺陷,如步骤繁琐、周期漫长、成功率低、费用高昂等,而ZFN和TALEN等新技术的出现,或有可能将这一局面彻底改变。 二、同源重组技术原理 基因敲除鼠技术是上世纪80年代中后期基于DNA同源重组的原理发展起来的,Capecchi和Smithies在1987年根据同源重组(homologous recombination)的原理,首次实现了ES的外源基因的定点整合(targeted integration),这一技术称为"基 因打靶"(gene targeting)或"基因敲除"(gene knockout),利用这种ES的显微注射就可以制作出基因敲出小鼠(KO Mice: knockout mice);由于这一工作,Capecchi 和Smithies于2007年与Evans分享了诺贝尔医学奖。 同源重组(homologous recombination)定义:是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。在基因敲除小鼠制作过程中,需要针对目的基因两端特异性片段设计带有相同片段的

基因敲除技术的发现及应用

个人自主学习研究报告 本次研讨方向:掌握基因概念的本质与演变过程 本人承担的具体学习研讨主题:80年代基因敲除技术的突破 基因敲除是自20世纪80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。此技术是由马里奥·卡佩奇、马丁·埃文斯与奥利弗·史密斯所开发,最初是以基因敲除小鼠(knockout mouse,昵称:KO mouse)完成实验,三人并因此获得2007诺贝尔医学奖。 1. 基因敲除技术简介 基因敲除(Gene knockout)是指一种遗传工程技术,针对某个序列已知但功能未知的序列,改变生物的遗传基因,令特定的基因功能丧失作用,从而使部分功能被屏障,并可进一步对生物体造成影响,进而推测出该基因的生物学功能。 它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。基因敲除借助分子生物学、细胞生物学和动物胚胎学的方法,通过胚胎干细胞这一特殊的中间环节将小鼠的正常功能基因的编码区破坏,使特定基因失活,以研究该基因的功能;或者通过外源基因来替换宿主基因组中相应部分,以便测定它们是否具有相同的功能,或将正常基因引入宿主基因组中置换突变基因以达到靶向基因治疗的目的。基因敲除是揭示基因功能最直接的手段之一。 2. 80年代实现基因敲除的原理和方法: 通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段,从而达到基因敲除的目的。随着基因敲除技术的发展,基因敲除技术有很多,如同源重组法、插入突变法、RNAI法。然而,在80年代,基因敲除是应用DNA同源重组原理发展起来的。该方法通过同源重组将外源基因定点整合入靶细胞基因组某一确定的位点,以达到定点修饰改造染色体上某一基因的目的,克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985年,首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型。直到现在,运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中最普遍的使用方法。 3. 基因敲除技术的前景 基因敲除技术现在以广泛的应用于各个领域并取得了快速的发展,应用此技术可以建立生物模型、培育新的生物品种、还可以用于疾病的分子机理研究和疾病的基因治疗等。80年代,基因工程技术是该世纪分子生物学史上的一个重大突破,而基因敲除技术则是另一重大飞跃。它为定向改造生物,培育新型生物提供了重要的技术支持。

基因敲除技术

基因敲除技术 1.概述: 基因敲除是自80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段,从而达到基因敲除的目的。随着基因敲除技术的发展,除了同源重组外,新的原理和技术也逐渐被应用,比较成功的有基因的插入突变和iRNA,它们同样可以达到基因敲除的目的。 2.实现基因敲除的多种原理和方法: 2.1. 利用基因同源重组进行基因敲除 基因敲除是80年代后半期应用DNA同源重组原理发展起来的。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985年,首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型[1]。直到现在,运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中最普遍的使用方法。 2.1.1利用同源重组构建基因敲除动物模型的基本步骤(图1): a. 基因载体的构建:把目的基因和与细胞内靶基因特异片段同源的DNA 分子都重组到带有标记基因(如neo 基因,TK 基因等)的载体上,成为重组载体。基因敲除是为了使某一基因失去其生理功能,所以一般设计为替换型载体。 b.ES 细胞的获得:现在基因敲除一般采用是胚胎干细胞,最常用的是鼠,而兔,猪,鸡等的胚胎干细胞也有使用。常用的鼠的种系是129及其杂合体,因为这类小鼠具有自发突变形成畸胎瘤和畸胎肉瘤的倾向,是基因敲除的理想实验动物。而其他遗传背景的胚胎干细胞系也逐渐被发展应用。[2,3] c.同源重组:将重组载体通过一定的方式(电穿孔法或显微注射)导入同源的胚胎干细胞(ES cell)中,使外源DNA与胚胎干细胞基因组中相应部分发生同源重

基因敲除

基因敲除技术(组图) 一.概述: 基因敲除是自80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。通常意义上的基因敲除主要是应用DNA 同源重组原理,用设计的同源片段替代靶基因片段,从而达到基因敲除的目的。随着基因敲除技术的发展,除了同源重组外,新的原理和技术也逐渐被应用,比较成功的有基因的插入突变和iRNA ,它们同样可以达到基因敲除的目的。 二.实现基因敲除的多种原理和方法: 1.利用基因同源重组进行基因敲除 基因敲除是80年代后半期应用DNA 同源重组原理发展起来的。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985年,首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型[1]。直到现在,运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中最普遍的使用方法。 (1)利用同源重组构建基因敲除动物模型的基本步骤(图1): ①.基因载体的构建:把目的基因和与细胞内靶基因特异片段同源的DNA 分子都重组到带有标记基因(如neo 基因,TK 基因等)的载体上,成为重组载体。基因敲除是为了使某一基因失去其生理功能,所以一般设计为替换型载体。 ②.ES 细胞的获得:现在基因敲除一般采用是胚胎干细胞,最常用的是鼠,而兔,猪,鸡等的胚胎干细胞也有使用。常用的鼠的种系是129及其杂合体,因为这类小鼠具有自发突变形成畸胎瘤和畸胎肉瘤的倾向,是基因敲除的理想实验动物。而其他遗传背景的胚胎干细胞系也逐渐被发展应用。[2,3] ③.同源重组:将重组载体通过一定的方式(电穿孔法或显微注射)导入同源的胚胎干细胞(ES cell)中,使外源DNA 与胚胎干细胞基因组中相应部分发生同源重组,将重组载体中的DNA 序列整合到内源基因组中,从而得以表达。一般地,显微注射命中率较高,但技术难度较大,电穿孔命中率比显微注射低,但便于使用。[4,5] ④.选择筛选已击中的细胞:由于基因转移的同源重组自然发生率极低,动物的重组概率为10-2 ~10-5 ,植物的概率为10-4 ~10-5 。因此如何从众多细胞中筛出真正发生了同源重组的胚胎干细胞非常重要。目前常用的方法是正负筛选法(PNS法),标记基因的特异位点表达法以及PCR 法。其中应用最多的是PNS法。[6]

基因敲除三大技术对比

基因敲除三大技术对比 技术名称优势局限性可提供服务类型 基于胚胎干细胞的同源重组技术成熟、可靠、精细是目前 为止唯一一个可以满足所 有要求的打靶技术 1)需要ES细胞,目前只有 小鼠有高效的ES细胞,其它 模式动物的ESC还不能实现 大规模应用。 2)周期长、工作量大、费用 相对比较高 1)全基因敲除模式小鼠 2)条件性基因敲除模式小鼠 3)先全敲除再条件性敲除模 式小鼠 4)基因敲入模式小鼠 5)ROSA位点定点转基因 TALEN技术基因敲除效率高,速度快, 可实现多物种基因敲除基因敲入效率较低,多基因敲 除困难,系统构建相对复杂, 存在脱靶风险 1)全基因敲除大/小鼠 2)全基因敲除细胞系 EGE系统基因敲除/敲入效率高,速 度快,可实现多基因、多 物种基因敲除/敲入,系统 构建简单存在脱靶风险,但通过选择合 适的sgRNA可以有效降低脱 靶率,In vivo脱靶可通过传 代去除 1)全基因/条件性基因敲除大 /小鼠 2)全基因/条件性报告基因敲 除/敲入大/小鼠 3)CRISPR/Cas9粒构建 4)细胞系敲除/敲入

免疫类 B-NSG小鼠:Biocytogen-NOD-SCID-IL2rg B-NSG小鼠是NOD遗传背景,Prkdc和IL2rg双基因敲除的小鼠,是目前国际公认的免疫缺陷程度最高、最适合人源细胞或组织移植的工具小鼠。 基本特征 ?NOD(non-obese diabetes)遗传背景:自发I型糖尿病;其巨噬细胞对人源细胞吞噬作用弱;先天免疫系统,如补体系统和树突状细胞功能降低。 ?Prkdcscid :Prkdc(protein kinase DNA-activated catalytic)基因突变,小鼠的功能性T 和B细胞缺失,淋巴细胞减少,表现为细胞免疫和体液免疫的重度联合免疫缺陷(severe combined immune deficiency, scid)。 ?Il2rgnull:Interleukin-2受体的gamma链(IL-2R γc,又称CD132)位于小鼠X染色体上,是具有重要免疫功能的细胞因子Il2、Il-4、Il-7、Il-9、Il-15和I-21的共同受体亚基,该基因敲除后的小鼠机体免疫功能严重降低,尤其是NK细胞的活性几乎丧失。 B-NSG小鼠:综合了NOD-SCID-IL2rg背景特征,具有重度免疫缺陷表型,无成熟T细胞、B 细胞和功能性NK细胞,细胞因子信号传递能力缺失等。非常适合人造血干细胞及外周血单核细胞的移植和生长。 优点 ?迄今世界上免疫缺陷程度最高的工具小鼠; ?与NOD-scid小鼠相比寿命更长,平均长达1.5年; ?对人源细胞和组织几乎没有排斥反应; ?少量细胞即可成瘤,依赖于细胞系或细胞类型; ?无B淋巴细胞泄漏。

基因敲除技术及其进展

基因敲除技术研究进展及其在代谢工程 上的应用 The Current Status of Gene Knockout and its Application in Metabolic Engineering 天津大学化工学院 二零壹六年六月

摘要 基因敲除技术是20世纪80年代发展起来一项重要的分子生物学技术,在微生物代谢工程,动植物改造以及功能基因研究方面具有广泛的应用。本文介绍了基因敲除的策略和在代谢工程中的作用,着重介绍了四种新兴的基因敲除策略:RNAi,ZFN,TALENs以及最近研究火热的CRISPR/Cas9。并在最后展望了基因敲除技术尤其是新兴技术在相关领域的发展趋势,为基因敲除技术的进一步发展提供了参考。 关键词:基因敲除代谢工程同源重组CRISPR/Cas9

ABSTRACT Gene Knockout is an important molecular biotechnology which has developed sine 1980. It has been proved efficient in microbial metabolic engineering, transform of nimals and plants and functional genomics. In this review, we mainly introduced the strategies of gene knockout and its application in metabolic engineering.And four new strategies RNAi, ZFN, TALENs and CRISPR/Cas9 were highlighted in detail. At last, developing frontiers and application prospects of gene knockout were further discussed. KEY WORDS:gene knockout,metabolic engineering,homologous recombination,CRISPR/Cas9

基因敲除技术

基因敲除技术研究进展综述 摘要:基因敲除在20世纪80年代发展起来后已经应用到许多领域, 如建立人类疾病的转基因动物模型(糖尿病转基因小鼠、神经缺损疾病模型等)。这些疾病模型的建立使研究者可以在动物体内进行疾病的研究: 研究发育过程中各个基因的功能, 研究治疗人类遗传性疾病的途径。 关键字:基因敲除;Cre/LoxP系统;基因载体;生物模型 1.概述: 基因敲除又称为基因打靶, 是指从分子水平上将一个基因去除或替代, 然后从整体观察实验动物,推测相应基因功能的实验方法,是功能基因组学研究的重要研究工具。是自80年代末以来发展起来的一种新型分子生物学技术。 通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段,从而达到基因敲除的目的。随着基因敲除技术的发展,除了同源重组外,新的原理和技术也逐渐被应用,比较成功的有基因的插入突变和iRNA,它们同样可以达到基因敲除的目的。 基因敲除已成为当前医学和生物学研究的最热点与最前沿, 并已对生物学和医学的许多研究领域产生深刻的影响, 成为革命性的研究工具, 具有极其重要的理论意义和实践意义。 基于基因敲除技术对医学生物学研究做出的重大贡献,在该领域取得重大进展的三位科学家,70岁的美国人马里奥?卡佩奇(Mario Capecchi)、82岁的美国人奥利弗?史密西斯(Oliver Smithies)和66岁的英国人马丁?埃文斯(Martin Evans)分享了2007年诺贝尔生理学或医学奖。 2.基因敲出技术发展历史 80年代末期的基因敲除技术为第一代技术,属完全性基因敲除,不具备时间和区域特异性。关于第二代区域和组织特异性基因敲除技术的研究始于1993年。Tsien等于1996年在《Cell》首先报道了第一个脑区特异性的基因敲除动物,被誉为条件性基因敲除研究的里程碑。该技术以Cre/LoxP系统为基础,Cre在哪种组织细胞中表达,基因敲除就发生在哪种组织细胞中。 2000年Shimizu等[于《Science》报道了以时间可调性和区域特异性为标志的

相关文档
最新文档