《完全平方公式》ppt课件
合集下载
完全平方公式ppt课件
通过观察发现:(x+6)2=(-x-6)2 (2a-3b)2 =(3b-2a)2 思考:(a+b)2与(-a-b)2相等吗? 相等 相等 (a-b)2与(b-a)2相等吗?
想一想:
(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? 为什么?
∵ (a+b)2=a2+2ab+b2 (-a-b)2=(-a)2+2(-a)(-b)+(-b) 2=a2+2ab+b2 ∴ (a+b)2= (-a-b)2 ∵ (a-b)2=a2-2ab+b2 (b-a)2=b2-2ba+a2=a2-2ab+b2 ∴ (a-b)2=(b-a)2
x· 2y+(2y)2 解: (x+2y)2=x2+2· =x2+4xy+4y2 2 2 2 (a - b ) =a - 2 a b + b
2 2· x· 2y +( 2y ) (x - 2y =x2 - 4xy+4y2 22 x )=
运用完全平方公式计算:
2 (1)(4m+n)
解: (4m+n)2= (4m)2+2•(4m) •n +n2 (a
=10000-200+1=9801 利用完全平方公式计算: 1、先选择公式; 2、准确代入公式; 3、化简.
小结:
1、完全平方公式:(a+b)2= a2 +2ab+b2
(a-b)2= a2 - 2ab+b2
2 、两数和(或差)的平方,等于它们的平
方和,加(或减)它们的积的2倍。
3、注意:项数、符号、字母及其指数; 4、切勿把此公式与公式(ab)2= a2b2混淆, 而随意写成(a+b)2 =a2 +b2
想一想:
(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? 为什么?
∵ (a+b)2=a2+2ab+b2 (-a-b)2=(-a)2+2(-a)(-b)+(-b) 2=a2+2ab+b2 ∴ (a+b)2= (-a-b)2 ∵ (a-b)2=a2-2ab+b2 (b-a)2=b2-2ba+a2=a2-2ab+b2 ∴ (a-b)2=(b-a)2
x· 2y+(2y)2 解: (x+2y)2=x2+2· =x2+4xy+4y2 2 2 2 (a - b ) =a - 2 a b + b
2 2· x· 2y +( 2y ) (x - 2y =x2 - 4xy+4y2 22 x )=
运用完全平方公式计算:
2 (1)(4m+n)
解: (4m+n)2= (4m)2+2•(4m) •n +n2 (a
=10000-200+1=9801 利用完全平方公式计算: 1、先选择公式; 2、准确代入公式; 3、化简.
小结:
1、完全平方公式:(a+b)2= a2 +2ab+b2
(a-b)2= a2 - 2ab+b2
2 、两数和(或差)的平方,等于它们的平
方和,加(或减)它们的积的2倍。
3、注意:项数、符号、字母及其指数; 4、切勿把此公式与公式(ab)2= a2b2混淆, 而随意写成(a+b)2 =a2 +b2
公式法—完全平方公式 ppt课件
首2 2首尾 尾2
口诀: “首” 平方, “尾” 平方, “首” “尾”两倍中间放.
典例精析 例4 把下列各式因式分解 (1)3ax2+6axy+3ay2 解:(1)原式=3a(x2 +2xy +y2)
= 3a(x+y) 2
若多项式中有公因式,应 先提取公因式,然后再进
一步分解因式。
(2) -x2-4y2+4xy 解:(2)原式=-(x2+4y2-4xy )
当堂检测
1、下列各式中能用完全平方公式进行因式分解的是( D )
A.x2+x+1
B.x2+2x-1
C.x2-1
D.x2-6x+9
2、已知4x2+mx+36是完全平方式,则m的值为( D )
A.8
B.±8
C.24
D.±24
3.若m=2n+1,则m2-4mn+4n2的值是____1____. 4.若关于x的多项式x2-8x+m2是完全平方式,则m的值为____±__4_____ .
归纳总结
完全平方式首末有两项能写成两个数或两个式子的平方的形式, 且符号相同,中间项为这两个数或两个式子积的2倍.
典例精析
例3 把下列完全平方式因式分解:
(1)x2+14x+49;
(2)(m+n)2-6(m+n)+9.
解:(1)x2+14x+49 = x2+2×7x+72 = (x+7) 2 ;
乘法公式
①平方差公式 ②完全平方公式
新课讲授 把乘法公式 (a+b)2= a2+2ab+b2 , (a-b)2=a2-2ab+b2 反过来,就得到
a2+2ab+b2=(a+b)2 , a2-2ab+b2=(a-b)2
我们把a²+2ab+b²和a²-2ab+b²这样的式子叫作完全平方式.
口诀: “首” 平方, “尾” 平方, “首” “尾”两倍中间放.
典例精析 例4 把下列各式因式分解 (1)3ax2+6axy+3ay2 解:(1)原式=3a(x2 +2xy +y2)
= 3a(x+y) 2
若多项式中有公因式,应 先提取公因式,然后再进
一步分解因式。
(2) -x2-4y2+4xy 解:(2)原式=-(x2+4y2-4xy )
当堂检测
1、下列各式中能用完全平方公式进行因式分解的是( D )
A.x2+x+1
B.x2+2x-1
C.x2-1
D.x2-6x+9
2、已知4x2+mx+36是完全平方式,则m的值为( D )
A.8
B.±8
C.24
D.±24
3.若m=2n+1,则m2-4mn+4n2的值是____1____. 4.若关于x的多项式x2-8x+m2是完全平方式,则m的值为____±__4_____ .
归纳总结
完全平方式首末有两项能写成两个数或两个式子的平方的形式, 且符号相同,中间项为这两个数或两个式子积的2倍.
典例精析
例3 把下列完全平方式因式分解:
(1)x2+14x+49;
(2)(m+n)2-6(m+n)+9.
解:(1)x2+14x+49 = x2+2×7x+72 = (x+7) 2 ;
乘法公式
①平方差公式 ②完全平方公式
新课讲授 把乘法公式 (a+b)2= a2+2ab+b2 , (a-b)2=a2-2ab+b2 反过来,就得到
a2+2ab+b2=(a+b)2 , a2-2ab+b2=(a-b)2
我们把a²+2ab+b²和a²-2ab+b²这样的式子叫作完全平方式.
完全平方公式课件
金融行业
可以使用完全平方公式计算风险、定价等相关指标。
医疗行业
可以使用完全平方公式计算器械大小、管路长度等相关参数。
完全平方的历史发展
1
古希腊
毕达哥拉斯学派曾经在探索平方问题时提出完全平方的概念。
2
印度数学
印度的数学家们在完全平方的研究上有着重要的贡献。
3
近现代数学
完全平方公式的研究在近代数学中得到进一步的发展和运用。
完全平方公式与勾股定理的关系
勾股定理公式
a²+b²=c²,其中 c 为斜边,a 和 b 为两个直角 边。
完全平方公式的应用
可以将勾股定理问题转化为完全平方公式问题。
如何利用完全平方公式求解方程
1
转化
将一些无法直接求解的方程,转化为完
运算
2
全平方公式的形式。
将方程中变量的平方与常数合并起来,
运用完全平方公式进行相关计算。
完全平方公式的简化公式
a²+b²=(a+b)²-2ab
完全平方子序列问题
定义
在一个数列中,如果某一子序列的每一个数都是完 全平方,那么这个子序列就是完全平方子序列。
应用
完全平方子序列问题在组合数学、计算机科学等领 域均有重要应用。
完全平方函数及其性质
1 定义
形如f(x)=ax²+bx+c的函数称为完全平方函数。
=
(a+b+c)²
=
(a+b)²-a*b*2 (a+b)(a-b) a²+b²+c²+2ab+2bc+2ca
完全平方公式的例子
建筑中的应用
可以使用完全平方公式计算不规 则形状的空间面积。
可以使用完全平方公式计算风险、定价等相关指标。
医疗行业
可以使用完全平方公式计算器械大小、管路长度等相关参数。
完全平方的历史发展
1
古希腊
毕达哥拉斯学派曾经在探索平方问题时提出完全平方的概念。
2
印度数学
印度的数学家们在完全平方的研究上有着重要的贡献。
3
近现代数学
完全平方公式的研究在近代数学中得到进一步的发展和运用。
完全平方公式与勾股定理的关系
勾股定理公式
a²+b²=c²,其中 c 为斜边,a 和 b 为两个直角 边。
完全平方公式的应用
可以将勾股定理问题转化为完全平方公式问题。
如何利用完全平方公式求解方程
1
转化
将一些无法直接求解的方程,转化为完
运算
2
全平方公式的形式。
将方程中变量的平方与常数合并起来,
运用完全平方公式进行相关计算。
完全平方公式的简化公式
a²+b²=(a+b)²-2ab
完全平方子序列问题
定义
在一个数列中,如果某一子序列的每一个数都是完 全平方,那么这个子序列就是完全平方子序列。
应用
完全平方子序列问题在组合数学、计算机科学等领 域均有重要应用。
完全平方函数及其性质
1 定义
形如f(x)=ax²+bx+c的函数称为完全平方函数。
=
(a+b+c)²
=
(a+b)²-a*b*2 (a+b)(a-b) a²+b²+c²+2ab+2bc+2ca
完全平方公式的例子
建筑中的应用
可以使用完全平方公式计算不规 则形状的空间面积。
14.2.2 完全平方公式课件
你发现了什么?
a
(a+b)2=a2+2ab+b2
a
b
问题1:计算下列多项式的积,你能发现什么规律? (1) (p+1)2=(p+1)(p+1)= p2+2p+1 . (2) (m+2)2=(m+2)(m+2)= m2+4m+4 . (3) (p–1)2=(p–1)(p–1)= p2–2p+1 . (4) (m–2)2=(m–2)(m–2)= m2–4m+4 .
简记为: “首平方,尾平方,积的2倍放中央”
你能根据下面图形的面积说明完全平方公式吗?
证明 设大正方形ABCD的面积为S.
S1
S2
S3
S4
S= (a+b)2 =S1+S2+S3+S4= a2+b2+2ab .
几何解释
b
a
=
+
+
+
a
b
a2
ab
ab
b2
和的完全平方公式:
(a+b)2= a2+2ab+b2 .
4.由完全平方公式可知:32+2×3×5+52=(3+5)2=64, 运用这一方法计算:4.3212+8.642×0.679+0.6792= ____2_5___.归纳新知源自法则完全平 注 意 方公式
常用 结论
(a±b)2= a2±2ab+b2
1.项数、符号、字母及其指数
2.不能直接应用公式进行计算的式子,可能需要先添 括号变形成符合公式的要求才行 3.弄清完全平方公式和平方差公式不同(从公式结构 特点及结果两方面)
人教版《完全平方公式》PPT完美课件
八年级上册 RJ
14.2.2 完全平方公式
第2课时
初中数学
知识回顾
平方差公式: (a+b)(a-b)=a2-b2.
两个数的和与这两个数的差的积,等于这两个数的平方差. 完全平方公式:
(a+b)2=a2+2ab+b2 ,(a-b)2=a2-2ab+b2. 两个数的和(或差)的平方,等于它们的平方和,加
如果括号前面是正号,括到括号里的各项都不变符号
2.计算:
=a2+b2+c2+2ab+2ac+2bc .
a+(b+c)=_______;
(1)(3a+b-2)(3a-b+2); (1) (x+2y-3)(x-2y+3);
=a2+2ab+b2+2ac+2bc+c2
例1 运用乘法公式计算:
(2)(x-y-m+n)(x-y+m-n). 解:(2) (x-y-m+n)(x-y+m-n)
3.当x2-xy=18,xy-y2=-15时,求x2-2xy+y2的值. 解:x2-2xy+y2=x2-xy-xy+y2=(x2-xy)-(xy-y2). 因为x2-xy=18,xy-y2=-15, 所以x2-2xy+y2 =18-(-15)
=18+15 =33.
=x2-(2y-3)2
=(a+b) +2(a+b)c+c 2 a+(b+c)=_______;
有些整式相乘需要先作适当变形,然后再用Байду номын сангаас式.
2
[x+(2y-1)]2
14.2.2 完全平方公式
第2课时
初中数学
知识回顾
平方差公式: (a+b)(a-b)=a2-b2.
两个数的和与这两个数的差的积,等于这两个数的平方差. 完全平方公式:
(a+b)2=a2+2ab+b2 ,(a-b)2=a2-2ab+b2. 两个数的和(或差)的平方,等于它们的平方和,加
如果括号前面是正号,括到括号里的各项都不变符号
2.计算:
=a2+b2+c2+2ab+2ac+2bc .
a+(b+c)=_______;
(1)(3a+b-2)(3a-b+2); (1) (x+2y-3)(x-2y+3);
=a2+2ab+b2+2ac+2bc+c2
例1 运用乘法公式计算:
(2)(x-y-m+n)(x-y+m-n). 解:(2) (x-y-m+n)(x-y+m-n)
3.当x2-xy=18,xy-y2=-15时,求x2-2xy+y2的值. 解:x2-2xy+y2=x2-xy-xy+y2=(x2-xy)-(xy-y2). 因为x2-xy=18,xy-y2=-15, 所以x2-2xy+y2 =18-(-15)
=18+15 =33.
=x2-(2y-3)2
=(a+b) +2(a+b)c+c 2 a+(b+c)=_______;
有些整式相乘需要先作适当变形,然后再用Байду номын сангаас式.
2
[x+(2y-1)]2
完全平方公式公开课ppt课件
应用示例
如将表达式$(x+5)^2$展开,得到 $x^2 + 10x + 25$,比原式更为简 洁,方便后续的代数运算。
解决实际问题
总结词
应用示例
完全平方公式不仅在数学领域有广泛 应用,还能够帮助解决实际生活中的 问题。
如利用完全平方公式解决物理中的自 由落体问题,通过建立数学模型,求 出物体落地时的速度和位移。
批判性思维
03
在学习和应用完全平方公式的过程中,学生可以通过分析和评
价不同的方法和思路,培养批判性思维。
06
总结与展望
本节课的总结
完全平方公式的定义和形式
本节课介绍了完全平方公式的定义和形式,包括平方差公式和完 全平方公式,并通过实例进行了演示和讲解。
完全平方公式的应用
重点讲解了完全平方公式在代数、几何等领域的应用,包括因式分 解、求根公式、一元二次方程的解法等。
条件二
需要满足二次项系数为1的条件。在完全平方公式 中,二次项系数必须为1,否则无法应用完全平方 公式进行简化。
04
完全平方公式的应用实例
代数表达式化简
总结词
完全平方公式在代数表达式化简 中具有重要作用,能够简化复杂 的代数式,提高计算效率和准确
性。
详细描述
通过完全平方公式,可以将复杂的 二次项和一次项组合转化为简单的 平方形式,从而简化代数表达式的 结构,方便计算和推导。
完全平方数的个位数特征
个位数是0、1、4、5、6、9的数不一定是完全平方数, 但个位数是2、3、7、8的数一定是完全平方数。
完全平方公式的形式
完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和 $(a-b)^2 = a^2 - 2ab + b^2$
如将表达式$(x+5)^2$展开,得到 $x^2 + 10x + 25$,比原式更为简 洁,方便后续的代数运算。
解决实际问题
总结词
应用示例
完全平方公式不仅在数学领域有广泛 应用,还能够帮助解决实际生活中的 问题。
如利用完全平方公式解决物理中的自 由落体问题,通过建立数学模型,求 出物体落地时的速度和位移。
批判性思维
03
在学习和应用完全平方公式的过程中,学生可以通过分析和评
价不同的方法和思路,培养批判性思维。
06
总结与展望
本节课的总结
完全平方公式的定义和形式
本节课介绍了完全平方公式的定义和形式,包括平方差公式和完 全平方公式,并通过实例进行了演示和讲解。
完全平方公式的应用
重点讲解了完全平方公式在代数、几何等领域的应用,包括因式分 解、求根公式、一元二次方程的解法等。
条件二
需要满足二次项系数为1的条件。在完全平方公式 中,二次项系数必须为1,否则无法应用完全平方 公式进行简化。
04
完全平方公式的应用实例
代数表达式化简
总结词
完全平方公式在代数表达式化简 中具有重要作用,能够简化复杂 的代数式,提高计算效率和准确
性。
详细描述
通过完全平方公式,可以将复杂的 二次项和一次项组合转化为简单的 平方形式,从而简化代数表达式的 结构,方便计算和推导。
完全平方数的个位数特征
个位数是0、1、4、5、6、9的数不一定是完全平方数, 但个位数是2、3、7、8的数一定是完全平方数。
完全平方公式的形式
完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和 $(a-b)^2 = a^2 - 2ab + b^2$
14.2.2完全平方公式-ppt课件
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
完全平方公式的文字叙述:
两数和(或差)的平方,等于它们
的平方和,加(或减)它们的积的2倍 。
第6页,共33页。
(a+首b平)2方= ,a2尾+平2a方b,+b2
公式特点:
(a乘-b积)2的=2a倍2 放- 中2a央b+。b2
∴ (a+b)2= (-a-b)2 ∵ (a-b)2=a2-2ab+b2
(b-a)2=b2-2ba+a2=a2-2ab+b2 ∴ (a-b)2=(b-a)2
第17页,共33页。
做一做:根据两数和的完全平方公式填空.
(1)(x+6)2=( x )2+2( x )( 6 )+( 6 )2
=( x2+12x+36
第33页,共33页。
(2) 992= (100-1)2=1002-2×100×1+12
=10000-200+1=9801
利用完全平方公式计算:
1、先选择公式; 2、准确代入公式; 3、化简.
第16页,共33页。
想一想:
(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? 为什么?
∵ (a+b)2=a2+2ab+b2 (-a-b)2=(-a)2+2(-a)(-b)+(-b) 2=a2+2ab+b2
(7)已知 x+y=4,xy =-13, 求: x2 3xy y 2 的值.
第23页,共33页。
拓展思维
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
完全平方公式的文字叙述:
两数和(或差)的平方,等于它们
的平方和,加(或减)它们的积的2倍 。
第6页,共33页。
(a+首b平)2方= ,a2尾+平2a方b,+b2
公式特点:
(a乘-b积)2的=2a倍2 放- 中2a央b+。b2
∴ (a+b)2= (-a-b)2 ∵ (a-b)2=a2-2ab+b2
(b-a)2=b2-2ba+a2=a2-2ab+b2 ∴ (a-b)2=(b-a)2
第17页,共33页。
做一做:根据两数和的完全平方公式填空.
(1)(x+6)2=( x )2+2( x )( 6 )+( 6 )2
=( x2+12x+36
第33页,共33页。
(2) 992= (100-1)2=1002-2×100×1+12
=10000-200+1=9801
利用完全平方公式计算:
1、先选择公式; 2、准确代入公式; 3、化简.
第16页,共33页。
想一想:
(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? 为什么?
∵ (a+b)2=a2+2ab+b2 (-a-b)2=(-a)2+2(-a)(-b)+(-b) 2=a2+2ab+b2
(7)已知 x+y=4,xy =-13, 求: x2 3xy y 2 的值.
第23页,共33页。
拓展思维
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
完全平方公式ppt课件
(1) (2x+3y)2 (2) (2x-3y)2 (3) (-2x+3y)2 (4) (-2x-3y)2
小结:当所给的二项式 中两项符号相同时,一 般选用“和”的完全 平方公式;
当所给的二项式 中两项的符号相反时, 一般选用“差”的完 全平方差公式.
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本节课你学到了什么?
本节课你的收获是什么?
注意完全平方公式和平方差公式不同:
形式不同. 完全平方公式的结果 是三项, 结果不同: 即 (a b)2=a2 2ab+b2;
运用公式计算: 1.(a-b)(a+b)(a2+b2) 2.(2-1)(2+1)(22+1) (24+1)…… (232+1)+1
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
1.(2x+y-z)(2x-y+z) 2.(a+2b-1)2
右边是 两数的平方差.
应用平方差公式的注意事:
☾ 弄清在什么情况下才能使用平方差公式:
做一做 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
完全平方公式ppt课件
推导过程
引入
通过具体例题引入完全平方公式 的概念,让学生明确学习目标。
推导步骤
逐步详细展示完全平方公式的推 导过程,包括展开、整理、简化 等步骤,确保逻辑严密。
推导结论
公式形式
总结得出完全平方公式的标准形式, 强调公式中的重要部分,如中间项系 数、首尾项平方等。
应用举例
通过具体例题,演示如何运用完全平 方公式进行计算,帮助学生理解公式 的实际应用。
它可以帮助我们简化二次多项式,将其表示为一个 更简单的形式,便于计算和解决各种数学问题。
完全平方公式还可以用于证明一些重要的数学定理 ,如勾股定理和三角形的余弦定理等。
02
完全平方公式的推导过程
推导前的准备
知识储备
学生应具备基本的代数知识和运算能力,了解平方、乘法等基本 概念。
工具准备
准备黑板、白板或PPT等教学演示工具,以便清晰地展示推导过 程。
详细描述
该公式是二次项和一次项的完全平方 公式,其中$a$和$b$是常数,表示一 个二次多项式和一个一次多项式相加 或相减的结果。
二次项和常数的完全平方公式
总结词
表示形式为$a^2+2ac+c^2$,适用于二次项和常数的完全平方公式。
详细描述
该公式是二次项和常数的完全平方公式,其中$a$、$c$是常数,表示一个二次多项式和一个常数相加 或相减的结果。
完全平方公式ppt课件
目
CONTENCT
录
• 完全平方公式简介 • 完全平方公式的推导过程 • 完全平方公式的应用 • 完全平方公式的变种 • 完全平方公式的练习题
01
完全平方公式简介
完全平方公式的定义
01
完全平方公式是一种数学公式, 用于将一个二次多项式表示为一 个一次多项式和一个常数的乘积 的平方。
完全平方公式ppt课件
一、完全平方公式:
(a +b )2 = a2+2 a b + b2
(首a -b平)2 方= a2,-2 a尾b 平+ b方2 ,两倍乘积放中央。
两数和(差)的平方,等于它们的平 方和加上(减去)它们的积的2倍 二、结构特征: 左边:两数和或差的平方 右边:二次三项式,且都有 a²+b²
利用完全平方公式计算: (1) (2x−3)2 ; (2) (4x+5y)2 ;
4
4
16
4、(a - b)2= (a - b)(a - b) = a2 - ab - ab+b2 = a2 - 2ab+b2
1. 平方差公式:
公式的结构特征:
2. 应用平方差公式的注意事项:
一块边长为a米的正方形实验田,因需要将其边长增加 b 米。
形成四块实验田,以种植不同的
新品种(如图1—6).
3. 口诀:首平方,尾平方,两倍乘积放中央, 加减看前方,同加异减。
配套练习册P52第3题
1、当x=________时,多项式 x²+2x+1的值最小; 2、若x²-pxy+16y²是一个完全 平方式,则p的值为________.
(3)
(
1 2
m
−a)2
解:(1) (2x−3)²= (2x)2 - 2 2x 3 32
4x2 -12x 9Fra bibliotek(2)(4x+5y)²=
(3)( 1 m -a)²=
2
指出下列各式中的错误,并加以 改正:
(1) (2a-1)2=2a2−2a+1; (2) (2a+1)2=4a2 +1; (3) (-a-1)2= a2−2a+1.
完全平方公式ppt课件
2 = x2 – (_____) 5y 10 x y + 25y2 2.(x − _____)
2 3 a − b )2 = 9 a2 −(___ 6 a b) + (____) 3.(___ b
4.x + x
2
1 4 +(___)
=( x
2 +____)
1 2
5. (a
1 2 −2 b )
=
2 a
注意:
1. (a + b )2≠a2 + b2 (a – b )2 ≠a2 - b2
学习目标:
1.会推导完全平方公式,并能运用公 式进行简单计算; 2.进一步体验“特殊—一般—特殊” 的认识规律;
3.发展符号意识。
原生态展示
展示问题 展示位置
前黑板 前黑板 后黑板 后黑板 后黑板 后黑板 展示小 组 组 组 组 组 组 组
解: (1)应改为: (2a−1)2=(2a)2−2•2a•1+1
= 4a2 4a+1; (2)应改为: (2a+1)2= (2a)2+2•2a•1 +1
2 +4a+1; = 4a (3)应改为: (a−1)2=(a)2−2•(a )•1+12 = a2+2a+1 4 x y ) + y2 1.( 2x + y)2 = 4x2 + ( _____
例1(1)(2) 例1(3)(4) 例1(5)(6)
例1针(1)(2)
例1针(3) 例2(1)
(1)展示人规 范快速,总结规 律、易错点、困 惑等(用彩笔)。 (2)其他同学 在下面完成探究 案,注意拓展, 不浪费一分钟。 (3)小组长要 检查、落实,力 争全部达标。
2 3 a − b )2 = 9 a2 −(___ 6 a b) + (____) 3.(___ b
4.x + x
2
1 4 +(___)
=( x
2 +____)
1 2
5. (a
1 2 −2 b )
=
2 a
注意:
1. (a + b )2≠a2 + b2 (a – b )2 ≠a2 - b2
学习目标:
1.会推导完全平方公式,并能运用公 式进行简单计算; 2.进一步体验“特殊—一般—特殊” 的认识规律;
3.发展符号意识。
原生态展示
展示问题 展示位置
前黑板 前黑板 后黑板 后黑板 后黑板 后黑板 展示小 组 组 组 组 组 组 组
解: (1)应改为: (2a−1)2=(2a)2−2•2a•1+1
= 4a2 4a+1; (2)应改为: (2a+1)2= (2a)2+2•2a•1 +1
2 +4a+1; = 4a (3)应改为: (a−1)2=(a)2−2•(a )•1+12 = a2+2a+1 4 x y ) + y2 1.( 2x + y)2 = 4x2 + ( _____
例1(1)(2) 例1(3)(4) 例1(5)(6)
例1针(1)(2)
例1针(3) 例2(1)
(1)展示人规 范快速,总结规 律、易错点、困 惑等(用彩笔)。 (2)其他同学 在下面完成探究 案,注意拓展, 不浪费一分钟。 (3)小组长要 检查、落实,力 争全部达标。
完全平方公式PPT课件
探究
a a
b
b
b
a
a
b
如图,有四张卡片: 1.你能用这四张卡片拼成一个大正方形吗?请你动手拼一拼。 2.你能用不同的方法求大正方形的面积吗? 3.你从中发现了什么规律? 4.你能用整式的乘法法则说明理由吗? 5.这个结论对我们的运算起到什么样的作用呢?
得出结论:
(a b)2 a2 2ab b2
用一用2
例1、利用完全平方公式计算:
1. (2x 3)2
2. (m 1 )2 2
3. ( y 2)2 4. (4x 5 y)2
用一用3
例2、利用完全平方公式计算:
1. 1022 2. 992
用后反思
1.利用完全平方公式简便了我们的计算。 2.利用完全平方公式时,我们应该注意的一些事项有: (1)中间项是两数(式)的2倍。 (2)各项的符号。 (3)该添加括号的应该添加括号。
做一做
利用完全平方公式计算: 1. (1 x 2 y)2
2
2. (m n)2 n2
3. (a 1 )2 a
4. 9.52
小结
1.这节课你学到了什么知识? 2.运用这一知识时应注意哪些事项? 3.通过这节课的学习你有何感想与体方公式进行计算吗?
视察上面各式,讨论下面的问题: 1.公式的左边有什么特点? 2.公式的右边有什么特点? 3.公式的符号有什么特点? 4.你能用自己的语言叙述这个公式吗?
各式特点
1.积为二次三项式。 2.积中两项为两数的平方和。 3.另一项是两数的两倍,且与乘式中间的符号相同。 4.公式中的字母a,b可以表示数、单项式和多项式。
其实据有关资料表明,古代中国人在多年以前就利用类似的 图形认识了这个规律。
猜想
a a
b
b
b
a
a
b
如图,有四张卡片: 1.你能用这四张卡片拼成一个大正方形吗?请你动手拼一拼。 2.你能用不同的方法求大正方形的面积吗? 3.你从中发现了什么规律? 4.你能用整式的乘法法则说明理由吗? 5.这个结论对我们的运算起到什么样的作用呢?
得出结论:
(a b)2 a2 2ab b2
用一用2
例1、利用完全平方公式计算:
1. (2x 3)2
2. (m 1 )2 2
3. ( y 2)2 4. (4x 5 y)2
用一用3
例2、利用完全平方公式计算:
1. 1022 2. 992
用后反思
1.利用完全平方公式简便了我们的计算。 2.利用完全平方公式时,我们应该注意的一些事项有: (1)中间项是两数(式)的2倍。 (2)各项的符号。 (3)该添加括号的应该添加括号。
做一做
利用完全平方公式计算: 1. (1 x 2 y)2
2
2. (m n)2 n2
3. (a 1 )2 a
4. 9.52
小结
1.这节课你学到了什么知识? 2.运用这一知识时应注意哪些事项? 3.通过这节课的学习你有何感想与体方公式进行计算吗?
视察上面各式,讨论下面的问题: 1.公式的左边有什么特点? 2.公式的右边有什么特点? 3.公式的符号有什么特点? 4.你能用自己的语言叙述这个公式吗?
各式特点
1.积为二次三项式。 2.积中两项为两数的平方和。 3.另一项是两数的两倍,且与乘式中间的符号相同。 4.公式中的字母a,b可以表示数、单项式和多项式。
其实据有关资料表明,古代中国人在多年以前就利用类似的 图形认识了这个规律。
猜想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.公式的逆顺序。 3.作业:一层 第112页 第2.3题
二层 第112页 第6题 三层 第112页 第9题
谢谢同学们, 再见!
2
1
+ ( 2 )2
1
= y2-y +
4
例2 运用完全平方公式计算:
(1) 1022 ;
(2) 992 .
解: (1) 1022 = (100 +2) 2 = 1002 +2×100×2 + 22 = 10 000 +400 +4
= 10 404 . (2) 992 = (100 -1)2
= 1002 -2×100×1+12
= 10 000 - 200 + 1
= 9 801.
思考
(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? (a-b)2与a2-b2相等吗? 完全平方公式逆过来是 什么?
例3.运用乘法公式计算:
(a + 2b – 1 ) 2
解:(a+2b-1)2=[(a+2b)-1]2 =(a+2b)2-2(a+2b)×1+1 =a2+4ab+4b2-2a-4b+1
我们来计算(a+b)2, (a-b)2.
(a+b)2=(a+b) (a+b) = a2+ab+ab+b2 =a2+2ab+b2. (a-b)2 = (a-b) (a-b) = a2-ab-ab+b2 =a2-2ab+b2
归纳总结:
(a+b)2=a2+2ab+b2,
(a-b) 2 = a2-2ab +b2.
练习:
已知a+b=3,ab=-12,求下列各式的值。 (1)a2+b2 (2)a2-ab+b2
解:(1)a2+b2=(a+b)2-2ab =32-2×(-12) =33
(2)a2-ab+b2=(a+b)2-3ab =32-3×(-12) =45
谈谈本节课的收获:
1.完全平方公式的形式.注意积的2倍符号。 a、b可代表数、单项式、多项式。
即两数和(或差)的平方,等于它们的平方和 ,加(或减)它们的积的2倍. 这两个公式叫做(乘法的)完全平方公式. 形如a2+2ab+b2 和a2-2ab +b2这样的式子叫 完全平方式
讨论
你能根据图15.2 -2和图15.2 -3 中的 面积说明完全平方公式吗?
b
a
a
b
图 15.3--2
(a+b)2=a2+2ab+b2
b a
a 图15.3-3
(a-b)2=a2-2ab+b2
例1 运用完全平方公式计算:
(1) (4m+n)2; (2) (y- 1 )2.
2
解: (1) (4m+n) 2= (4m)2 + 2•(4m)•n+n2
= 16m2+8mn +n2;
(2) (y - 1 2
)2 = y2 - 2•y• 1
完全平方公式
威县二中东区 田利功
教学目标
1.理解完全平方公式,探究总结完 全平方公式的代数和几何推导。熟 悉完全平方公式的形式特点。 2.运用完全平方公式进行简单的运 算。 3.灵活运用完全平方公式进行计算。
完全平方公式
自主探究 计算下列各式,你能发现什么规律? (1)(p+1)2 = (p+1) (p+1) = _P_2+_2_p_+_1 (2)(3m+2)2= _9_m_2_+_1_2_m_+_4; (3)(p-1)2 = (p-1 ) (p-1) = _P__2-_2_p_+_1_; (4) (3m-2)2 = _9m__2-_1_2_m_+_4__.
二层 第112页 第6题 三层 第112页 第9题
谢谢同学们, 再见!
2
1
+ ( 2 )2
1
= y2-y +
4
例2 运用完全平方公式计算:
(1) 1022 ;
(2) 992 .
解: (1) 1022 = (100 +2) 2 = 1002 +2×100×2 + 22 = 10 000 +400 +4
= 10 404 . (2) 992 = (100 -1)2
= 1002 -2×100×1+12
= 10 000 - 200 + 1
= 9 801.
思考
(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? (a-b)2与a2-b2相等吗? 完全平方公式逆过来是 什么?
例3.运用乘法公式计算:
(a + 2b – 1 ) 2
解:(a+2b-1)2=[(a+2b)-1]2 =(a+2b)2-2(a+2b)×1+1 =a2+4ab+4b2-2a-4b+1
我们来计算(a+b)2, (a-b)2.
(a+b)2=(a+b) (a+b) = a2+ab+ab+b2 =a2+2ab+b2. (a-b)2 = (a-b) (a-b) = a2-ab-ab+b2 =a2-2ab+b2
归纳总结:
(a+b)2=a2+2ab+b2,
(a-b) 2 = a2-2ab +b2.
练习:
已知a+b=3,ab=-12,求下列各式的值。 (1)a2+b2 (2)a2-ab+b2
解:(1)a2+b2=(a+b)2-2ab =32-2×(-12) =33
(2)a2-ab+b2=(a+b)2-3ab =32-3×(-12) =45
谈谈本节课的收获:
1.完全平方公式的形式.注意积的2倍符号。 a、b可代表数、单项式、多项式。
即两数和(或差)的平方,等于它们的平方和 ,加(或减)它们的积的2倍. 这两个公式叫做(乘法的)完全平方公式. 形如a2+2ab+b2 和a2-2ab +b2这样的式子叫 完全平方式
讨论
你能根据图15.2 -2和图15.2 -3 中的 面积说明完全平方公式吗?
b
a
a
b
图 15.3--2
(a+b)2=a2+2ab+b2
b a
a 图15.3-3
(a-b)2=a2-2ab+b2
例1 运用完全平方公式计算:
(1) (4m+n)2; (2) (y- 1 )2.
2
解: (1) (4m+n) 2= (4m)2 + 2•(4m)•n+n2
= 16m2+8mn +n2;
(2) (y - 1 2
)2 = y2 - 2•y• 1
完全平方公式
威县二中东区 田利功
教学目标
1.理解完全平方公式,探究总结完 全平方公式的代数和几何推导。熟 悉完全平方公式的形式特点。 2.运用完全平方公式进行简单的运 算。 3.灵活运用完全平方公式进行计算。
完全平方公式
自主探究 计算下列各式,你能发现什么规律? (1)(p+1)2 = (p+1) (p+1) = _P_2+_2_p_+_1 (2)(3m+2)2= _9_m_2_+_1_2_m_+_4; (3)(p-1)2 = (p-1 ) (p-1) = _P__2-_2_p_+_1_; (4) (3m-2)2 = _9m__2-_1_2_m_+_4__.