《实数》PPT课件
合集下载
北师大版八年级数学上册《实数》课件(共17张PPT)
3 9
正数集合
5 , 5, 3 8, 2
负数集合
实数又可以分为: 正实数、0 和 负实数
实数的分类
有理数 实数
无理数
正实数 实数 0 负实数
课堂检测(一)
1. 实数不是有理数就是无理数( )
2. 无理数一定都带根号(×)
3. 无理数都是无限不循环小数( )
4. 无限小数都是无理数(× ) 5. 带根号的数一定是无理数 ( × )
谢谢观赏
You made my day!
我们,还在路上……
二、新课探究
1、把下列各数分别填入相应的集合内.
1
3 2, 4
,
4 , 0,
9
7 , , 5 ,
2
2,
20 3
,
5, 3 8,
0.373773777 3(相邻两个3之间的7的个数逐次加1)
1 , 5 , 42
3 8,
4, 9
0 ,
3 2 , 7 , , 2 , 20 , 3
5 , 0.373773777 3
2 3
的相反数是
2
3
(3) 2 的相反数是 2 .
(4)
5 2
的倒数是
2 5
2、下列各组数中,互为相反数的是( D. )
A.
5和
1 5
B. 2和 2
C. 4 和 3 64
中学学科
D. (3) 和 3
做一做
怎样 在数轴上找出 2 对应的点?
B
1
-2
-1
O
122
如果将所有有理数都标到数轴上,那 么数轴被填满了吗?
有理数集合
无理数集合
有理数和无理数统称为实数
正数集合
5 , 5, 3 8, 2
负数集合
实数又可以分为: 正实数、0 和 负实数
实数的分类
有理数 实数
无理数
正实数 实数 0 负实数
课堂检测(一)
1. 实数不是有理数就是无理数( )
2. 无理数一定都带根号(×)
3. 无理数都是无限不循环小数( )
4. 无限小数都是无理数(× ) 5. 带根号的数一定是无理数 ( × )
谢谢观赏
You made my day!
我们,还在路上……
二、新课探究
1、把下列各数分别填入相应的集合内.
1
3 2, 4
,
4 , 0,
9
7 , , 5 ,
2
2,
20 3
,
5, 3 8,
0.373773777 3(相邻两个3之间的7的个数逐次加1)
1 , 5 , 42
3 8,
4, 9
0 ,
3 2 , 7 , , 2 , 20 , 3
5 , 0.373773777 3
2 3
的相反数是
2
3
(3) 2 的相反数是 2 .
(4)
5 2
的倒数是
2 5
2、下列各组数中,互为相反数的是( D. )
A.
5和
1 5
B. 2和 2
C. 4 和 3 64
中学学科
D. (3) 和 3
做一做
怎样 在数轴上找出 2 对应的点?
B
1
-2
-1
O
122
如果将所有有理数都标到数轴上,那 么数轴被填满了吗?
有理数集合
无理数集合
有理数和无理数统称为实数
人教版八年级上册数学《实数PPT优秀课件》
7
.
64
的绝对值是
4 。
随堂练习
二、填空
0 .
,
1、正实数的绝对值是 它本身 ,0的绝对值是 负实数的绝对值是它的相反数 . 3 2、 3 的相反数是 ,绝对值是 3
7 的平方 是 3、绝对值等于 5 的数是 5 ,
4、在实数 整数有
22 1 3 , , , 2 ,0. 3 , 7 3
9
3 4
3
9
0.13
0. 6
3
3 4
3 4
3
5
64
0. 6
9 3 0.13
每个有理数都可以用数轴上的点表示, 那么无理数 是否也可以用数轴上的 点来表示呢? 你能在数轴上找到表示 和 2及 2 这样的无理数的点吗?
直径为1的圆
-2
-1 0
1
2
3π 4
1.圆周率 及一些含有 的数 2.开方开不尽数 3.有一定的规律,但 不循环的无限小数
0.1010010001 (每两个 1之 间 依 次 增 加 一 个 0 )
2
注意:带根号 的数不一定是 无理数
把下列各数分别填入相应的集合内: 1 5 20 3 2 , 4 , 7 , , , 2 , 3 , 5, 3 8, 2 (相邻两个3之间 4 , 0, 0.3737737773 的7的个数逐次加1) 9 5 1 20 , , 3 8 , 3 2 , , , 7 , 2 , 4 2 3 4 5 , 0.3737737773 , 0, 9
p 5、一个数的绝对值是 2 p 是 . 2
,则这个数
(人教版)七年级下册数学:《实数》ppt教学课件
1.算术平方根的定义:
一般地,如果一个正数x的平方等于
a,即 x2 =a,那么这个正数x叫做a的
算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平方根是0。
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方
根).
这就是说,如果x 2 = a ,那么 x 就叫做 a 的平方根.a的平方根记为± a
通过这节课的学习,你有何收获?
通过这节课的复习,你有何收获?
方
的运算叫开平方 的运算叫开立方
是本身
0,1
0
0,1,-1
1、 下列说法正确的是( B ) A. 16的平方根是 4
B. 6表示6的算术平方根的相反数
C.任何数都有平方根 D. a2一定没有平方根
1、 8是 64 的平方根 2、 64的平方根是 ±8
3、 64的值是 8
9的平方根是
4、 64的立方根是 -4
5、如果一个数的平方根为a+1和2a-7, 这个数为 9 。
1.说出下列各数的平方根:
25 (1) 81
(2) 3 64
(3)
( 5)2 3
2.x取何值时,下列各式有意义 :
(1) 4 x
(x≥-4)
(2) 4 x2 (3) 3 2x 1
(X为任意实数) (X为任意实数)
a2 a =
3.平方根的性质:
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
3.立方根的定义:
一般地,如果一个数的立方等于a,那 么这个数就叫做a的立方根,也叫做a的
三次方根.记作 3 .a
一般地,如果一个正数x的平方等于
a,即 x2 =a,那么这个正数x叫做a的
算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平方根是0。
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方
根).
这就是说,如果x 2 = a ,那么 x 就叫做 a 的平方根.a的平方根记为± a
通过这节课的学习,你有何收获?
通过这节课的复习,你有何收获?
方
的运算叫开平方 的运算叫开立方
是本身
0,1
0
0,1,-1
1、 下列说法正确的是( B ) A. 16的平方根是 4
B. 6表示6的算术平方根的相反数
C.任何数都有平方根 D. a2一定没有平方根
1、 8是 64 的平方根 2、 64的平方根是 ±8
3、 64的值是 8
9的平方根是
4、 64的立方根是 -4
5、如果一个数的平方根为a+1和2a-7, 这个数为 9 。
1.说出下列各数的平方根:
25 (1) 81
(2) 3 64
(3)
( 5)2 3
2.x取何值时,下列各式有意义 :
(1) 4 x
(x≥-4)
(2) 4 x2 (3) 3 2x 1
(X为任意实数) (X为任意实数)
a2 a =
3.平方根的性质:
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
3.立方根的定义:
一般地,如果一个数的立方等于a,那 么这个数就叫做a的立方根,也叫做a的
三次方根.记作 3 .a
实数ppt课件
。
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
第六章实数复习(公开课)ppt课件
19世纪
数学家逐步完善实数理论 ,形成了完备的实数体系 ,为数学分析、连续函数 等研究奠定了基础。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以转化为加法运算,即a-b=a+(-b)。
总结词
减法运算的运算律
详细描述
减法运算同样满足交换律和结合律,即a-b=b-a和(ab)-c=a-(b+c)。
总结词
减法运算的运算性质
详细描述
减法的可逆性也是减法的一个重要性质,每一个数都有 唯一的相反数;另外,0是减法的单位元,任何数与0 相减都等于它本身。
总结词
加法运算的运算律
详细描述
加法运算还有一些特殊的运算律,例如,任何数与0相加 都等于它本身,即a+0=a;相反数相加等于0,即a+(a)=0。
总结词
加法运算的运算性质
详细描述
加法运算还有一些重要的运算性质,例如,加法的可逆性 ,即每一个数都有加法逆元,与它相加等于0;加法的单 位元,即有一个特殊的数0,任何数与它相加都等于它本 身。
实数在几何学中有着广泛的应用,例如在计算长度 、面积和体积时,需要使用实数表示测量值。
函数定义域与值域
实数可以用来定义各种数学函数,包括代数函数、 三角函数、指数函数和对数函数等,同时函数的值 域也由实数构成。
数学分析基础
实数对于数学分析来说是必不可少的基础,极限、 连续性和可微性的定义都离不开实数。
在物理中的应用
80%
测量与计算
在物理学中,实数常被用于表示 和计算各种物理量,如长度、时 间、质量、电荷等。
100%
物理定律的数学表达
许多物理定律可以用实数表示的 数学公式来描述,例如牛顿第二 定律 F=ma。
《实数》ppt课件
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
《实数》优秀ppt课件
反之也成立.
用你发现的规律填空:
已知, 3 216=6,则3 216000=_6_0__, 3 0.216=_0_._6_ 已知, 31331=11,则31.331=_1_._1_, 3 1331000=_1_1_0_
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
根据立方根的意义填空
1.因为23=8,所以8的立方根是___2____.
2.因为0.53=0.125,所以0.125的立方根____0._5___.
3.因为(
2 3
)3=
8 27
,所以
8 27
2
的立方根是___3 ____.
4.因为(-2)3=-8,所以-8的立方根是____-_2__.
5.因为(-0.5)3=-0.125,所以-0.125的立方根是_-_0_.5__.
即:若x3=a,则x是a的一个立方根(三次方根).
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
立方根的数学符号表示
类似于平方根,一个数a的立方根,用符号“3 a ”
表示,读作:“三次根号a ”,其中a叫做被开方数,3
叫做 根指数.
不能省略
请
观 根指数 赏 动 三次根号
《实数》优秀实用课件(PPT优秀课件 )
立方根的概念
通过上节课的学习,我们知道:
平方根 一般地,如果有一个数的平方等于a,那么 的概念 这个数叫作a的平方根,也叫作二次方根.
即:若x2=a,则x是a的一个平方根(二次方根)
你能类比以上思路给立方根下个定义么?
立方根 的概念
一般地,如果有一个数的立方等于a,那么 这个数叫作a的立方根,也叫作三次方根.
用你发现的规律填空:
已知, 3 216=6,则3 216000=_6_0__, 3 0.216=_0_._6_ 已知, 31331=11,则31.331=_1_._1_, 3 1331000=_1_1_0_
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
根据立方根的意义填空
1.因为23=8,所以8的立方根是___2____.
2.因为0.53=0.125,所以0.125的立方根____0._5___.
3.因为(
2 3
)3=
8 27
,所以
8 27
2
的立方根是___3 ____.
4.因为(-2)3=-8,所以-8的立方根是____-_2__.
5.因为(-0.5)3=-0.125,所以-0.125的立方根是_-_0_.5__.
即:若x3=a,则x是a的一个立方根(三次方根).
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
立方根的数学符号表示
类似于平方根,一个数a的立方根,用符号“3 a ”
表示,读作:“三次根号a ”,其中a叫做被开方数,3
叫做 根指数.
不能省略
请
观 根指数 赏 动 三次根号
《实数》优秀实用课件(PPT优秀课件 )
立方根的概念
通过上节课的学习,我们知道:
平方根 一般地,如果有一个数的平方等于a,那么 的概念 这个数叫作a的平方根,也叫作二次方根.
即:若x2=a,则x是a的一个平方根(二次方根)
你能类比以上思路给立方根下个定义么?
立方根 的概念
一般地,如果有一个数的立方等于a,那么 这个数叫作a的立方根,也叫作三次方根.
人教版七年级数学下册《实数》专题PPT课件
为 2 的整数是 1,将这个数减去其整数部分,差就是 2 的小数部分,又例如:∵22<( 7)2<32,即2< 7<3,
∴ 7的整数部分为2,小数部分为( 7 2).
请解答:
(1) 如果 5 的整数部分为a, 13 的整数部分为b,
求(a b)2 b(a 1)的立方根; (2) 若- 5 x y,其中 x 是整数,且0<y<1, 求 x、y 的值; (3) 在(1)(2)的条件下求(x a)(1 b y)的值.
a b 3 ( 13 3) a b 6 13
【应对策略】估算 a (a>0)在哪两个整 数之间及整数、小数的部分:根据算术平 方根的定义,有 m2<a<n2,其中 m,n 是 连续非负整数,则m< a<n,则 a 的整 数部分为 m,小数部分为 a m .
练一练
阅读下面的文字,解决问题:大家知道 2 是无理数, 而无理数是无限不循环小数,因此 2 的小数部分我们 不可能全部地写出来,于是小明用 2 1 来表示 2 的 小数部分,事实上,小明的表示方法是有道理的,因
第六章 实数
综合专题讲解
专题目录 专题一:算术平方根的非负性 专题二:实数的估算 专题三:比较实数大小的方法
专题一:算术平方根的非负性
例1 若 a 4 2b 10 0 互为相反数,求 a+b 的
算术平方根.
算术平方根有什么性质呢?
分析:算术平方根具有非负性 两式都为 0
a4
a-4 = 0
a=4
2b 10 2b-10 = 0 b = 5
a b 9 a+b 的算术平方根为 3
例2 如果 a 1 与 2 b 互为相反数,那么 a+b 的绝
对值为____2___1__. 算术平方根和绝对值有什 么性质呢?
∴ 7的整数部分为2,小数部分为( 7 2).
请解答:
(1) 如果 5 的整数部分为a, 13 的整数部分为b,
求(a b)2 b(a 1)的立方根; (2) 若- 5 x y,其中 x 是整数,且0<y<1, 求 x、y 的值; (3) 在(1)(2)的条件下求(x a)(1 b y)的值.
a b 3 ( 13 3) a b 6 13
【应对策略】估算 a (a>0)在哪两个整 数之间及整数、小数的部分:根据算术平 方根的定义,有 m2<a<n2,其中 m,n 是 连续非负整数,则m< a<n,则 a 的整 数部分为 m,小数部分为 a m .
练一练
阅读下面的文字,解决问题:大家知道 2 是无理数, 而无理数是无限不循环小数,因此 2 的小数部分我们 不可能全部地写出来,于是小明用 2 1 来表示 2 的 小数部分,事实上,小明的表示方法是有道理的,因
第六章 实数
综合专题讲解
专题目录 专题一:算术平方根的非负性 专题二:实数的估算 专题三:比较实数大小的方法
专题一:算术平方根的非负性
例1 若 a 4 2b 10 0 互为相反数,求 a+b 的
算术平方根.
算术平方根有什么性质呢?
分析:算术平方根具有非负性 两式都为 0
a4
a-4 = 0
a=4
2b 10 2b-10 = 0 b = 5
a b 9 a+b 的算术平方根为 3
例2 如果 a 1 与 2 b 互为相反数,那么 a+b 的绝
对值为____2___1__. 算术平方根和绝对值有什 么性质呢?
《初中数学实数》课件
总结词
理解实数减法在数学中的重要性和应用,能够运用实数减 法解决实际问题。
详细描述
实数减法在数学中有广泛的应用,如计算差值、速度、加 速度等。通过掌握实数减法的运算法则和性质,可以更好 地解决实际问题。
实数的乘法运算
总结词
理解实数乘法的意义和性质,掌握实数乘法的运算法则 。
详细描述
实数的乘法运算与普通乘法运算类似,但需要考虑正负 数相乘的情况。实数乘法的意义是表示两个数在数轴上 的倍数关系,具有结合律和交换律。
实数的开方运算
04
平方根的定义和性质
平方根的定义
如果一个数的平方等于a,那么这个数就是a的平方根。例如,4的平方根是±2 。
平方根的性质
一个正数的平方根有两个值,一个正数和一个负数;0的平方根是0;负数没有 实数平方根。
立方根的定义和性质
立方根的定义
如果一个数的立方等于a,那么这个 数就是a的立方根。例如,8的立方 根是2。
无限性也是数学和物理学中许 多重要概念的基础,如无穷大 、无穷小等。
实数的运算
03
实数的加法运算
总结词
理解实数加法的意义和性质,掌握实数加法的运算法则 。
详细描述
实数的加法运算与普通加法运算类似,但需要考虑正负 数相加的情况。实数加法的意义是表示两个数在数轴上 的位移,具有结合律和交换律。
总结词
01
02
03
长度测量
实数可以用来表示物体的 长度,例如身高、体重等 。
时间计算
用实数表示时间,例如秒 、分、小时等。
货ห้องสมุดไป่ตู้计算
用实数表示货币,例如元 、角、分等。
实数在数学中的运用
代数运算
实数可以用于代数运算, 例如加、减、乘、除等。
理解实数减法在数学中的重要性和应用,能够运用实数减 法解决实际问题。
详细描述
实数减法在数学中有广泛的应用,如计算差值、速度、加 速度等。通过掌握实数减法的运算法则和性质,可以更好 地解决实际问题。
实数的乘法运算
总结词
理解实数乘法的意义和性质,掌握实数乘法的运算法则 。
详细描述
实数的乘法运算与普通乘法运算类似,但需要考虑正负 数相乘的情况。实数乘法的意义是表示两个数在数轴上 的倍数关系,具有结合律和交换律。
实数的开方运算
04
平方根的定义和性质
平方根的定义
如果一个数的平方等于a,那么这个数就是a的平方根。例如,4的平方根是±2 。
平方根的性质
一个正数的平方根有两个值,一个正数和一个负数;0的平方根是0;负数没有 实数平方根。
立方根的定义和性质
立方根的定义
如果一个数的立方等于a,那么这个 数就是a的立方根。例如,8的立方 根是2。
无限性也是数学和物理学中许 多重要概念的基础,如无穷大 、无穷小等。
实数的运算
03
实数的加法运算
总结词
理解实数加法的意义和性质,掌握实数加法的运算法则 。
详细描述
实数的加法运算与普通加法运算类似,但需要考虑正负 数相加的情况。实数加法的意义是表示两个数在数轴上 的位移,具有结合律和交换律。
总结词
01
02
03
长度测量
实数可以用来表示物体的 长度,例如身高、体重等 。
时间计算
用实数表示时间,例如秒 、分、小时等。
货ห้องสมุดไป่ตู้计算
用实数表示货币,例如元 、角、分等。
实数在数学中的运用
代数运算
实数可以用于代数运算, 例如加、减、乘、除等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题
计算下列各式的值: (2)3 3 2 3 (1)( 3 2 ) 2 解: (1)( 3 2 ) 2 = 3 2 2 = 30 = 3 例2
(2)3 3 2 3
= (3 2) 3
= 5 3
在实数运算中,当遇到无理数并 且需要求出结果的近似值时,可以按 照所要求的精确度用相应的近似有限 小数去代替无理数,再进行计算。
当数从有理数扩充到实 数以后,有理数关于相反数
和绝对值的意义同样适合于
实数。
2 的相反数是 2 ;
-π的相反数是 π 0的相反数是 0
2
; ; ,0 0 ,
2 , π
数a的相反数是-a,这里a表示任意一个实数。 一个正实数的绝对值是它本身;一个负实 数的绝对值是它的相反数;0的绝对值是0。
负分数
正无理数 负无理数
正整数 正有理数 正分数
正实数 正无理数
实数 零
负有理数 负实数
负无理数
负整数
负分数
练习 把下列各数分别填在相应的集合中: 22 3 3.1415926 0 2 8 25
0.3 4 5
3
2 22 7
3 1
7
3 3
3 1
0.3131131113 (两个3之间依次多一个1 )
定义
无限不循环小数叫做无理数 有理数和无理数统称实数.
无理数的三种形式:
1).
2,
π,
3,
-π…
5...
2 ).
3). 0.101001000…(两个“1”之间依次多一个0),
-7.2121121112… (两个“2”之间依次多一个
1)
实数的分类
整数
正整数 零 负整数 正分数
有理数 分数
实数 无理数
ab 2m 1
2
4m 3cd 的值.
填空:
3 (1) 3 的相反数是__________ (2) 的相反数是 3
5 (3) ___________ 5
3
6 (4)绝对值等于 6 的数是 _________
5、一个数的绝对值是π,这个数是
;
6. 2 3的相反数是
有理数包括哪几类? 有理数
整数
2 7 有限小数 0.6, , , 5 8
无限循环小数 1 3 0. 4 2857 1, 0. 3 3 7
3
实 数
无理数
无限不循 环小数
分数
2 1.4142, 2 1.2599210 3.1415926 , 1.2012001200 01
5
由上图得, - 2 <-1.4< 2 <1.5<π <3.3
什么是有效 数字?
从左边第一个不 是零的数开始数起, 到最后一个数字就叫 有效数字 。
例题
例3 计算:
(1) 5 (精确到 0.01 )
(2) 3 2 (结果保留 3个有效数字) 解:
(1) 5 2.236 3.142 5.38
(2) 3 2 1.7321.414 2.45
3
(2)已知一个数的绝对值是 这个值。 解: 3 3
3 ,求
3 3
∴绝对值为 3 的数是
3 或 3 。
实数的运算
当数从有理数扩充到实数以后,实 数之间不仅可以进行加、减、乘、除 (除数不为0)、乘方运算,而且正数及 0可以进行开平方运算,任意一个实数可 以进行立方运算。在进行实数的运算时, 有理数的运算法则及运算性质等同样适 用。
实数中的非负项
平方 a2≥0, ∴( )2≥0 绝对值 |a|≥0, ∴||≥0 平方根
a ≥0,∴
≥0,a ≥0
练习
已知 a 2 (b 1) c 3 0,
2
求代数式a b c的值。 解: |c +3|≥0 ∵ a 2 ≥0, (b-1)2≥0, 2 又 a 2 (b 1) c 3 0 ∴ a 2 =(b-1)2 =|c+3|=0 ∴ a 2 = b-1 = c+3 =0
7. 3.14
;
;
例:把下列实数表示在数轴上,并比较它们的 大小(用“<”号连接)
1.4,
解:1.4,
2 ,3.3, ,1.5
2 ,3.3, , 1.5
在数轴上表示如下。 · · -2 -1 0
-1.4
· · 1 2
1.5
5
3.1415926 …
有理数集合
2
3
3
…
无理数集合
实数与数轴
直径为1个单位长度的圆从原点沿 数轴向右滚动一周,圆上的一点O由原 点到达点O′,点O′的坐标是多少?
O O′ 4 0 1 2 3
从图中可以看出,OO′的长是这个圆 的周长π,所以O′的坐标是π.
以单位长度为边长画一个长方形, 以原点为圆心,正方形对角线为半径画 弧,与正半轴的交点就表示 2 ,与负半 轴的交点就表示 2 。
-2
-1
0
1
2
梳理
事实上,每一个无理数都可以用数轴上 的一个点表示出来。这就是说,数轴上的点有 些表示有理数,有些表示无理数。 当数从有理数扩充到实数以后,实数与 数轴上的点就是一一对应的,即每一个实数都 可以用数轴上的一个点来表示;反过来,数轴 上的每一个点都表示一个实数。 平面直角坐标系中的点与有序实数对之间 也存在一一对应关系吗?
实数的运算顺序
乘方、开方 然后算 先算_________, 乘除 最后算_____; 加减 有括号, ______, 先算 括号里边的 . 如果是同级运算,应按 左到右 的顺序进行. 从________
例题
例1 (1) 64求的绝对值;
3
解: 3 64 3 64 4
64 4 4
∴a=-2, b=1, c=-3 则a+b+c=-2+1-3= - 4
如图,数轴上表示1、 2 的对应点分 别是A、B,点B关于点A的对称点为C, 则C点所表示的数是( C ) B. 1 2 A. 2 1
C. 2
0
2
C
2 1 2 1
D.
2 2
2
A
B
1- (
2 1)
1
巩固练习
1 1、 3
的倒数是(
)
1 1 C、 A、 B、 3 D、 -3 3 3 2、8的立方根与4的算术平方根的和是( ) A 0 B 4 C -4 D 0或-4
3、已知:a、b互为相反数,c、d为 倒数,x的绝对值等于1,求a+b+x2cdx的值。
五.能力训练
(一)选择题 1. (2003· 重庆)下列各数中,互为相反数的是( ) 1 2 2 A.2与 2 B. 1 与1 C. - 1与 1 D. 2与 2 2.(2002· 呼和浩特) m是实数,则 m m ( ) A.可以是负数 B.不可能是负数 C.必是正数 D.可以是正数也可以是负数 3. 如果a是实数,下列四种说法:(1)a2和|a|都是正数; (2)|a|=-a,那么a一定是负数;(3) a和-a在数轴上 1 的位置分别在原点的两侧;(4)实数a的倒数是 , a 其中正确的个数是( ) A. 0 B. 1 C.2 D.3 2 , 0 ,3 , 3.14, 4 4. 在实数中 , ,无理数有( ) 5 A.1 个 B.2个 C.3个 D.4个
五.能力训练
(二)填空题 5. 若a的相反数是27,则 a = 6.(2004· 江西)如图2,数轴上的 点A所表示的是实数a,则点A到原点的距离是________. .
7. 已知 a 3 b 1 0
(三)解答题
,则实数(a+b)的相反数
.
8. 若a、b互为相反数,c、d 互为倒数,m的绝对值是2, 求