崇阳县一中2018-2019学年上学期高三数学10月月考试题

合集下载

崇阳县第一中学2018-2019学年上学期高三数学10月月考试题

崇阳县第一中学2018-2019学年上学期高三数学10月月考试题

崇阳县第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米2. 已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .3. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .4. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.5. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.6. 已知双曲线(a >0,b >0)的一条渐近线方程为,则双曲线的离心率为( )A .B .C .D .7. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数D .标准差8. 定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .⎡⎢⎣⎦B .[]1,1-C .⎤⎥⎣⎦D .⎡-⎢⎣⎦ 9. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .410.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④ 11.图1是由哪个平面图形旋转得到的( )A .B .C .D . 12.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.二、填空题13.(lg2)2+lg2•lg5+的值为 .14.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 . 15.若的展开式中含有常数项,则n 的最小值等于 .16.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.三、解答题17.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yy af x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.18.(本小题满分12分)如图四棱柱ABCD -A 1B 1C 1D 1的底面为菱形,AA 1⊥底面ABCD ,M 为A 1A 的中点,AB =BD =2,且△BMC 1为等腰三角形.(1)求证:BD ⊥MC 1;(2)求四棱柱ABCD -A 1B 1C 1D 1的体积.19.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若2x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.20.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc . (Ⅰ)求A 的大小;(Ⅱ)如果cosB=,b=2,求a 的值.21.24.(本小题满分10分)选修4-5:不等式选讲.已知函数f(x)=|x+1|+2|x-a2|(a∈R).(1)若函数f(x)的最小值为3,求a的值;(2)在(1)的条件下,若直线y=m与函数y=f(x)的图象围成一个三角形,求m的范围,并求围成的三角形面积的最大值.22.已知矩阵A=,向量=.求向量,使得A2=.崇阳县第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,设A处观测小船D的俯角为30°,连接BC、BDRt△ABC中,∠ACB=45°,可得BC=AB=30米Rt△ABD中,∠ADB=30°,可得BD=AB=30米在△BCD中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD2=BC2+BD2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.2.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C.【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.3.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.4.【答案】C5.【答案】B6.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.7.【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.8.【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.9.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.10.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D . 11.【答案】A 【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念. 12.【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A.二、填空题13.【答案】 1 .【解析】解:(lg2)2+lg2•lg5+=lg2(lg2+lg5)+lg5=lg2+lg5=1,故答案为:1.14.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力. 由(1,4)λμ+=-a b 得124λμλμ-+=-⎧⎨+=⎩,∴21λμ=⎧⎨=⎩,①错误;a 与b 不共线,由平面向量基本定理可得,②正确;记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确;由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴12λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,∴④正确;设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴21331133x y x yλμ⎧=-+⎪⎪⎨⎪=+⎪⎩,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一条线段且线段的两个端点分别为(2,4)、(2,2)-,其长度为15.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r (x 6)n ﹣r ()r =C n r =C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.16.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.0001()x x k f x e-'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23. 三、解答题 17.【答案】【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.18.【答案】【解析】解:(1)证明:如图,连接AC,设AC与BD的交点为E,∵四边形ABCD为菱形,∴BD⊥AC,又AA1⊥平面ABCD,BD⊂平面ABCD,∴A1A⊥BD;又A1A∩AC=A,∴BD⊥平面A1ACC1,又MC1⊂平面A1ACC1,∴BD⊥MC1.(2)∵AB=BD=2,且四边形ABCD是菱形,∴AC =2AE =2AB 2-BE 2=23,又△BMC 1为等腰三角形,且M 为A 1A 的中点,∴BM 是最短边,即C 1B =C 1M .则有BC 2+C 1C 2=AC 2+A 1M 2,即4+C 1C 2=12+(C 1C 2)2, 解得C 1C =463, 所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C=12AC ×BD ×C 1C =12×23×2×463=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2.19.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.20.【答案】【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.21.【答案】【解析】解:(1)f (x )=|x +1|+2|x -a 2|=⎩⎪⎨⎪⎧-3x +2a 2-1,x ≤-1,-x +2a 2+1,-1<x <a 2,3x -2a 2+1,x ≥a 2,当x ≤-1时,f (x )≥f (-1)=2a 2+2,-1<x <a 2,f (a 2)<f (x )<f (-1),即a 2+1<f (x )<2a 2+2,当x ≥a 2,f (x )≥f (a 2)=a 2+1,所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2.(2)当a =±2时,由(1)知f (x )=⎩⎪⎨⎪⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积最大,此时面积为12×|3-(-1)|×|6-3|=6.22.【答案】=【解析】A 2=. 设=.由A 2=,得,从而 解得x =-1,y =2,所以=。

崇阳县一中2018-2019学年高三上学期11月月考数学试卷含答案

崇阳县一中2018-2019学年高三上学期11月月考数学试卷含答案

崇阳县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 复数=( )A .B .C .D .2. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m ∥l ,m ⊥α,则l ⊥α;②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ;④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m .其中正确命题的个数是( )A .1B .2C .3D .43. 奇函数f (x )在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,则f (6)+f (﹣3)的值为( )A .10B .﹣10C .9D .154. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( )A .第一象限B .第二象限C .第三象限D .第四象限5. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( )A .1B .7C .﹣7D .﹣56. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为()A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)7. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B .C .D .8. 年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20163名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,,,按分20350500150层抽样的方法,应从青年职工中抽取的人数为( )A. B. C. D.56710【命题意图】本题主要考查分层抽样的方法的运用,属容易题.9. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )A .1B .2C .3D .410.若a >b ,则下列不等式正确的是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.a3>b3C.a2>b2D.a>|b|11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(acosB+bcosA)=2csinC,a+b=8,且△ABC的面积的最大值为4,则此时△ABC的形状为()A.等腰三角形B.正三角形C.直角三角形D.钝角三角形12.设集合M={x|x2﹣2x﹣3<0},N={x|log2x<0},则M∩N等于()A.(﹣1,0)B.(﹣1,1)C.(0,1)D.(1,3)二、填空题13.已知数列{a n}中,2a n,a n+1是方程x2﹣3x+b n=0的两根,a1=2,则b5= .14.设i是虚数单位,是复数z的共轭复数,若复数z=3﹣i,则z•= .15.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x2+1的图象可由y=3x2的图象向上平移1个单位得到;④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号)16.若函数f(x)=﹣m在x=1处取得极值,则实数m的值是 . 17.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为 .18.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .三、解答题19.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.20.(本小题满分10分)选修4­1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D.(1)求证:CD=DA;(2)若CE=1,AB=,求DE的长.221.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:AD⊥BC(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.22.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表:甲单位8788919193乙单位8589919293(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.23.已知曲线C1的参数方程为曲线C2的极坐标方程为ρ=2cos(θ﹣),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(1)求曲线C2的直角坐标方程;(2)求曲线C2上的动点M到直线C1的距离的最大值.24.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.(1)求数列{a n}、{b n}的通项公式;(2)设c n=,求{c n}的前n项和S n.崇阳县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A B CBCDCCAB题号1112答案AC二、填空题13. ﹣1054 .14. 10 .15. ③⑤ 16. ﹣217. .18. {(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1} .三、解答题19. 20.21.22.(1),,,,甲单位对法律知识的掌握更稳定;(2).90=甲x 90=乙x 5242=甲s 82=乙s 2123. 24.。

崇阳县高级中学2018-2019学年高二上学期第一次月考试卷数学

崇阳县高级中学2018-2019学年高二上学期第一次月考试卷数学

崇阳县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .2. 已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为A 、B 、2C 、3D 、43. 设集合( )A .B .C .D .4. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.5. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .46. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除7. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92D .4 8. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 9. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .710.在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件11.函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.12.若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( )A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]二、填空题13.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60︒角;④DM 与BN 是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .16()23k x =-+有两个不等实根,则的取值范围是 .17.若函数y=ln (﹣2x )为奇函数,则a= .18.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .三、解答题19.设集合A={x|0<x ﹣m <3},B={x|x ≤0或x ≥3},分别求满足下列条件的实数m 的取值范围. (1)A ∩B=∅; (2)A ∪B=B .20.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.21.已知集合A={x|2≤x ≤6},集合B={x|x ≥3}. (1)求C R (A ∩B );(2)若C={x|x ≤a},且A ⊆C ,求实数a 的取值范围.22.已知函数f (x )=x|x ﹣m|,x ∈R .且f (4)=0 (1)求实数m 的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.23.函数。

崇阳县实验中学2018-2019学年上学期高三数学10月月考试题

崇阳县实验中学2018-2019学年上学期高三数学10月月考试题

崇阳县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .2. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°3. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直4. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8 C .6 D .45. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .2 6. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )7. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,48. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150°9. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( )A .S 18=72B .S 19=76C .S 20=80D .S 21=8410.阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120二、填空题11.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .12.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.13.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .14.等比数列{a n }的公比q=﹣,a 6=1,则S 6= . 15.设()xxf x e =,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.16.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .三、解答题17.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.18.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.19.在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 为BB 1中点. (Ⅰ)证明:AC ⊥D 1E ;(Ⅱ)求DE 与平面AD 1E 所成角的正弦值;(Ⅲ)在棱AD 上是否存在一点P ,使得BP ∥平面AD 1E ?若存在,求DP 的长;若不存在,说明理由.20.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力21.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD.(1)求证:A′C∥平面BDE;(2)求体积V A′﹣ABCD与V E﹣ABD的比值.22.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.崇阳县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.2. 【答案】A【解析】解:根据余弦定理可知cosA=∵a 2=b 2+bc+c 2, ∴bc=﹣(b 2+c 2﹣a 2)∴cosA=﹣ ∴A=120° 故选A3. 【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 4. 【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r •x 3n ﹣4r ,则∵二项式(x 3﹣)n(n ∈N *)的展开式中,常数项为28,∴,∴n=8,r=6.故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.5. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 6. 【答案】B【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题, 可推出¬p 为假命题,q 为假命题, 故为真命题的是p ∨q , 故选:B .【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真.7. 【答案】C 【解析】考点:茎叶图,频率分布直方图. 8. 【答案】A【解析】解:∵sinC=2sinB ,∴c=2b ,∵a 2﹣b 2=bc ,∴cosA===∵A 是三角形的内角 ∴A=30° 故选A .【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.9. 【答案】【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.S 19=19a 1+19×18d2=19(a 1+9d )=76,同理S 20,S 21均不恒为常数,故选B. 10.【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .二、填空题11.【答案】 3x ﹣y ﹣11=0 .【解析】解:设过点P (4,1)的直线与抛物线的交点 为A (x 1,y 1),B (x 2,y 2),即有y 12=6x 1,y 22=6x 2,相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2), 即有k AB ====3,则直线方程为y ﹣1=3(x ﹣4), 即为3x ﹣y ﹣11=0.将直线y=3x ﹣11代入抛物线的方程,可得 9x 2﹣72x+121=0,判别式为722﹣4×9×121>0, 故所求直线为3x ﹣y ﹣11=0. 故答案为:3x ﹣y ﹣11=0.12.【答案】1,e⎛⎤-∞ ⎥⎝⎦【解析】结合函数的解析式:122e e 1x x y +=+可得:()()122221'1x x x e e y e +-=+, 令y ′=0,解得:x =0,当x >0时,y ′>0,当x <0,y ′<0,则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],结合函数的解析式:()()R lnxf x x a a x =+-∈可得:()22ln 1'x x f x x-+=,x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数()ln xf x x a x x =+-=. 设()ln x g x x =,求导()21ln 'xg x x-=, 当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e=, 当x →0时,a →-∞, ∴a 的取值范围1,e⎛⎤-∞ ⎥⎝⎦.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到. 13.【答案】2【解析】解:设f (x )=﹣,则f (x )为奇函数,所以函数f (x )的最大值与最小值互为相反数,即f (x )的最大值与最小值之和为0. 将函数f (x )向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣(x ∈R )的最大值与最小值的和为2. 故答案为:2.【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.14.【答案】 ﹣21 .【解析】解:∵等比数列{a n }的公比q=﹣,a 6=1,∴a 1(﹣)5=1,解得a 1=﹣32,∴S 6==﹣21故答案为:﹣2115.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.001()x x k f x e-'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23. 16.【答案】 {0,1} .【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1, 故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.三、解答题17.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤.试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;考点:不等式选讲.18.【答案】(1)详见解析;(2)3λ=.【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM , ∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分19.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.20.【答案】【解析】(Ⅰ)根据题中的数据计算:()2 240050170301506.2580320200200⨯⨯-⨯K==⨯⨯⨯因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关(Ⅱ)由已知得抽样比为81=8010,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3a b c d e,选取2人共有{},a b,{},a c,{},a d,{},a e,{},1a,{},2a,{},3a,{},b c,{},b d,{},b e,{},1b,{},2b,{},3b,{},c d,{},c e,{},1c,{},2c,{},3c,{},d e,{},1d,{},2d,{},3d,{},1e,{},2e,{},3e,{}1,2,{}1,3,{}2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为189=2814P=.21.【答案】【解析】(1)证明:设BD 交AC 于M ,连接ME . ∵ABCD 为正方形,∴M 为AC 中点, 又∵E 为A ′A 的中点, ∴ME 为△A ′AC 的中位线, ∴ME ∥A ′C .又∵ME ⊂平面BDE ,A ′C ⊄平面BDE , ∴A ′C ∥平面BDE .(2)解:∵V E ﹣ABD ====V A ′﹣ABCD .∴V A ′﹣ABCD :V E ﹣ABD =4:1.22.【答案】(1) 7a =;(2) 310P =. 【解析】试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于86分的学生共五人,写出基本事件共10个,可得恰有两名为女生的基本事件的个数,则其比值为所求.其中恰有2名学生是女生的结果是(96,93,87),(96,91,87),(96,90,87)共3种情况. 所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率310P =.1 考点:平均数;古典概型.【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好.。

崇阳县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

崇阳县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

崇阳县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________则几何体的体积为()4意在考查学生空间想象能力和计算能)A.k>7 B.k>6 C.k>5 D.k>43.由小到大排列的一组数据x1,x2,x3,x4,x5,其中每个数据都小于﹣1,则样本1,x1,﹣x2,x3,﹣x4,x5的中位数为()A.B.C.D.4.已知集合M={x|x2<1},N={x|x>0},则M∩N=()A.∅B.{x|x>0} C.{x|x<1} D.{x|0<x<1}可.5.已知函数()sinf x a x x=关于直线6xπ=-对称, 且12()()4f x f x⋅=-,则12x x+的最小值为A、6πB、3πC、56πD、23π6.已知向量=(﹣1,3),=(x,2),且,则x=()A.B.C.D.7.下列命题中正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”C.“”是“”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是“”8.已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为()A.﹣i B.i C.1 D.﹣19.设实数,则a、b、c的大小关系为()A.a<c<b B.c<b<a C.b<a<c D.a<b<c10.如图,在正方体1111ABCD A B C D-中,P是侧面11BB C C内一动点,若P到直线BC与直线11C D的距离相等,则动点P的轨迹所在的曲线是()A1CA BA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.11.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .312.若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <0二、填空题13.方程22x ﹣1=的解x= .14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .15.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .16.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

城区高中2018-2019学年上学期高三数学10月月考试题(3)

城区高中2018-2019学年上学期高三数学10月月考试题(3)

城区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在极坐标系中,圆的圆心的极坐标系是( )。

ABC D2. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)3. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .414. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .324356. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象,则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1129. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能12.双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大共6小题,共70分。

新县一中2018-2019学年上学期高三数学10月月考试题

新县一中2018-2019学年上学期高三数学10月月考试题

新县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( )A .8B .5C .9D .27 2. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力. 3. 执行如图所示的程序框图,若输入的x 的值为2,则输出的x 的值为( )A .3B .126C .127D .1284. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 5. 已知全集U R =,{|239}x A x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð6. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <07. 已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .8. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .39. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .10.设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .411.执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .204812.已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .58二、填空题13.已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集 是 ▲ .14.若执行如图3所示的框图,输入,则输出的数等于 。

10月月考科数学答案.docx

10月月考科数学答案.docx

高2018届高三10月月考 数学(文科)答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBCABABDDCBD二、填空题三.解答题解:(I ) v b = acosC + ^^asin C 3•••由正眩定理得,sin B 二 sin AcosC + ^^sin Asin C 3••• sin A cos C + cos AsinC = sin A cos C +即tan A =希,又v A G (0,龙),・・.4 =彳(II)由余弦定理得,3 = b 2+c 2 -2&CCOS-, 3即(b + c 『-3bc = 3,又・"c = 2, ・・・b + c = 3, AABOltJ 周长为3+7718、证明:(I )如图,取丹中点於,连结伽MN.•••酬是△况P 的屮位线,MN// 2牝,且必仁2 BC./ /— / / 依题意得,AD= 2 BC,则有AD= MN・•・四边形AMND 是平行四边形,・・・ND// AM ••FZEffi/专必 4WU 而 B4B,・•・ND//面PAB(ID 是刖的中点, ••川到面肋m 的距离等于戶到而刀的距离的一半,且川丄面力仇"二4,・•・三棱锥N-ACD 的高是2.在等腰△川%'屮,犹=4広3,於4,比边上的高为肘炉=亦•13、2 14、2 16. V3 17、 TsinAsinCBC//AD,・・・C到AD的距离为厉,—x2xV5=V5・•・ S/\AD(= 2-xV5x2=-V5・・・三棱锥N-ACD的体积是3 3 .19、(1)由于图中所有小矩形的面积之和等于1,所以10X (0. 005+0. 01+0. 02+a+0. 025+0. 01) = 1.解得a=0. 03(2)根据频率分布直方图,成绩不低于60分的频率为1-10X (0. 005+0. 01)=0. 85由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60 分的人数约为640X0. 85=544人(3)成绩在[40, 50)分数段内的人数为40X 0. 05=2人,分别记为A, B,成绩在[90, 100]分数段内的人数为40X0. 1=4人,分别记为C, D, E, F.若从数学成绩在[40, 50)与[90, 100]两个分数段内的学生中随机选取两名学生,则所有的基本事件有:(A, B), (A, C), (A, D), (A, E), (A, F), (B, C), (B, D), (B, E), (B, F), (C, D), (C, E), (C, F), (D, E),( D, F), (E, F)共15 种.…(9 分)如果两名学生的数学成绩都在[40, 50)分数段内或都在[90, 100]分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40, 50)分数段内,另一个成绩在[90, 100]分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.记“这两名学生的数学成绩之差的绝对值不大于10”为事件则事件M包含的基本事件有:2_(A, B), (C, D), (C, E), (C, F), (D, E), (D, F), (E, F)共7 种.所以所求概率为P (M)=15.2 2 r 2 o20•解・・(1)・.・宀斧宁〒••宀偌・・•椭圆过点(2^2,0)・・・/ =&b2=2(2)设1的方程为y二*兀+加代入椭圆方程中整理得兀彳+ 2fwc + 2m2 -4 = 0Xj 4- x2 = -2m, x t x2 = 2m2一4□= 4m2一4(2m2 -4) >0 /. m2 < 4则川创二Jscdm2)p点到直线】的距敵老・・・5弓爷・7^応后(4曲/ + i =2当II仅当m?=2,即m二±阿寸取得最人值2 21、解:(I ) f(兀)的定义域为(0卄),f\x) = --a.X 若d50,则f\x) > 0 ,所以/(兀)在(0,4-00)单调递增.若a>0,则当兀丘0,—时,I a丿f\x) > 0 ;当兀w丄,2时,\ci丿fXx) < o.所以/(兀)在I o,-|MI a)(\ \调递增,在厶+OO单调递减.& 丿(II)由(I)知,当aSO时,/(x)在(0, + oo)无最大值;当c>0时,/(X)在兀二丄取得a最大值,最大值为/(丄) = ln丄+ /1—丄]=—lM + d —1.a a v a)因此/(-) >2a-2等价于In d + ° -1 v 0・a令g(d) = lna + d — l ,则g(d)在(0, + oo)单调递增,g(l) = O.于是,当O VGV I时,g(a)vO;当a>l 时,g(a)>0.因此,Q的取值范围是(0,1).22、解:(I)由曲线C的极坐标方程得:p2 + 2p2 sin2 & = 3 ,・・・曲线C的直角坐标方程为手+心, 直线/的普通方程为:y-x = 6.仃I)设曲线C 上任意一点卩为(巧cos/sina),则23、解析:(I )当 a ■二3 时,f (x) =|x "4-2x, x<l即有 f (x) =< 2, l=Cx<3 ,2x - 4, x 》3即有 OWxVl 或 3WxW4 或 1 WxV3, 则为0WxW4, 则解集为[0, 4];(II)依题意知,f (x) =|x-a| + |x - 1| 22 恒成立, ・・・2Wf (x) min ;由绝对值三角不等式得:f(x)=|x ・a| + |x ・l|$| (x-a) + (l-x) | = |l-a|, 即 f (x) “n 二I 1 - a| , |1 - a| ^2,即 a- 1^2 或a-lW-2, 解得a^3或aW - 1.・•・实数a 的取值范围是[3, +oo )u ( - co, - i ].点P 到直线/的距离为〃=V^cosa — sina + 62cOS (6Z+—) + 63| + |x - 11,不等式f (x) W4即为X <14 - 2x^4 J 2x - 4<4X>3或 J3L2<4。

崇阳县第一中学2018-2019学年上学期高三期中数学模拟题

崇阳县第一中学2018-2019学年上学期高三期中数学模拟题

崇阳县第一中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合A ={x |x =2n -1,n ∈Z },B ={x |(x +2)(x -3)<0},则A ∩B =( ) A .{-1,0,1,2} B .{-1,1} C .{1}D .{1,3}2. 已知集合A={x ∈Z|(x+1)(x ﹣2)≤0},B={x|﹣2<x <2},则A ∩B=( ) A .{x|﹣1≤x <2} B .{﹣1,0,1} C .{0,1,2}D .{﹣1,1}3. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20484. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 5. 若直线:1l y kx =-与曲线C :1()1e xf x x =-+没有公共点,则实数k 的最大值为( ) A .-1 B .12C .1 D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.6. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力. 7. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题. 8. 设为全集,是集合,则“存在集合使得是“”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分也不必要条件9. 如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD10.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D211.已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.12.设函数()log |1|a f x x =-在(,1)-∞上单调递增,则(2)f a +与(3)f 的大小关系是( ) A .(2)(3)f a f +> B .(2)(3)f a f +< C. (2)(3)f a f += D .不能确定二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________. 14.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.已知函数2()ln log 1f x a x b x =++,(2016)3f =,则1()2016f =___________. 三、解答题(本大共6小题,共70分。

崇阳县高级中学2018-2019学年上学期高三数学10月月考试题

崇阳县高级中学2018-2019学年上学期高三数学10月月考试题

崇阳县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .12 2. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q∆的面积等于( )A .B .C .2 D .43. 设函数()log |1|a f x x =-在(,1)-∞上单调递增,则(2)f a +与(3)f 的大小关系是( )A .(2)(3)f a f +>B .(2)(3)f a f +< C. (2)(3)f a f += D .不能确定4. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8 C .6 D .45. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣26. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2D .2 57. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( )A .{1}-B .{1}C .{-D . 8. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米9. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x y =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 10.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .11.(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .12.复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.14.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 .15.设函数f (x )=若f[f (a )],则a 的取值范围是 .16.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.三、解答题(本大共6小题,共70分。

高三数学上册10月月考测试题1.doc

高三数学上册10月月考测试题1.doc

巴市中学-第一学期10月份月考高 三 数 学(文科) 试卷类型 A说明: 1.本试卷分第I 卷和第II 卷两部分,共150分。

2.将第I 卷选择题答案代号用2B 铅笔填在答题卡上。

第I 卷(选择题 共60分)一、选择题(5分×12=60分)每小题给出的四个选项只有一项正确 1. 已知{}1M x x =<,{}21xN x =>,则MN = ( )A.∅B.{}0x x < C.{}1x x < D.{}01x x << 2.有下列四个命题①“若x +y =0,则x 、y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题。

其中真命题为 ( ) A .①② B. ①③ C .②③ D .③④ 3.“12x -<成立”是“(3)0x x -<成立”的 ( ) A .充分不必要条件B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 4.函数y =的定义域为 ( )A. ()1,1-B. (]1,1-C. ()4,1--D. ()4,1-5.当10<<a 时,在同一坐标系中,函数x y a y a xlog ==-与的图象是( )D6.等差数列{a n }中,a 5 + a 7 = 16,a 3 = 4,则a 9 = ( )yA .25B .24C. 12 D .87.在等比数列{}n a 中,92=a ,2435=a ,则{}n a 的前4项和为( ) A .81 B .1 C .168 D .1928.若等差数列{}n a 的前7项和28S 7=,且23=a ,则10a = ( ) A .15 B .16 C .17 D .18 9.不等式230ax ax +-<的解集为R ,则a 的取值范围是 ( ) A .120a -≤< B .12a >- C .120a -<≤ D .0<a10.设S n 是等差数列{}n a 的前n 项和,且 87665S S S S S >=<,,则下列结论错误的是( )A. 59S S >B.07=aC. d<0D.S 6和S 7均为S n 的最大值11.已知()f x 在R 上是奇函数,且)()4(x f x f =+,当()2,0∈x 时22)(x x f =,则=)7(f ( )A .-98B .98C .-2D .212.设函数2()()f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线斜率为( ) A. 4 B. 14-C. 2D.12- 第II 卷(非选择题 共90分)二、填空题(5分×4=将最后结果直接填在横线上.13. 计算2lg 25lg 2lg 50(lg 2)+⋅+= ;14.已知等比数列{}n a ,且,12321=++a a a ,18654=++a a a 则987a a a ++= ;15.已知(3)1)()log (1)a a x a x f x x x --<⎧=⎨≥⎩ ( 是R 上的增函数,则实数a 的取值范围是 ;16.若数列{}n a 是等差数列,前n 项和为S n ,9535=a a ,则59S S = .三、解答题(10分+12分+12分+12分+12分+12分=70分)17.求函数12(0)x y x -=<的反函数.18. 已知函数bax x x f +=2)((a ,b 为常数),且方程f(x)-x+12=0有两个实根,分别为x 1=3, x 2=4,求函数f(x)的解析式.19.已知等差数列{}n a 满足24354,10a a a a +=+=,求它的前10项和.知数列{}n a 的前n 项和n S 满足3log (2)1n S n +=+,求通项公式n a .21.已知函数2()(1)()f x x x a =++(a 为实数),若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围.22.已知a ∈R ,函数()3211232f x x ax ax =-++(x ∈R ). (Ⅰ)当1a =时,求函数()f x 的单调递增区间;(Ⅱ)若函数()f x 能在R 上单调递减,求出a 的取值范围;若不能,请说明理由; (Ⅲ)若函数()f x 在[]1,1-上单调递增,求a 的取值范围.高 三 数学(文科)参考答案18.解:依题意,得 012)12()1(2=+-+-b x b a x a 此方程有两根3和4,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--≠-12112711201ab a ba a 解之得⎩⎨⎧=-=21b a2)(2+-=x x x f ∴19.解:由已知得⎩⎨⎧=+=+106244211d a d a解之得⎩⎨⎧=-=341d a∴95291010110=⨯+=d a S :1)2(log 3+=+n S n231-=∴+n n S1=n 时,711==S a2≥n 时,n n n n S S a 321⋅=-=- 1=n 时,761≠=a∴数列的通项公式为⎩⎨⎧≥⋅==2,321,7n n a nn22. 解: (Ⅰ) 当1a =时,()3211232f x x x x =-++, 2()2f x x x '∴=-++. … 2分令()0f x '>,即220x x -++>,即220x x --<,解得12x -<<.∴函数()f x 的单调递增区间是()1,2-. …… 4分(Ⅱ) 若函数()f x 在R 上单调递减,则()0f x '≤对x ∈R 都成立,即220x ax a -++≤对x ∈R 都成立, 即220x ax a --≥对x ∈R 都成立.280a a ∴∆=+≤, …… 7分 解得80a -≤≤.∴当80a -≤≤时, 函数()f x 在R 上单调递减. …… 9分。

2019届高三10月月考数学(文)试题(7).docx

2019届高三10月月考数学(文)试题(7).docx

一.选择题(本大题共12个小题,每小题5分,共60分)1.设集合/1 = {刎无 >一1}, B = {x\-2<x<2\,则A B =(A)[x\x>-2](B) {兀|兀>一1} (C) |x|-2<x<—1} (D) [x\-l<x<2]2.已知命题对任意x w R,总有X2 -x+l>0 ;则卜列命题为真命题的是4•已知函数f(x) = lnx + ln(2-x),则y = f(x)的图像关于点(1, 0)对称3', x<r则/(/(2))=一兀,X > 16•设兀wR,贝9 “Ovxv3” 是“F_4X +3<0”的7.设a = 60,7, b = 0.76 , c = logQ7 6 ,则a, b , c 的大小关系为(A) b> c> a(B) b> a> c(C) c> a> b(D) a> b> c&若Z^=lo»(2v+l)>则/(x)的定义域为2(\ \ ( 1 A ( i A ( i A(A) 一一,0 (B) 一一,+oo (C) 一一,0 u(0,+oo) (D) 一一,29 9 9 ' 丿9g:若a2 < b29贝>J 6/ < Z?.(A) Wq(C) -i/7 A -\C[(D) P"3.设集合A={x X2-4X+3^0}, B二{x|2x - 3W0},A. ( - g, 1]U[3, +8)B. [1, 3]C. 23则AUB=(一8,才U [3, + 00D.A. f(x)在(0, 2)单调递增B. f(x)在(0, 2)单调递减C. y = f(x)的图像关于直线x=l对称D.5.函数fM =(A) 9 (B) 6 (c)?(D) -2(A)充分不必要条件(B)必要不充分条件(D)既不充分也不必要条(A) (B) (C)(D)10. 已知函数/*(兀)在R 上是奇函数,且满足/(%)= /(X+4),当X G (0,2)时, f(x) = 2x\ 则/(7)=(A) -2(B) 212•己知定义在只上的函数f(x),若f(x)是奇函数,f(x+l)是偶函数,当OSxG 时, /(x) = X 2,贝i"(2(H5) =A. -1B. 1C. 0D. 20152二.填空题(本大题共4小题,每小题5分,共20分)13. _________________________________________ 命题“X/;cvl,lgx>2”的否定是 ______________________________________________ ・14. 函数y = lg(x-3) + ~^=的定义域为 _______ ・ V4-x15. 已知f(x) = ax 2+ bx+2015满足f(-l) = f(3),贝ljf(2) = ____ .16 •已知/(X )= l-|lgx|,则函数丿=2[/(x)]2 - 3/(%) 4-1的零点个数为 _________ 三•解答题(17题10分,18-22题每题12分,共70分) 17. 计算下列各式的值:] 了 ]、-2 了 7()(I ) (0.027)'5—— + 2- _(血-1); 17丿I 9丿(II) log s 25 + lg-^ + lnV^ + 2,o§23. 10018. 已矢nA={x|a+l<x<2a-l}, B= {x|xs3或x>5}・(1 )若a = 4,求ADB ;(2)若ACB,求的取值范围.19. 已知函数(其中爲,方为常量且日>0, aHl)的图象经过点J(l, 6),5(3, 24),(C) -98 (D) 98 11. 设定义在上的奇函数/(x)满足, 对任意X p X 2 G (0,+8), 口兀[H %都有 .心)-/(花) >0,且 /⑵=0,则不等式3疋土2/(叭。

崇阳县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

崇阳县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

崇阳县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n D .m ∥α,α∩β=n ,则m ∥n2. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .3. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 4. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 不能被5整除 D .a ,b 有1个不能被5整除5. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β6. 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是( )A .8cm 2B . cm 2C .12 cm 2D .cm 27. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x8. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+9. 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?10.设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .011.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪N B .(∁U M )∩N C .M ∩(∁U N ) D .(∁U M )∩(∁U N )12.已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)二、填空题13.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.14.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .15.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b . 16由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.17.多面体的三视图如图所示,则该多面体体积为(单位cm ) .18.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______. 三、解答题19.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?20.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.21.在数列{a n }中,a 1=1,a n+1=1﹣,b n =,其中n ∈N *.(1)求证:数列{b n }为等差数列;(2)设c n =b n+1•(),数列{c n }的前n 项和为T n ,求T n ;(3)证明:1+++…+≤2﹣1(n ∈N *)22.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC ∆的面积取值范围为,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.23.已知函数f (x )=|2x+1|+|2x ﹣3|. (Ⅰ)求不等式f (x )≤6的解集;(Ⅱ)若关于x 的不等式f (x )﹣log 2(a 2﹣3a )>2恒成立,求实数a 的取值范围.24.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.崇阳县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】D【解析】解:A 选项中命题是真命题,m ⊥α,m ⊥β,可以推出α∥β;B 选项中命题是真命题,m ∥n ,m ⊥α可得出n ⊥α;C 选项中命题是真命题,m ⊥α,n ⊥α,利用线面垂直的性质得到n ∥m ;D 选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D .【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.2. 【答案】D【解析】古典概型及其概率计算公式. 【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C 93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D .【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单. 3. 【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212n n n na S d a n n n -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d , 2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 4. 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”的否定是“a ,b 都不能被5整除”.故应选B .【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.5. 【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D 6. 【答案】C【解析】解:由已知可得:该几何体是一个四棱锥, 侧高和底面的棱长均为2,故此几何体的表面积S=2×2+4××2×2=12cm 2,故选:C .【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键.7. 【答案】D 【解析】考点:直线方程 8. 【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1 9. 【答案】 B【解析】解:模拟执行程序框图,可得 i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s 的,则判断框中应填入的条件是i ≤4. 故选:B .【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.10.【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 11.【答案】B【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4}, ∴∁U M={0,1}, ∴N ∩(∁U M )={0,1}, 故选:B .【点评】本题主要考查集合的子交并补运算,属于基础题.12.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.二、填空题13.【答案】9【解析】14.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高 由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.15.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2==.16.【答案】 .【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=﹣,所以=x ﹣,当x=8时,y=,估计他的年推销金额为万元.故答案为:.【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.17.【答案】cm 3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P ﹣ABC .该几何体可以看成是两个底面均为△PCD ,高分别为AD 和BD 的棱锥形成的组合体,由几何体的俯视图可得:△PCD 的面积S=×4×4=8cm 2,由几何体的正视图可得:AD+BD=AB=4cm ,故几何体的体积V=×8×4=cm 3,故答案为:cm 3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.18.【答案】e【解析】考查函数()()20{x x x f x ax lnx+≤=-,其余条件均不变,则: 当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有ln xa x =有且只有一个实根。

崇阳县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

崇阳县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

崇阳县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设D 为△ABC 所在平面内一点,,则()A .B .C .D .2. 将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A .B .﹣C .﹣D .3. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .4. 设集合,,则( )AB C D5. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()6. 双曲线的左右焦点分别为,过的直线与双曲线的右支交于()222210,0x y a b a b-=>>12F F 、2F 两点,若是以为直角顶点的等腰直角三角形,则( )A B 、1F AB ∆A 2e =A .B .C .D.1+4-5-3+7. 已知全集为,且集合,,则等于( )R }2)1(log |{2<+=x x A }012|{≥--=x x x B )(B C A R A .B .C .D .)1,1(-]1,1(-)2,1[]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.8. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.或36+C.36﹣D.或36﹣9.求值:=()A.tan 38°B.C.D.﹣10.曲线y=e x在点(2,e2)处的切线与坐标轴所围三角形的面积为()A.e2B.2e2C.e2D.e211.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.2160B.2880C.4320D.864012.已知函数f(x)是定义在R上的奇函数,若f(x)=,则关于x的方程f(x)+a=0(0<a<1)的所有根之和为()A.1﹣()a B.()a﹣1C.1﹣2a D.2a﹣1二、填空题13.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:①若m=,则a5=2;②若 a 3=3,则m 可以取3个不同的值;③若 m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 . 14.设函数f (x )=若f[f (a )],则a 的取值范围是 .15.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

2018届高三上学期10月份月考数学试卷(文科) Word版含解析)

2018届高三上学期10月份月考数学试卷(文科) Word版含解析)

2018届高三上学期10月份月考试卷数学(文科)一.选择题:本大题共8小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|﹣2<x<2,x∈R},那么集合A∩B是()A.∅B.{x|0<x<1,x∈R} C.{x|﹣2<x<2,x∈R} D.{x|﹣2<x<1,x∈R}2.i是虚数单位,计算=()A.﹣1 B.1 C.i D.﹣i3.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的()A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也不必要条件4.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)5.已知数列{an }中,an=﹣4n+5,等比数列{bn}的公比q满足q=an﹣an﹣1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=()A.1﹣4n B.4n﹣1 C.D.6.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C()A.a<b<c B.a<c<b C.b<a<c D.c<a<b7.已知函数y=logb(x﹣a)(b>0且b≠1)的图象如图所示,那么函数y=a+sinbx的图象可能是()A.B.C.D.8.若存在负实数使得方程2x﹣a=成立,则实数a的取值范围是()A .(2,+∞)B .(0,+∞)C .(0,2)D .(0,1)二.填空题(本大题共4个小题,每小题5分,共20分.)9.向量=(1,1),=(2,t ),若⊥,则实数t 的值为 . 10.在△ABC 中,若cos2B+3cos (A+C )+2=0,则sinB 的值为 .11.已知tan (+α)=,α∈(,π),则tan α的值是 ;cos α的值是 .12.已知角α的终边经过点(3a ,4a )(a <0),则cos α= .13.通项公式为a n =an 2+n 的数列{a n },若满足a 1<a 2<a 3<a 4<a 5,且a n >a n+1对n ≥8恒成立,则实数a 的取值范围是 .14.已知函数f (x )=对∀x 1,x 2∈R ,x 1≠x 2有<0,则实数a 的取值范围是 .三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 15.已知S n 为等差数列{a n }的前n 项和,且a 3=S 3=9 (Ⅰ)求{a n }的通项公式;(Ⅱ)若等比数列{b n }满足b 1=a 2,b 4=S 4,求{b n }的前n 项和公式.16.已知函数f (x )=sin ωx ﹣sin 2+(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f (x )的单调递增区间;(Ⅱ)当时,求函数f (x )的取值范围.17.在△ABC 中,A=,cosB=,BC=6.(Ⅰ)求AC 的长;(Ⅱ)求△ABC 的面积.18.设数列{a n }的前n 项和为S n ,且a 1=1,a n+1=1+S n (n ∈N *). (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }为等差数列,且b 1=a 1,公差为.当n ≥3时,比较b n+1与1+b 1+b 2+…+b n 的大小.19.已知f (x )=lg (﹣<x ,1).(I ) 判断f (x )的奇偶性,并予以证明;(Ⅱ)设f ()+f ()=f (x 0),求x 0的值.(Ⅲ)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ().20.设函数y=f (x )的定义域为R ,满足下列性质:(1)f (0)≠0;(2)当x <0时,f (x )>1;(3)对任意的实数x ,y ∈R ,有f (x+y )=f (x )f (y )成立. (I ) 求f (0)及f (x )*f (﹣x )的值;(Ⅱ)判断函数g (x )=是否具有奇偶性,并证明你的结论;(Ⅲ)求证:y=f (x )是R 上的减函数;(Ⅳ)若数列{a n }满足a 1=f (0),且f (a n+1)=(n ∈N *),求证:{a n }是等差数列,并求{a n }的通项公式.2017届高三上学期10月份月考数学试卷(文科)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|﹣2<x<2,x∈R},那么集合A∩B是()A.∅B.{x|0<x<1,x∈R} C.{x|﹣2<x<2,x∈R} D.{x|﹣2<x<1,x∈R}【考点】交集及其运算.【分析】先求解一元二次不等式化简集合A,然后直接利用交集的运算求解.【解答】解:由x(x﹣1)<0,得0<x<1.所以A={x|x(x﹣1)<0,x∈R}={x|0<x<1},又B={x|﹣2<x<2,x∈R},所以A∩B={x|0<x<1,x∈R}∩{x|﹣2<x<2,x∈R}={x|0<x<1,x∈R}.故选B.2.i是虚数单位,计算=()A.﹣1 B.1 C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】通过复数的分母实数化,即可得到结果.【解答】解: ===i.故选:C.3.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的()A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也不必要条件【考点】平面向量共线(平行)的坐标表示;平行向量与共线向量.【分析】利用向量共线的充要条件求出的充要条件,利用充要条件的定义判断出“x=2”是的充分但不必要条件.【解答】解:依题意,∥⇔3﹣(x﹣1)(x+1)=0⇔x=±2,所以“x=2”是“∥”的充分但不必要条件;故选A4.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f (x )=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C .5.已知数列{a n }中,a n =﹣4n+5,等比数列{b n }的公比q 满足q=a n ﹣a n ﹣1(n ≥2),且b 1=a 2,则|b 1|+|b 2|+…+|b n |=( )A .1﹣4nB .4n ﹣1C .D .【考点】数列的求和.【分析】先由a n =﹣4n+5及q=a n ﹣a n ﹣1求出q ,再由b 1=a 2,求出b 1,从而得到b n ,进而得到|b n |,根据等比数列前n 项和公式即可求得|b 1|+|b 2|+…+|b n |.【解答】解:q=a n ﹣a n ﹣1=(﹣4n+5)﹣[﹣4(n ﹣1)+5]=﹣4,b 1=a 2=﹣4×2+5=﹣3,所以=﹣3•(﹣4)n ﹣1,|b n |=|﹣3•(﹣4)n ﹣1|=3•4n ﹣1,所以|b 1|+|b 2|+…+|b n |=3+3•4+3•42+…+3•4n ﹣1=3•=4n ﹣1,故选B .6.设a=log 0.80.9,b=log 1.10.9,c=1.10.9,则a ,b ,c 的大小关系是C ( ) A .a <b <c B .a <c <b C .b <a <c D .c <a <b 【考点】对数值大小的比较.【分析】利用指数与对数函数的单调性即可得出.【解答】解:∵0<a=log 0.80.9<1,b=log 1.10.9<0,c=1.10.9>1, ∴b <a <c . 故选:C .7.已知函数y=log b (x ﹣a )(b >0且b ≠1)的图象如图所示,那么函数y=a+sinbx 的图象可能是( )A.B.C.D.【考点】函数的图象.【分析】先根据对数函数的图象和性质象得到a,b的取值范围,再根据正弦函数的图得到答案.【解答】解∵由对数函数图象可知,函数为增函数,∴b>1,(x﹣a)函数的图象过定点(a+1,0),y=logb∴a+1=2,∴a=1∴函数y=a+sinbx(b>0且b≠1)的图象,是有y=sinbx的图象向上平移1的单位得到的,由图象可知函数的最小正周期T=<2π,故选:B8.若存在负实数使得方程2x﹣a=成立,则实数a的取值范围是()A.(2,+∞)B.(0,+∞)C.(0,2)D.(0,1)【考点】特称命题.【分析】由已知,将a分离得出a=.令f(x)=,(x<0).a的取值范围为f(x)在(﹣∞,0)的值域.【解答】解:由已知,将a分离得出a=.令f(x)=,(x<0).已知在(﹣∞,0)上均为增函数,所以f(x)在(﹣∞,0)上为增函数.所以0<f(x)<f(0)=2,a的取值范围是(0,2).故选C.二.填空题(本大题共4个小题,每小题5分,共20分.)9.向量=(1,1),=(2,t),若⊥,则实数t的值为﹣2 .【考点】平面向量的坐标运算.【分析】利用两个向量垂直的性质,两个向量数量积公式,可得=2+t=0,由此求得t的值.【解答】解:∵向量=(1,1),=(2,t),若⊥,则=2+t=0,t=﹣2,故答案为:﹣2.10.在△ABC中,若cos2B+3cos(A+C)+2=0,则sinB的值为.【考点】三角函数中的恒等变换应用.【分析】利用三角形内角和定理化简即可得到答案!【解答】解:∵B+A+C=π,∴A+C=π﹣B那么cos(A+C)=cos(π﹣B)=﹣cosB.则:cos2B+3cos(A+C)+2=0⇔cos2B﹣3cosB+2=0⇔2cos2B﹣1﹣3cosB+2=0⇔2cos2B﹣3cosB+1=0⇔(2cosB﹣1)(cosB﹣1)=0解得:cosB=1,此时B=0°,不符合题意.或cosB=,此时B=60°,符合题意.那么:sinB=sin60°=.故答案为:.11.已知tan(+α)=,α∈(,π),则tanα的值是﹣;cosα的值是﹣.【考点】两角和与差的正切函数;任意角的三角函数的定义.【分析】利用两角和与差的正切函数及任意角的三角函数的定义,即可求得tanα与cosα的值.【解答】解:tan(+α)=,∴tanα=tan[(+α)﹣]===﹣;又α∈(,π),∴cosα=﹣=﹣.故答案为:;.12.已知角α的终边经过点(3a,4a)(a<0),则cosα= ﹣.【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义,求得cos α的值. 【解答】解:∵角α的终边经过点(3a ,4a )(a <0),∴x=3a ,y=4a ,r==5|a|=﹣5a ,则cos α===﹣,故答案为:﹣.13.通项公式为a n =an 2+n 的数列{a n },若满足a 1<a 2<a 3<a 4<a 5,且a n >a n+1对n ≥8恒成立,则实数a 的取值范围是.【考点】数列递推式;数列的应用.【分析】由a n =an 2+n 是二次函数型,结合已知条件得,由此可知答案.【解答】解:∵a n =an 2+n 是二次函数型,且a 1<a 2<a 3<a 4<a 5,a n >a n+1对n ≥8恒成立,∴,解得﹣.故答案为:﹣.14.已知函数f (x )=对∀x 1,x 2∈R ,x 1≠x 2有<0,则实数a 的取值范围是 0≤a <1或a >3 . 【考点】分段函数的应用.【分析】由任意x 1≠x 2,都有<0成立,得函数为减函数,根据分段函数单调性的性质建立不等式关系即可.【解答】解:∵f (x )满足对任意x 1≠x 2,都有<0成立∴函数f (x )在定义域上为减函数,则满足,得0≤a <1或a >3,故答案为:0≤a <1或a >3.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 15.已知S n 为等差数列{a n }的前n 项和,且a 3=S 3=9 (Ⅰ)求{a n }的通项公式;(Ⅱ)若等比数列{b n }满足b 1=a 2,b 4=S 4,求{b n }的前n 项和公式. 【考点】等比数列的前n 项和;等差数列的通项公式.【分析】(Ⅰ)设等差数列{a n }的公差为d ,由a 3=S 3=9,得,解出a 1,d ,由等差数列通项公式即可求得答案;(Ⅱ)设等比数列{b n }的公比为q ,由b 1=a 2可得b 1,由b 4=S 4可得q ,由等比数列前n 项和公式可得答案; 【解答】解:(Ⅰ)设等差数列{a n }的公差为d . 因为a 3=S 3=9, 所以,解得a 1=﹣3,d=6,所以a n =﹣3+(n ﹣1)•6=6n﹣9; (II )设等比数列{b n }的公比为q ,因为b 1=a 2=﹣3+6=3,b 4=S 4=4×(﹣3)+=24,所以3q 3=24,解得q=2,所以{b n }的前n 项和公式为=3(2n ﹣1).16.已知函数f (x )=sin ωx ﹣sin 2+(ω>0)的最小正周期为π. (Ⅰ)求ω的值及函数f (x )的单调递增区间;(Ⅱ)当时,求函数f (x )的取值范围.【考点】二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的单调性.【分析】(Ⅰ)利用两角和的正弦公式,二倍角公式化简函数f (x )的解析式为,由此求得它的最小正周期.令,求得x 的范围,即可得到函数f (x )的单调递增区间.(Ⅱ)因为,根据正弦函数的定义域和值域求得函数f (x )的取值范围.【解答】解:(Ⅰ)==.… 因为f (x )最小正周期为π,所以ω=2.…所以.由,k ∈Z ,得.所以函数f (x )的单调递增区间为[],k ∈Z .…(Ⅱ)因为,所以,…所以.…所以函数f (x )在上的取值范围是[].…17.在△ABC 中,A=,cosB=,BC=6.(Ⅰ)求AC 的长;(Ⅱ)求△ABC 的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)由已知结合平方关系求得sinB=,再由正弦定理求得AC 的长;(Ⅱ)由sinC=sin (B+60°)展开两角和的正弦求得sinC ,代入三角形的面积公式求得△ABC 的面积.【解答】解:(Ⅰ)∵cosB=,B ∈(0,π),又sin 2B+cos 2B=1,解得sinB=.由正弦定理得:,即,∴AC=4;(Ⅱ)在△ABC 中,sinC=sin (B+60°)=sinBcos60°+cosBsin60°==.∴=.18.设数列{a n }的前n 项和为S n ,且a 1=1,a n+1=1+S n (n ∈N *). (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }为等差数列,且b 1=a 1,公差为.当n ≥3时,比较b n+1与1+b 1+b 2+…+b n 的大小.【考点】数列的求和;数列递推式.【分析】(I )由a n+1=1+S n (n ∈N *),当n ≥2时可得a n+1=2a n ,当n=1时,=2,利用等比数列即可得出;(II )利用等差数列的通项公式可得:b n =2n ﹣1.当n ≥3时,b n+1=2n+1.1+b 1+b 2+…+b n =n 2+1.通过作差即可比较出大小. 【解答】解:(I )∵a n+1=1+S n (n ∈N *), ∴当n ≥2时,a n =1+S n ﹣1, ∴a n+1﹣a n =a n ,即a n+1=2a n ,当n=1时,a 2=1+a 1=2,∴=2,综上可得:a n+1=2a n (n ∈N *),∴数列{a n }是等比数列,公比为2,∴.(II )数列{b n }为等差数列,且b 1=a 1=1,公差为=2.∴b n =1+2(n ﹣1)=2n ﹣1.当n ≥3时,b n+1=2n+1.1+b 1+b 2+…+b n =1+=n 2+1. ∴n 2+1﹣(2n+1)=n (n ﹣2)>0,∴b n+1<1+b 1+b 2+…+b n .19.已知f (x )=lg (﹣<x ,1).(I ) 判断f (x )的奇偶性,并予以证明;(Ⅱ)设f ()+f ()=f (x 0),求x 0的值.(Ⅲ)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f (). 【考点】函数奇偶性的判断;抽象函数及其应用.【分析】(I )利用奇偶性的定义,看f (﹣x )和f (x )的关系,注意到和互为倒数,其对数值互为相反数;也可计算f (﹣x )+f (x )=0得到结论.(Ⅱ)根据题意得到关于x 0的方程,解方程可得x 0的值;(Ⅲ)将a 与b 代入函数f (x )=lg (﹣<x ,1).求出f (a )+f (b )的值,然后计算出f ()的值,从而证得结论.【解答】解:(I )f (x )是奇函数,理由如下:f (x )的定义域为(﹣1,1)关于原点对称;又∵f (﹣x )=lg =﹣lg =﹣f (x ),所以f (x )为奇函数;(Ⅱ)∵f (x )=lg (﹣1<x <1).∴由f ()+f ()=f (x 0)得到:lg +lg =lg ,整理,得lg 3×2=lg ,∴=6,解得x 0=;(Ⅲ)证明:∵f (x )=lg(﹣<x ,1).∴f (a )+f (b )=lg +lg =lg •=lg ,f ()=lg =lg ,∴对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ().得证.20.设函数y=f (x )的定义域为R ,满足下列性质:(1)f (0)≠0;(2)当x <0时,f (x )>1;(3)对任意的实数x ,y ∈R ,有f (x+y )=f (x )f (y )成立.(I ) 求f (0)及f (x )*f (﹣x )的值;(Ⅱ)判断函数g (x )=是否具有奇偶性,并证明你的结论;(Ⅲ)求证:y=f (x )是R 上的减函数;(Ⅳ)若数列{a n }满足a 1=f (0),且f (a n+1)=(n ∈N *),求证:{a n }是等差数列,并求{a n }的通项公式.【考点】抽象函数及其应用.【分析】(I )令x=y=0得出f (0),令y=﹣x 得出f (x )f (﹣x )=f (0);(II )求出g (x )的定义域,计算g (﹣x )并化简得出结论;(III )设x 1<x 2,根据f (x 1)=f (x 1﹣x 2+x 2)=f (x 1﹣x 2)f (x 2)得出=f (x 1﹣x 2)>1,得出结论;(IV )根据f (﹣x )f (x )=1得出a n+1﹣a n ﹣2=0得出结论.【解答】解:(I )令x=y=0得f (0)=f 2(0),又f (0)≠0,∴f (0)=1.令y=﹣x 得f (x )f (﹣x )=f (0)=1.(II )∵f (x )f (﹣x )=1,∴f (﹣x )=, ∵x <0时,f (x )>1,∴x >0时,0<f (x )<1,由g (x )有意义得f (x )≠1,∴x ≠0,即g (x )的定义域为{x|x ≠0},关于原点对称.∴g (﹣x )====﹣g (x ), ∴g (x )是奇函数.证明:(III )设x 1<x 2,则x 1﹣x 2<0,∴f (x 1﹣x 2)>1, ∵f (x 1)=f (x 1﹣x 2+x 2)=f (x 1﹣x 2)f (x 2),∴=f (x 1﹣x 2)>1,∴f (x 1)>f (x 2),∴f (x )是R 上的减函数.(IV )∵f (a n+1)=,∴f (a n+1)f (﹣2﹣a n )=1, ∵f (x )f (﹣x )=1,∴a n+1﹣a n ﹣2=0,即a n+1﹣a n =2,又a 1=f (0)=1,∴{a n }是以1为首项,以2为公差的等差数列,∴a n =1+2(n ﹣1)=2n ﹣1.。

2019-2020中学高三上学期10月月考数学试题(解析版).docx

2019-2020中学高三上学期10月月考数学试题(解析版).docx

2019-2020中学高三上学期10月月考数学试题一、单选题A.{1,2,3,4} B.{1,2,3} C.{4,5} D .{1,4}【答案】A【解析】将阴影部分对应的集合的运算表示出来,然后根据集合AB 表示元素的范 围计算结果. 【详解】因为阴影部分是:A (C R B );又因为x (4—x )<0,所以x>4或x<0,所以B = {x|x )4或x<0},所以 C R B = {X |0<X <4},又因为 A = {1,2,3,4,51,所以 A (QB )= {1,2,3,4}, 故选:A. 【点睛】本题考查根据已知集合计算伽"图所表示的集合,难度较易.对于图中的阴影部 分首先要将其翻译成集合间运算,然后再去求解相应值.3.设a, b 是非零向量,是“a//b”的()4 3 . A. 1B. —1C.—I —I5 5【答案】D 【解析】【详解】由题意可得:忖=(¥ +3? = 5,且:乞=4一3几z 4-3/4 3 .据此有:旧-丁十一尹 本题选择D 选项.D.-3. —I52.若集合A = {1,2,3,4,5}傑合B = {x|x (4-x )<0}侧图中阴影部分表示()ZA.充分而不必要条件 C.充分必要条件【答案】A 【解析1 a-b =|a|-|Z?|cos^,Z?^ ,由已知得cos(a,b 〉= l,即仏巧=0,加/方.而当 a 〃Q 时,仏方)还可能是兀,此时a-b =-|®|j^|,故“a"=问”| ”是“a//b ”的充分 而不必要条件,故选A. 【考点】充分必要条件、向量共线.4. 设 a = log 4S,b = log 0A 8, c = 204,!S!l ()A.b<c<aB.c<b<aC.c<a<bD.b< a<c【答案】A【解析】根据指数函数、对数函数单调性比较数值大小. 【详解】因为 a = log 4 8 = ^-log 2 2 =扌’b = log 04 8 < log 041 = 0, c = 20'4< 20'5 = A /2 < 扌, 所以b<c<a , 故选:A. 【点睛】本题考查利用指、对数函数的单调性比较数值大小,难度一般•利用指、对数函数单调 性比较大小时,注意利用中间量比较大小,常用的中间量有:0,1.5. 若直线 lax-by + 2 = 0(a > 0,b > 0)被圆 x 2 + y 2+2x-4_y+ 1 = 0 截得弦长为 4,4 1一则—:的最小值是()a b1 1 A. 9B. 4C.-D.-24【答案】A 【解析】圆x2+ y 2 + 2x-4y + l = 0的标准方程为:(x+1) 2+ (y - 2) 2 =4,它表示以(-1, 2)为圆心、半径等于2的圆; 设弦心距为d,由题意可得22+d 2=4,求得d=0,可得直线经过圆心,故有-2a - 2b+2=0, 即a+b=l,再由a>0, b>0,可得B.必要而不充分条件 D.既不充分也不必要条件4 14 1I =(Ia ba b4Z? a4 ]当且仅当一=—时取等号,•••一 + 〒的最小值是9. a b a b故选:A.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表 示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.① 一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一 个为定值;③三相等:含变量的各项均相等,取得最值.6.函数/(%) = x 2-cos%在-彳冷 的图像大致是()【解析】先判断奇偶性,然后通过计算导函数在特殊点的导函数值正负来判断相应结果. 【详解】因为/ (兀)定义域关于原点对称且=- cos (-%) = X 2 - cos % = /(%),所以/(X )是偶函数,排除A 、C ;又因为/,(x) = x (2cosx-xsinx),所以【点睛】 本题考查函数图象的辨别,难度一般•辨别函数图象一般可通过奇偶性、单调性、特殊 点位置、导数值正负对应的切线斜率变化等来判断.7.如图,长方体 ABCD-A.B^D, ^,AA l =AB^2,AD = l,^E,F,G 分别是 D0, AB, CC,的中点,则异面直线与GF 所成角的余弦值是71所以“护对应的切线斜率大于零,所以排除D,)(a+b) =5+ —+ ->5+2 a b=9故选:B.【答案】D 【解析】以DA,DC,DD [所在直线为x,y,z 轴,建立空间直角坐标系,可得4疋和GF 的坐标,进而可得cos^EGF,从而可得结论. 【详解】以DA, DC, DD,所在直线为X, % z 轴,建立空间直角坐标系, 则可得 4(l,0,2),E (0,0,l ),G (0,2,l ),F (l,l,0),设异面直线4E 与GF 所成的角为0,【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角主要方法有两种: 一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向 量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位 线等方法找出两直线成的角,再利用平面几何性质求解.& 在AABC 中,ZA, ZB, ZC 的对边分别为 a, b, c, cos 2— =,贝U ABC2 2c的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】Byk h + C【解析】在△ ABC 中,利用二倍角的余弦与正弦定理可将已知cos?—=——,转化为2 2c cosA=^-,整理即可判断△ ABC 的形状.sinC【详解】 亠亠 c A b + c在AABC 中,Vcos2—=-------- , 2 2cD.O则 cos 0 = |cos 4E, GF | =-lxl + 0 + (-l )x (-l )72x^2=0, 故选D..l + cosA = sinB + sinC=j_ sinB+j_2 2sinC 2 sinC 2sinB an sinB・°・ 1+cosA = 1,艮卩cosA = ----- ,sinC sinCcosAsinC = sinB = sin (A+C) = sinAcosC+cosAsinC,:.sinAcosC=0, *.* sin A#),cosC=0,・・・c为直角.故选:B.【点睛】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用, 属于中档题.9.若函数f(x) = ^x2-2x + alnx有两个不同的极值点,则实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

崇阳县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1y x x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.2. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .3. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的164. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°5. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.6. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,7. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .8. 图 1是由哪个平面图形旋转得到的( )A .B .C .D . 9. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )10.直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .311.已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是( )A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④12.已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=二、填空题13.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.14.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .15.方程(x+y ﹣1)=0所表示的曲线是 .16.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .17.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.三、解答题18.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.(1)证明:平面AED ⊥平面BCDE ; (2)求二面角E ﹣AC ﹣B 的余弦值.19.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.20.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2)=3ab .(Ⅰ)求cos2C 和角B 的值; (Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.21.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点C 为圆O 上一点,CP 为圆的切线,CE 为圆的直径,3CP =.(1)若PE 交圆O 于点F ,165EF =,求CE 的长; (2)若连接OP 并延长交圆O 于,A B 两点,CD OP ⊥于D ,求CD 的长.22.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.23.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.24.(本小题满分12分) 已知函数2()xf x e ax bx =--.(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2x ∈时,()1f x <.崇阳县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B【解析】2. 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个, 所以共有4×6=24个,而在8个点中选3个点的有C 83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.3. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 4. 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ), 又∵A+B+C=180°, ∴sin (B+C )=sinA , 可得2sinAcosB=sinA , ∵sinA ≠0,∴2cosB=1,即cosB=, 则B=60°. 故选:A .【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.5. 【答案】D【解析】由已知得{}=01A x x <?,故A B =1[,1]2,故选D .6. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 7. 【答案】D【解析】解:由函数f (x )=sin 2(ωx )﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f (x )=﹣cos2x .若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象;再根据所得图象关于原点对称,可得2a=k π+,a=+,k ∈Z .则实数a 的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.8. 【答案】A 【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念. 9. 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成, ∴对应的集合表示为A ∩∁U B . 故选:A .10.【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .11.【答案】 D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ), 又图象②过定点(0,1),其对应函数只能是h (x ), 那图象④对应Φ(x ),图象③对应函数g (x ). 故选:D .【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.12.【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 二、填空题13.【答案】20172016【解析】根据程序框图可知,其功能是求数列})12)(12(2{+-n n 的前1008项的和,即 +⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 20172016.14.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.15.【答案】 两条射线和一个圆 .【解析】解:由题意可得x 2+y 2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y ﹣1)=0,可得x+y ﹣1=0,或 x 2+y 2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.16.【答案】 (﹣,) .【解析】解:∵,,设OC 与AB 交于D (x ,y )点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.17.【答案】15 (,)43三、解答题18.【答案】【解析】(1)证明:取ED的中点为O,由题意可得△AED为等边三角形,,,∴AC2=AO2+OC2,AO⊥OC,又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,∴平面AED⊥平面BCDE;…(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),,,,设面EAC的法向量为,面BAC的法向量为由,得,∴,∴,由,得,∴,∴,∴,∴二面角E﹣AC﹣B的余弦值为.…2016年5月3日x .19.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1【解析】(2 ,进而得1a =时为定值.试题解析:(1)设直线AB 的方程为2my x =-,由22,4,my x y x =-⎧⎨=⎩得2480y my --=,∴128y y =-, 因此有128y y =-为定值.111](2)设存在直线:x a =满足条件,则AC 的中点112(,)22x y E +,AC =,因此以AC 为直径圆的半径12r AC ===E 点到直线x a =的距离12||2x d a +=-,所以所截弦长为===当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题. 20.【答案】【解析】解:(I )由∵cosA=,0<A <π,∴sinA==, ∵5(a 2+b 2﹣c 2)=3ab ,∴cosC==,∵0<C <π,∴sinC==,∴cos2C=2cos 2C ﹣1=,∴cosB=﹣cos (A+C )=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B <π,∴B=.(II )∵=,∴a==c ,∵a ﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.21.【答案】(1)4CE =;(2)CD =. 【解析】试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,090CFE ∠=,所以ECP ∆∽EFC ∆,设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,所以2x =4x =.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 22.【答案】 【解析】∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,23.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦. (2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.24.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2(,)4ea ∈+∞时,有个公共点;(2)证明见解析. 【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x e a x=,构造函数2()xe h x x =,利用()'h x 求出单调性可知()h x 在(0,)+∞的最小值2(2)4e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1试题解析:当2(0,)4e a ∈时,有0个公共点;当24e a =,有1个公共点;当2(,)4e a ∈+∞有2个公共点.(2)证明:设2()1x h x e x x =---,则'()21x h x e x =--,令'()()21x m x h x e x ==--,则'()2x m x e =-,因为1(,1]2x ∈,所以,当1[,ln 2)2x ∈时,'()0m x <;()m x 在1[,ln 2)2上是减函数,当(ln 2,1)x ∈时,'()0m x >,()m x 在(ln 2,1)上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.。

相关文档
最新文档