一次函数图像和性质
一次函数的图象及性质
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程
一次函数的定义和性质
一次函数的定义和性质一次函数是指形如y=ax+b的函数,其中a和b为常数,且a不等于零。
它也被称为线性函数,因为它的图像是一条直线。
一次函数是数学中的基础概念之一,具有一些重要的性质和应用。
一. 定义一次函数是指以x为自变量,以y为因变量的函数,其表达式为y=ax+b,其中a和b为实数,且a不等于零。
其中,a称为一次项的系数,b称为常数项。
当x取不同的值时,y的取值也相应地发生变化,这种对应关系可以通过一条直线来表示。
二. 图像特征1. 直线特征:一次函数的图像总是一条直线,因此它具有线性特征;2. 斜率特征:一次函数的斜率表示为常数a,描述了图像在x轴正方向上的倾斜程度。
斜率为正时,表示图像向上倾斜;斜率为负时,表示图像向下倾斜;3. 截距特征:一次函数的截距表示为常数b,描述了图像与y轴的交点位置。
截距为正时,表示图像与y轴正半轴交于正值点;截距为负时,表示图像与y轴负半轴交于负值点。
三. 性质1. 单调性:一次函数的单调性由斜率的正负决定。
当a大于零时,函数单调递增;当a小于零时,函数单调递减;2. 定义域和值域:一次函数的定义域为所有实数;值域为所有实数,即函数的取值范围没有限制;3. 零点:一次函数的零点即为函数的根,表示当x取某个值时,函数的值等于零。
对于一次函数,当且仅当x=-b/a时,函数的值为零;4. 最值:一次函数没有最大值和最小值,因为它的图像是一条直线;5. 平移:通过给定一次函数的表达式,可以进行平移操作来得到新的函数。
平移操作可以在x轴和y轴上分别进行,通过改变常数a和b的值,可以使图像在平面上发生移动。
四. 应用一次函数在现实生活中有着广泛的应用,例如:1. 财务收入:一些经济指标和统计数据的变化趋势可以通过一次函数来表示,如年度收入的增长率;2. 运动模型:一次函数可以表示一些常见的运动模型,如匀速运动的位移和速度关系;3. 经济学模型:在经济学中,一次函数可以用来表示供求关系、成本和收益关系等;4. 工程预测:一次函数可以用来进行工程测量、预测物理量的变化趋势等。
一次函数的图像和性质
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
探究一次函数及其图像性质
探究一次函数及其图像性质一次函数是数学中的常见函数之一,它的表达式为f(x) = ax + b,其中a和b为实数且a不等于0。
本文将探究一次函数及其图像性质,分别从函数的定义、图像的特征以及相关应用进行论述。
一、函数的定义一次函数是指函数的式子中最高次幂是1,并且函数可由f(x) = ax + b表示。
其中,a称为一次函数的斜率,表示函数图像的倾斜程度,当a为正数时,函数图像呈现上升趋势,当a为负数时,函数图像呈现下降趋势。
b称为一次函数的截距,表示函数图像与y轴的交点。
一次函数的定义域为所有实数,即(-∞, +∞)。
二、图像的特征1. 斜率:一次函数的图像的斜率决定了其是上升还是下降,当斜率为正时,对应的函数图像从左下方向上升到右上方;当斜率为负时,函数图像从左上方向下降到右下方。
2. 截距:一次函数的图像与y轴的交点即为截距,用来确定函数的纵向位置。
当截距为正时,函数图像在y轴上方;当截距为负时,函数图像在y轴下方。
3. 相关性质:一次函数是线性函数的特例,因此具有线性函数的性质,包括:平行性、反比例性和零点性。
平行性表示具有相同斜率的一次函数图像是平行的;反比例性则表示斜率为负的一次函数图像关于原点对称;零点性则表示当f(x) = 0时,对应的x值是函数的零点。
三、相关应用1. 直线方程:一次函数的图像为一条直线,因此在几何学中有广泛应用。
通过给定斜率和截距,可以确定一条直线的方程,进而求解直线与其他几何图形之间的关系。
2. 财务分析:一次函数可以用来描述某些经济变量之间的线性关系,比如成本和产量、销量和利润等。
通过分析函数的斜率和截距,可以评估经济变量之间的相关性,并进行更深入的财务分析和决策。
3. 物理学应用:在物理学中,一次函数常用于描述一些物理量之间的关系。
例如,物体的位移与时间的关系、速度与时间的关系等,都可以用一次函数来表示,通过函数的图像可以更直观地理解和分析物理学中的各种现象。
7.4.2一次函数的图象和性质
S=6P+12000 (6100≤ P≤6200) 本例所求的y值是一个确定的值还是一个范围?
当P≥6100时,S如何变化? 当P≤6200时,S如何变化?
例2 我国某地区现有人工造林面积12万公顷,规划 今后10年平均每年新增造林6100~6200公顷,请 估算6年后该地区的造林总面积达到多少万公顷?
当k<0时, y 随x 的增大 x 而减小
减少 1、 对于函数y=5x+6,y的值随x的值减小而______。
2、一次函数y=kx+2的图象经过点(1,1),那么这个 一次函数( B )
A. y随x的增大而增大。 C. 图象经过原点 B.y随x的增大而减小 D.图象不经过第二象限
3、点A(-3,y1)、点B(2,y2)都在直线y=–4x+3上, D 则y1与y2的关系是( ) A y1 ≤ y 2 B y1 = y2 C y1< y2 D y1 >y2
(1)设甲仓库运往A地水泥x吨,求总运费y关于x 的函数解析式,并画出图象
解:由题意可得 y = 1.2×20 x + 1×25×(100 - x)+1.2×15×(70-x) +0.8×20[110-(100-x)] = -3x+3920 (0≤x≤70)
函数:
一次函数的图像与性质
一次函数的图像与性质函数图象性质经过象限变化规律y=kx+b(k、b为常数,且k≠0)k>0b>0b=0b<0 k<0b>0b=0b<0☆一次函数y=kx+b(k≠0)中k、b的意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的,也表示直线在y 轴上的。
☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:当时,两直线平行。
当时,两直线垂直。
当时,两直线相交。
当时,两直线交于y轴上同一点。
☆特殊直线方程:X轴 : 直线 Y轴 : 直线与X轴平行的直线与Y轴平行的直线一、三象限角平分线二、四象限角平分线1、对于函数y=5x+6,y的值随x值的减小而___________。
2、对于函数1223y x =-, y 的值随x 值的________而增大。
3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?练习:理解解析式和图象的关系,掌握一次函数图象的有关性质. 一、选择题1.函数y =kx 的图象经过点P (3,-1),则k 的值为( )A.3B.-3C.31D.-31 2.下列函数中,图象经过原点的为( ) A.y =5x +1 B.y =-5x -1 C.y =-5xD.y =51-x 3.若一次函数y =kx +b 中,y 随x 的增大而减小,则( ) A.k <0,b <0 B.k <0,b >0 C.k <0,b ≠0 D.k <0,b 为任意数4.当x =5时一次函数y =2x +k 和y =3kx -4的值相同,那么k 和y 的值分别为( ) A.1,11 B.-1,9 C.5,11 D.3,35.若直线y =kx +b 经过A (1,0),B (0,1),则( ) A.k =-1,b =-1 B.k =1,b =1 C.k =1,b =-1 D.k =-1,b =1 二、填空题6.把一个函数的自变量x 与对应的因变量y 的值分别作为点的______和______,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的______.7.作函数图象的一般步骤为______,______,______;一次函数的图象是一条______. 8.直线y =3-9x 与x 轴的交点坐标为______,与y 轴的交点坐标为______.9.一次函数y =5kx -5k -3,当k =______时,图象过原点;当k ______时,y 随x 的增大而增大.10.在一次函数y =2x -5中,当x 由3增大到4时,y 的值由______;当x 由-3增大到-2时,y 的值______.。
一次函数图像和性质小结
一次函数图像和性质小结一般地,形如y=kx+b(k、b是常数,且k≠0•)的函数,•叫做一次函数(•linear function).一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k≠0•).所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定.一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b.一次函数的图像:k>0 b>0 函数经过一、三、二象限k>0 b<0 函数经过一、二、三象限k<0 b>0 函数经过一、二、四象限k<0 b<0 函数经过二、三、四象限上面性质反之也成立1.b的作用在坐标平面上画直线y=kx+b (k≠0),截距b相同的直线经过同一点(0,b). 2.k的作用k值不同,则直线相对于x轴正方向的倾斜程度不同.(1)k>0时,K值越大,倾斜角越大(2)k<0时,K值越大,倾斜角越大说明(1)倾斜角是指直线与x轴正方向的夹角;(2)常数k称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论.3.直线平移一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx的图像平移得到.当b>0时,向上平移b个单位;当b<0时,向下平移|b|个单位.4.直线平行如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行.如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 .1.一次函数与一元一次方程的关系一次函数y=kx+b的图像与x轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数y=kx+b的图像与x轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想.2.一次函数与一元一次不等式的关系由一次函数y=kx+b的函数值y大于0(或小于0),就得到关于x的一元一次不等式kx+b>0(或kx+b<0).在一次函数y=kx+b的图像上且位于x轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解.。
初中数学一次函数的图象和性质
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
一次函数概念、图象与性质
描点法步骤:首先确定两个点, 然后通过这两点绘制直线。通常 选择函数与坐标轴的交点作为描
点。
一次函数与x轴交点为(-b/k, 0), 与y轴交点为(0, b),其中k为斜
率,b为截距。
斜率对图象影响
斜率k决定了直线的倾斜程度。当k>0时,直线向右上方倾斜;当k<0时,直线向右 下方倾斜。
|k|的大小决定了直线的倾斜角。|k|越大,倾斜角越大,直线越陡峭;|k|越小,倾斜 角越小,直线越平缓。
边际收益分析
利用一次函数描述收益与 销量之间的关系,分析边 际收益。
边际利润决策
根据边际成本和边际收益, 确定最优产量和价格策略。
物理学中运动规律描述
匀速直线运动
通过一次函数表示位移与时间的 关系,描述匀速直线运动规律。
匀变速直线运动
利用一次函数表示速度与时间的关 系,分析匀变速直线运动过程。
自由落体运动
线性关系判断
判断方法
通过观察数据点是否大致分布在一条直线上来判断两个变量之间是否存在线性 关系。
线性关系特点
若两个变量之间存在线性关系,则它们的变化趋势是一致的,即当一个变量增 加时,另一个变量也相应地增加或减少。
02 一次函数图象绘制
直角坐标系中通过在直角坐标系中描点法绘
截距和斜率共同决定了直线的 位置和方向。不同的截距和斜 率组合可以得到不同的直线方 程和图象。
03 一次函数性质分析
单调性
一次函数在其定义域内具有单调性。具体来说,当一次函数的斜率k>0时,函数 在整个定义域内单调递增;当k<0时,函数在整个定义域内单调递减。
一次函数的单调性可以通过其图象直观地反映出来。在平面直角坐标系中,当 k>0时,函数的图象是一条从左下方到右上方的直线,表示函数值随x的增大而 增大;当k<0时,函数的图象是一条从左上方到右下方的直线,表示函数值随x 的增大而减小。
一次函数的性质和图像(一)课件
经济问题中的应用
在经济学中,许多经济指标之间的关系可以用一次函数来描述,如价格与需求的 关系、成本与产量的关系等。通过这些实例,可以了解一次函数在经济分析中的 应用。
像会向右平移。
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济现象之间的关系,例如成本与产量的 关系、价格与需求量的关系等。
一次函数在物理学中的应用
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在工程领域的应用
02
一次函数的图像
一次函数图像的绘制
步骤二
在坐标系上选择一个点,例如 原点$(0,0)$。
步骤四
在坐标系上标出该点,即 $(0,1)$。
步骤一
确定函数表达式。例如,$y = 2x + 1$。
步骤三
使用一次函数的表达式,计算 出该点沿x轴和y轴的坐标值。 例如,$y = 2(0) + 1 = 1$。
一次函数的图像是一条直线,其斜率 为$a$,截距为$b$。
一次函数的图像可以通过平移得到, 向上平移$k$个单位得到$y = ax + b + k$,向下平移$k$个单位得到$y = ax + b - k$。
一次函数的单调性由斜率$a$决定, 当$a > 0$时,函数为增函数;当$a < 0$时,函数为减函数。
一次函数在概率统计问题中的应用
03
在概率统计问题中,一次函数可以用来描述概率分布、平均数
一次函数的图像(解析版)
5.4一次函数的图像一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.要点:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质: 正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线; 一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式. 四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.一、单选题1.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-【答案】A【提示】将选项各点坐标代入,即可判断.【解答】A .当4x =时,=3y -,故点()4,3-在函数图象上,A 项符合题意; B .当4x =-时,33y =≠-,故点()4,3--不在函数图象上,B 项不符合题意; C .当2x =-时, 1.51y =≠,故点()2,1-不在函数图象上,C 项不符合题意; D .当3x =-时, 2.254y =≠,故点()3,4-不在函数图象上,D 项不符合题意; 故选:A .【点睛】本题主要考查了正比例函数图象上的点的坐标特征,掌握正比例函数的定义是解题的关键. 2.已知一次函数y kx b =+的图象经过点()2,1-,且平行于直线2y x =-,则b 的值为( ) A .2- B .1C .3-D .4【答案】C【提示】根据两直线平行,一次项系数相等求出k 的值,再利用待定系数法求解即可. 【解答】解:∵一次函数y kx b =+与直线2y x =-平行, ∴一次函数解析式为2y x b =-+,∵一次函数2y x b =-+经过点()21-,, ∴()122b =-⨯-+, ∴3b =-, 故选:C .【点睛】本题主要考查了一次函数图象的平移,求一次函数解析式,正确求出2k =-是解题的关键. 3.关于函数21y x =--,下列结论正确的是( ) A .图象必经过点()2,1- B .y 随x 的增大而增大C .当12x >时,0y < D .图象经过第一、二、三象限 【答案】C【提示】根据一次函数的性质可进行排除选项.【解答】解:由函数21y x =--可知:20k =-<,10b =-<,则y 随x 的增大而减小,且该函数图象经过第二、三、四象限,故B 、D 选项错误;当2x =-时,则()2213y =-⨯--=,所以函数图象经过点()2,3-,故A 选项错误; 当12x >-时,0y <,所以当12x >时,0y <说法正确;故选:C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4.已知一次函数31(3)y mx x m =-+<的图像经过1)A y ,2)B y ,3(5,)C y ,则123,,y y y 的大小关系是( ) A .123y y y << B .132y y y <<C .321y y y <<D .231y y y <<【答案】D【提示】根据一次函数的增减性判断即可. 【解答】解:∵3m <, ∴(3)0k m =-<, ∴y 随x 的增大而减小,又∵点1)A y ,2)B y ,3(5,)C y 均在一次函数31(3)y mx x m =-+<的图像上,∵()()22277,525,2728===,∴7527<<, ∴231y y y <<, 故选:D .【点睛】本题考查了一次函数的性质,无理数的估算,熟练掌握一次函数的性质是解本题的关键. 5.三个正比例函数的表达式分别为①y ax =;②y bx =③y cx =,其在平面直角坐标系中的图像如图所示,则a ,b ,c 的大小关系为( )A .a b c >>B .c b >>aC .b a c >>D .b c >>a 【答案】C【提示】先根据函数图象经过的象限得出0a >,0b >,0c <,再根据直线越陡,k 越大得出答案. 【解答】解:∵y ax =和y bx =的图象经过一、三象限,y cx =的图象经过二、四象限, ∴0a >,0b >,0c <, ∵直线y bx =比直线y ax =陡, ∴b a >, ∴b a c >>, 故选:C .【点睛】本题考查了正比例函数的图象,当0k >时,函数图象经过一、三象限;当0k <时,函数图象经过二、四象限;直线越陡,k 越大.6.将直线21y x =+向下平移2个单位长度后,得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .与x 轴交于点20(,) B .与y 轴交于点()0,1-C .y 随x 的增大而减小D .与两坐标轴围成的三角形的面积为12【答案】B【提示】首先根据函数图像平移法则,向下平移2个单位,则给函数解析式右端减2,即可得到平移后的直线方程;接下来根据一次函数图像的性质分析与坐标轴围成面积,交点坐标以及y 随x 的变化关系,即可得解.【解答】解:将直线21y x =+向下平移2个单位长度后得到直线21221y x x =+-=-,A 、直线21y x =-与x 轴交于1,02⎛⎫⎪⎝⎭,故本选项不合题意;B 、直线21y x =-与y 轴交于()0,1-,故本选项,符合题意;C 、直线21y x =-,y 随x 的增大而增大,故本选项不合题意;D 、直线21y x =-与两坐标轴围成的三角形的面积为1111224⨯⨯=,故本选项不合题意;故选:B .【点睛】本题主要考查一次函数的平移及性质,熟练掌握一次函数的图象和性质是解题的关键. 7.如图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,mn≠0)图象的是( )A .B .C .D .【答案】C【提示】根据“两数相乘,同号得正,异号得负”分两种情况讨论m 、n 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当0mn >,y mnx =过一,三象限,m ,n 同号,同正时y mx n =+过一,二,三象限,同负时过二,三,四象限;②当0mn <时,y mnx =过二,四象限,m ,n 异号,则y mx n =+过一,三,四象限或一,二,四象限.观察图象,只有选项C 符合题意, 故选:C .【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y kx b =+的图象有四种情况:①当00k b >>,,函数y kx b =+的图象经过第一、二、三象限; ②当00k b ><,,函数y kx b =+的图象经过第一、三、四象限; ③当00k b <>,时,函数y kx b =+的图象经过第一、二、四象限; ④当00k b <<,时,函数y kx b =+的图象经过第二、三、四象限.8.已知一次函数y kx b =+(0k ≠),如表是x 与y 的一些对应数值,则下列结论中正确的是( )A .y 随x 的增大而增大B .函数的图象向上平移4个单位长度得到2y x =-的图象C .函数的图象不经过第三象限D .若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y < 【答案】C【提示】首先把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,解方程组,即可求得一次函数的解析式,再根据一次函数的性质即可解答.【解答】解:把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,得42b k b =⎧⎨+=⎩ 解得24k b =-⎧⎨=⎩故该一次函数的解析式为24y x =-+,故该函数图象经过一、二、四象限,不经过第三象限,故C 正确;20k <,∴y 随x 的增大而减小,故A 错误;若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y >,故D 错误; 将该函数的图象向上平移4个单位长度得到28y x =-+的图象,故B 错误;故选:C .【点睛】本题考查了求一次函数的解析式及一次函数的性质,熟练掌握和运用一次函数的性质是解决本题的关键. 9.如图,直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,,点()2P n ,在直线l 上,已知M 是x 轴上的动点.当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为( )A .()2,0-或()3.0B .()2,0或()3.0C .()1,0或()4.0D .()2,0或()4.0 【答案】B【提示】根据题意,可以求得点A 点B 和点P 的坐标,设出点M 的坐标再根据分类讨论的方法结合勾股定理即可求得点M 的坐标. 【解答】解:∵直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,∴当0y =,102x m +=,1012m ⨯+=, 解得1m =,2x =-,∴点A 坐标为(20)-,, ∵点()2P n ,在直线l 上 ∴当2y =,1212n =+, 解得2n =,即()22P ,设M 点坐标为()0a ,当AM PM ⊥ 时,此时点P 与点M 横坐标相同,即2a n == , ∴(20)M ,; ②当AP PM ⊥时,此时()222AM a =+ ,()2224PM a =-+ ,222[(2(2)]220AP =--+= ,根据勾股定理得()()2224202a a -++=+,解得,3a =,∴(30)M ,;综上所述∴(20)M ,或(30)M ,; 故选B .【点睛】本题考查一次函数图像上点的坐标特征,动点中的直角三角形,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM 沿AM折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A .142y x =-+ B .243y x =-+ C .132y x =-+ D .133y x =-+【答案】C【提示】先求出点,A B 的坐标,从而得出,OA OB 的长度,运用勾股定理求出AB 的长度,然后根据折叠的性质可知,AB AB MB MB ''==,OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=,运用勾股定理列方程得出OM 的长度,即点M 的坐标已知,运用待定系数法求一次函数解析式即可.【解答】解:当0x =时,4883y x =-+=,即(0,8)B ,当0y =时,6x =,即(6,0)A ,所以226810AB AB '=+=,即(4,0)B '-,设OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=, ∴在Rt B OM '中,B O OM B M ''+=, 即2224(8)x x +=-, 解得:3x =, ∴(0,3)M , 又(6,0)A ,设直线AM 的解析式为y kx b =+,则063k b b =+⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AM 的解析式为132y x =-+.故选:C .【点睛】本题考查了一次函数与坐标轴的交点问题,折叠的性质,勾股定理,待定系数法求一次函数解析式,根据题意得出(0,3)M 的坐标是解本题的关键.二、填空题11.正比例函数()32y a x =-的图象过第一、三象限,则a 的取值范围是______. 【答案】23a >##23a <【提示】根据正比例函数的图象经过第一、三象限,得k>0,即320a ->,计算即可得解. 【解答】解:由正比例函数()32y a x =-的图象经过第一、三象限, 可得:320a ->,则23a >.故答案为:23a >.【点睛】本题考查了正比例函数的性质,对于正比例函数y=kx (k≠0),当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小. 12.已知直线1L :26y x =-,则直线1L 关于x 轴对称的直线2L 的函数解析式是______. 【答案】26y x =-+##62y x =-【提示】直接根据关于x 轴对称的点横坐标不变纵坐标互为相反数进行解答即可. 【解答】解:∵关于x 轴对称的点横坐标不变纵坐标互为相反数, ∴直线1L :y=2x-6与直线2L 关于x 轴对称, 则直线2L 的解析式为-y=2x-6,即y=-2x+6. 故答案为:y=-2x+6.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x 轴对称的点的坐标特点是解答此题的关键.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),当2x <时,1y ___________2y (填“>”或“<”)【答案】<【提示】根据两函数图象及交点坐标,即可解答.【解答】解:正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),∴由图象可知:当2x <时,12y y <, 故答案为:<.【点睛】本题考查了利用函数图象比较函数值的大小,采用数形结合的思想是解决此类题的关键. 14.已知(,1)A n n +、(1,4)B n n -+、(,)C m t 是正比例函数y kx =图象上的三个点,当3m >时,t 的取值范围是______. 【答案】9t <-【提示】根据,A B 两点在y kx = 上求出k 得出该正比例函数解析式后,由单调性判断即可.【解答】将点A 与点B 代入y kx = ,得:141n knn k n +=⎧⎨+=-⎩() , 两式相减,得:3k =- , 3y x ∴=-,∴ y 随x 的增大而减小,当3m = 时,339t =-⨯=-, ∴ 当m >3时,t <-9,故答案为:t <-9.【点睛】本题考查函数解析式的求解与正比例函数的性质,将未知点代入求出解析式为关键,属于中等题.15.在平面直角坐标中,点()3,2A --、()1,2B --,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为______. 【答案】232k ≤≤##223x ≥≥ 【提示】因为直线y =kx (k≠0)与线段AB 有交点,所以当直线y =kx (k≠0)过()1,2B --时,k 值最大;当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,然后把B 点和A 点坐标代入y =kx (k≠0)可计算出对应的k 的值,从而得到k 的取值范围. 【解答】解:∵直线y =kx (k≠0)与线段AB 有交点,∴当直线y =kx (k≠0)过B (﹣1,﹣2)时,k 值最大,则有﹣k =﹣2,解得k =2; 当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,则﹣3k =﹣2,解得k =23, ∴k 的取值范围为232k ≤≤.故答案为:232k ≤≤. 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,解题的关键是熟悉一次函数图象的性质.16.直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点,两直线相交于x 轴上同一点A . (1):m n =________(2)若8ABC S =△,点A 的坐标是______________ 【答案】 2:3 ()4,0或()4,0-【提示】根据两直线相交同一点,则横坐标相同,即可;设A 的坐标为:()0a ,,根据8ABC S =△,则12ABCSBC a =⨯⨯,解出a ,即可. 【解答】∵直线8y mx =-和直线12y nx =-相交x 轴上同一点A ∴08mx =-,012nx =-∴直线8y mx =-与x 轴的交点为8,0m ⎛⎫⎪⎝⎭,直线12y nx =-与x 轴的交点为12,0n ⎛⎫ ⎪⎝⎭∴812m n= ∴:2:3m n =;设A 的坐标为:()0a , ∵8ABC S =△ ∴12ABCSBC a =⨯⨯ ∵直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点 ∴点()0,8B -,()0,12C - ∴1482ABCSa =⨯⨯= ∴4a =∴4a =±∴点A 的坐标为()4,0或()4,0-. 故答案为:2:3;()4,0或()4,0-.【点睛】本题考查一次函数的知识,解题的关键是掌握一次函数图象与性质.17.已知一次函数(0)y kx b k =+≠的图象经过点A(3,0),与y 轴交于点B ,O 为坐标原点. 若△AOB 的面积为6,则该一次函数的解析式为_____________ .【答案】443y x =--或443y x =+【提示】分两种情况:当点B 在y 轴正半轴时,当点B 在y 轴负半轴时,然后利用待定系数法进行计算即可解答.【解答】解:点(3,0)A ,3OA ∴=,AOB ∆的面积为6,∴162OA OB ⋅=, ∴1362OB ⨯⋅=,4OB ∴=,(0,4)B ∴或(0,4)-,将(3,0)A ,(0,4)B 代入(0)y kx b k =+≠得: 304k b b +=⎧⎨=⎩,解得:434k b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为:443y x =-+,将(3,0)A ,(0,4)B -代入(0)y kx b k =+≠得:304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为:443y x =-,综上所述:一次函数的解析式为:443y x =-+或443y x =-,故答案为:443y x =-+或443y x =-.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,分两种情况讨论是解题的关键.18.如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ⊥于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45︒,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.【答案】222-【提示】由点P 的运动确定P '的运动轨迹是在与x 轴垂直的一段线段MN ,当线段'CP 与MN 垂直时,线段'CP 的值最小.【解答】解:由已知可得()()0,44,0A B , ∴三角形OAB 是等腰直角三角形,OC AB ⊥,()2,2C ∴,又P 是线段OC 上动点,将线段AP 绕点A 逆时针旋转45︒, P 在线段OC 上运动,所以P'的运动轨迹也是线段,当P 在O 点时和P 在C 点时分别确定P'的起点与终点,'P ∴的运动轨迹是在与x 轴垂直的一段线段MN ,∴当线段'CP 与MN 垂直时,线段'CP 的值最小,在AOB 中,4AO AN ==,42AB =424NB ∴=,又Rt HBN 是等腰直角三角形,422HB ∴=-('24422CP OB BH ∴=--=---=.故答案为2.【点睛】此题考查了直角三角形的性质,一次函数图象上点的坐标特点,动点运动轨迹的判断,垂线段最短,熟练掌握一次函数图象的性质是解题的关键.三、解答题19.已知一次函数()2312y k x k =--+.(1)当k 为何值时,图像与直线29y x =+的交点在y 轴上? (2)当k 为何值时,图像平行于直线2y x =-? (3)当k 为何值时,y 随x 的增大而减小? 【答案】(1)1k = (2)0k = (3)2k <【提示】(1)先求出直线29y x =+与y 轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k 的值;(2)根据两直线平行时其自变量的系数相等,列出方程,求出k 的值即可; (3)根据比例系数0<时,数列出不等式,求出k 的取值范围即可. 【解答】(1)解:当0x =时,9y =,∴直线29y x =+与y 轴的交点坐标为()09,, ∵一次函数()2312y k x k =--+的图像与直线29y x =+的交点在y 轴上, ∴()203129k k -⨯-+=, 解得:1k =;(2)解:∵一次函数()2312y k x k =--+的图像平行于直线2y x =-,即直线2y x =-向上或向下平移312k -+个单位后的图像与一次函数()2312y k x k =--+的图像重合,∴22k -=-且3120k -+≠,20k -≠, 解得:0k =.(3)解:∵y 随x 的增大而减小,解得:2k <.【点睛】本题考查一次函数图像上点的坐标特征及函数性质,图形平移等知识点.熟练掌握一次函数的性质是题的关键.20.如图,直线OA 经过点()4,2A --.(1)求直线OA 的函数的表达式;(2)若点()12,P n 和点()25,Q n 在直线OA 上,直接写出12n n 、的大小关系; (3)将直线OA 向上平移m 个单位后经过点()2,4M ,求m 的值. 【答案】(1)12y x = (2)12n n < (3)m=3【提示】(1)设函数解析式为y kx =,将()4,2A --代入函数解析式中,可求出k 的值; (2)根据函数的增减性分析即可;(3)先求出平移后的函数解解析式,由此可求出m 的值. (1)解:设函数解析式为y kx =,将()4,2A --代入函数解析式中得:24k -=-,12k =, 故函数解析式为:12y x =; (2)解:∵0k >,∴y 随x 的增大而增大, ∵()12,P n ,()25,Q n 中,2<5,(3)解:设平移后函数解析式为:12y x b =+, 将()2,4M 代入函数解析式中得:1422b =⨯+,解得:3b =, 故函数的解析式为:132y x =+, 故m=3.【点睛】本题考查根据函数图象求正比例函数的解析式,求函数的增减性,函数图象的平移. 21.如图,在平面直角坐标系xOy 中,直线1l 经过点O 和点A ,将直线1l 绕点O 逆时针旋转90︒,再向上平移2个单位长度得到直线2l .求直线1l 与2l 的解析式.【答案】直线1l 的解析式是2y x =;直线2l 的解析式是122y x =-+ 【提示】根据A 点坐标,利用待定系数法求直线1l 的解析式;同理求出旋转90︒后的直线解析式,再根据“上加下减”求出向上平移2个单位后的解析式.【解答】解:由图象可知:点A 的坐标是(2,4),点A 逆时针旋转90︒后得到点A '的坐标是(4,2)-, 设直线1l 的解析式是1y k x =, 则可得:124k =, 解得:12k =,故直线1l 的解析式是2y x =.设直线1l 绕点O 逆时针旋转90︒后的直线解析式是2y k x =, 把点(4,2)A '-代入2y k x =,得242k -=,解得212k =-,即12y x =-.故可得直线2l 的解析式是122y x =-+. 【点睛】本题考查一次函数的旋转与平移,解题的关键是能够利用待定系数法求函数解析式,并掌握函数图象平移的规律. 22.如图,直线13342y x =+与x 轴、y 轴分别交于点A 、B .直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,.(1)求直线CD 的解析式;(2)判断ACD 的形状,并说明理由. 【答案】(1)39y x =-+(2)ACD 是等腰三角形,理由见解析【提示】(1)先求出点C 的坐标,然后利用待定系数法求出直线CD 的解析式即可; (2)先求出点A 的坐标,进而求出AC CD AD 、、的长即可得到答案.【解答】(1)解:∵直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,, ∴33342m =+,∴2m =,∴点C 的坐标为()23,, ∴2330k b k b +=⎧⎨+=⎩,∴39k b =-⎧⎨=⎩,∴直线CD 的解析式为39y x =-+; (2)解:ACD 是等腰三角形,理由如下: 对于13342y x =+,当0y =时,2x =-,∴点A 的坐标为()20-,, ∴()()22522035AD AC ==--+-=,,()()22233010CD =-+-=,∴AD AC =,∴ACD 是等腰三角形.【点睛】本题主要考查了求一次函数解析式,勾股定理,等腰三角形的判定,熟知待定系数法求一次函数解析式是解题的关键.23.如图,在平面直角坐标系中,一次函数3124y x =-+与两坐标轴分别交于A ,B 两点,OM AB ⊥,垂足为点M .(1)求点A ,B 的坐标; (2)求OM 的长;(3)存在直线AB 上的点N ,使得12OAN OAB S S ∆∆=,请求出所有符合条件的点N 的坐标. 【答案】(1)A (160),,B (0)12,; (2)9.6OM =; (3)N (86),或(246)-,.【提示】(1)利用坐标轴上点的特点直接得出点A ,B 坐标; (2)利用三角形的面积的计算即可求出OM ;(3)设出点N 的坐标,利用三角形的面积列方程求解即可. 【解答】(1)解:令0x =, ∴12y =, ∴B (0)12,, 令0y =, ∴31204x -+=,∴16x =, ∴A (160),;(2)解:由(1)知,A (160),,B (0)12,, ∴1612OA OB ==,,∴196202OAB S OA OB AB =⨯===,△,∵OM AB ⊥, ∴11209622OAB S AB OM OM =⨯=⨯⨯=△, ∴9.6OM =;(3)解:由(2)知,96OAB S =△,16OA =, ∵直线AB 上的点N , ∴设N 3(12)4m m -+,, ∵12OAN OAB S S =△△, ∴111||16||8||9648222OAN N N N S OA y y y =⨯=⨯⨯=⨯=⨯=△,∴38|12|484m ⨯-+=,∴8m =或24m =, ∴N (86),或(246)-,. 【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,绝对值方程的求解,列出方程是解本题的关键,是一道比较简单的基础题目.24.当m ,n 为实数,且满足1m n +=时,就称点(),m n 为“和谐点”,已知点()0,7A 在直线l :y x b =+,点B ,C 是“和谐点”,且B 在直线l 上. (1)求b 的值及判断点()2,1F -是否为“和谐点”; (2)求点B 的坐标;(3)若AC =C 的横坐标. 【答案】(1)7b =,点()2,1F -是“和谐点”(2)()34B -,(3)点C 的横坐标为1或7-【提示】(1)将点()0,7A 代入直线l :y x b =+,可得b 的值,根据“和谐点”的定义即可判断; (2)点B 是“和谐点”,所以设出点B 的横坐标,表示出纵坐标,因为点B 在直线l :7y x =+上,把点B 代入解析式中求得横坐标,进而求得点B 的坐标;(3)点C 是“和谐点”,所以设出点C 的横坐标为c ,表示出纵坐标1c -,根据勾股定理即可得出当52AC =时对应的点C 的横坐标.【解答】(1)解:∵点A 在直线y x b =+上, ∴把()0,7A 代入y x b =+, ∴7b =,∵点()2,1F -,()211+-=, ∴点()2,1F -是“和谐点”; (2)解:∵点B 是“和谐点”,∴设点B 的横坐标为p ,则纵坐标为1p -,点B 的坐标为(),1p p -, ∵点B 在直线l :7y x =+上,∴把点(),1B p p -代入y=x+7得,3p =-, ∴14p -=,∴()34B -,; (3)解:设点C 的横坐标为c , ∵点C 是“和谐点”, ∴纵坐标1c -,当52AC =时,()221752AC c c =+--=, 解得7c =-或1,∴点C 的横坐标为1或7-.【点睛】本题考查待定系数法求解析式,一次函数图象上点的坐标特征,根据定义判断一个点是不是“和谐点”,勾股定理等知识,理解新定义是解题的关键.25.对于函数y x b =+,小明探究了它的图象及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是 ;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是 ,n 的值是 .(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图象;(4)结合函数y x =,1y x =+,2y x =-的图象,写出函数y x b =+中y 随x 的变化的增减情况;(5)点11(,)x y 和点22(,)x y 都在函数y x b =+的图象上,当12>0x x 时,若总有12<y y ,结合函数图象,直接写出1x 和2x 大小关系.【答案】(1)任意实数(2)3,1-(3)见解析(4)当0x>时,函数y 随x 的增大而增大,当<0x 时,函数y 随x 的增大而减小(5)210x x <<或120x x <<【提示】(1)根据解析式即可确定自变量取值范围;(2)把2x =-代入1y x =+,求得3m =,把=1x -代入2y x =-,求得1n =-;(3)根据表格数据补全函数y x =,1y x =+,2y x =-的图像即可;(4)观察图像即可求得;(5)根据图像即可得到结论.【解答】(1)解:函数y x b =+中,自变量x 可以是全体实数,故答案为:全体实数;(2)解:把2x =-代入1y x =+,得3y =,把=1x -代入2y x =-,得1y =-,∴3,1m n ==-,故答案为:3,1-;(3)解:补全函数y x =,1y x =+,2y x =-的图像如下:(4)解:由图知,当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; 故答案为:当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; (5)解:∵点11(,)x y 和点22(,)x y 都在函数y x b =+的图像上,当120x x >时,∴点11(,)x y 和点22(,)x y 在y 轴的同一侧,观察图像,当120x x >时,若总有12y y <,即210x x <<或120x x <<.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图像,并研究和总结函数的性质;数形结合是解题的关键.。
一次函数图像及其性质
一次函数图像及其性质一、一次函数图像1、一次函数y=kx+b 的k 、b 的值对一次函数图象的影响:① ② ③ ④①k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限;②k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③k ﹤0,b ﹥0, y =kx +b 的图象在一、二、四象限;④k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。
2、一次函数的性质⑴正比例函数y=kx(k≠0)是特殊的一次函数,当k>0时,图象过一、三象限,y 随x 的增大而_增大__; 当k<0时,图象过__二、四__象限;y 随x 的增大而_减小___.⑵一次函数y=kx +b(k ≠ 0)的图象平行于直线y = kx ,可由它平移而得,当k>0时,y 随x 的增大而_增大_; 当k<0时,y 随x 的增大而__减小_k>0时,k 越大,y 增长得越快;k<0时,k 越大,减小得越快;⑴在一次函数y=kx +b 中,令y=0,得一元一次方程kx +b=0,它的根就是一次函数y=kx +b 的图象与x 轴交点的横坐标.⑵一元一次不等式kx +b>0(或kx +b<0)的解集可以看作一次函数y=kx +b 当函数值大于或小于0时相应的自变量x 值的取值范围.⑶两直线交点的坐标,就是由这两条直线的解析式组成的二元一次方程组的解.题型考点一:一次函数的增减性例1、已知关于x 的一次函数2(3)2y m x m =-++-.(1) m 为何值时,函数的图象和直线y=-x 平行? (2)m 为何值时,y 随x 的增大而减小?【变式】已知一次函数y=(3-k )x-2k 2+18. (1)k 为何值时,它的图象经过原点? (2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象与y 轴的交点在x 轴的上方? (4)k 为何值时,它的图象平行于直线y=x ? (5)k 为何值时,y 随x 的增大而减小?题型考点二:一次函数图像与象限关系例2、直线y=x+b (b>0)与直线y=kx (k<0)的交点位于()A 、第一象限B 、第二象限C 、第三象限D 、第四象限【练习】若实数a ,b 满足ab <0,且a <b ,则函数y=ax+b 的图象可能是( )题型考点三:一次函数图像的交点例3、如图,在平面直角坐标系中,线段AB 的坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是() A 、-5 B 、-2 C 、3 D 、5【练习】如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限, 则a 可能在()A 、1<a<2B 、-2<a<0C 、32a -≤≤-D 、-10<a<-4二、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
一次函数图像及性质总结(表格)zhyane
目 录
• 一次函数图像 • 一次函数的性质 • 一次函数的实际应用 • 一次函数与其他数学知识的联系 • 一次函数的应用题解析
01 一次函数图像
图像形状
直线
一次函数的标准形式为y=kx+b,其 中k为斜率,b为截距。当k≠0时,图 像为一条直线;当k=0时,图像为y轴。
斜率决定方向
02
二次函数的最值问题可以通过求 导找到一阶导数等于0的点,这些 点就是函数的极值点,从而转化 为一次函数的问题。
与线性方程的联系
一次函数与一元一次方程紧密相关, 因为一元一次方程的解就是函数的零 点。
线性方程组的解可以通过消元法或代 入法得到,这些方法在解决一次函数 问题时也经常用到。
与三角函数的联系
详细描述
在日常生活中,我们经常面临各种选择和决策,其中最优化问题是最常见的。例如,在 购物时,我们希望找到价格和质量的最佳平衡点,这可以通过比较不同产品的价格和质
量(即一次函数的斜率和y轴上的截距)来实现。
THANKS FOR WATCHING
感谢您的观看
斜率k决定了直线的倾斜方向。当k>0 时,直线从左下到右上倾斜;当k<0 时,直线从左上到右下倾斜。
图像与坐标轴的交点
与x轴交点
令y=0,解得x的值即为与x轴的交 点。
与y轴交点
令x=0,解得y的值即为与y轴的交 点。
图像的增减性
单调性
根据斜率k的正负判断。k>0时,函数为增函数;k<0时,函数为减函数。
高度与时间的关系
总结词
高度与时间的关系也是一次函数的应用之一。
详细描述
在航空学中,高度和时间的关系通常用一次函数来表示。例如,一个物体从静止开始自由落体运动时,其高度与 时间的关系就是一次函数。
第11节 一次函数的图象和性质
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:
即
,
由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;
八年级数学一次函数的图象和性质
描点作图
将计算出的点在坐标轴上 标出,并使用平滑的曲线 连接这些点。
一次函数图象的特点
线性关系
一次函数图象是一条直线,函数 值随自变量的变化而均匀变化。
斜率
一次函数的斜率表示函数值随自 变量变化的速率,斜率k>0时, 函数值随自变量增大而增大;斜 率k<0时,函数值随自变量增大
而减小。
y轴上的截距
05 练习与巩固
基础练习题
2、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是( )
3、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是____.
1、已知函数$y = (2m + 1)x + m - 3$,若这个函数的图象不经过第 二象限,则$m$的取值范围是 ____.
一次函数的表示方法
一次函数可以用解析式表示为 $y=kx+b$,其中$k$是斜率,$b$是 截距。
也可以通过表格或图象来表示一次函 数的关系。
一次函数的基本性质
斜率
斜率$k$决定了函数的增减性,当$k>0$时,函数随$x$ 的增大而增大;当$k<0$时,函数随$x$的增大而减小。
单调性
一次函数的单调性由斜率决定,斜率$k>0$时,函数为增 函数;斜率$k<0$时,函数为减函数。
一次函数与坐标轴的关系
一次函数与x轴的交点
当y=0时,x的值即为与x轴的交点。
一次函数与坐标轴围成的三角形面积
可以通过截距和与x轴交点来计算三角形面积。
04 一次函数的应用
一次函数在实际问题中的应用
(完整版)一次函数的图像与性质知识点总结
一次函数的图像与性质知识点总结知识点1 、 一次函数和正比例函数的概念若两个变量x,y 间的关系式可以表示成y=kx+b(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数。
例如:y=2x+3,y=—x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.知识点2、 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3、一次函数的图象由于一次函数y=kx+b(k,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b),直线与x 轴的交点(-kb ,0)。
但也不必一定选取这两个特殊点。
画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 、 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k |大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5、正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点6、点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点7、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y 的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点9、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.。
一次函数与二次函数的图像与性质
一次函数与二次函数的图像与性质一次函数和二次函数是数学中常见的函数类型。
它们在图像和性质上有着明显的区别。
本文将分别对一次函数和二次函数的图像及性质进行介绍。
一、一次函数的图像与性质一次函数又称为线性函数,它的表达式为y = ax + b,其中a和b是常数,且a ≠ 0。
一次函数的图像是一条直线,具有以下性质:1. 斜率:一次函数的斜率代表了直线的倾斜程度。
斜率为正值时,直线向右上方倾斜;斜率为负值时,直线向右下方倾斜;斜率为零时,直线为水平线。
2. 截距:一次函数的截距代表了直线与y轴的交点。
当x=0时,直线与y轴的交点为截距b。
3. 线性关系:一次函数的图像是一条直线,表示了两个变量之间的线性关系。
直线方程中的斜率a表示了自变量x单位增加时因变量y的增加量。
二、二次函数的图像与性质二次函数的一般形式为y = ax² + bx + c,其中a、b和c是常数,且a ≠ 0。
二次函数的图像是一条抛物线,具有以下性质:1. 开口方向:二次函数的开口方向由二次项系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 零点:二次函数的零点是指函数图像与x轴相交的点,也就是函数的根。
零点也是方程y=0的解。
3. 极值点:二次函数的极值点是指函数图像的最高点或最低点。
当抛物线开口向上时,极值点是最低点;开口向下时,极值点是最高点。
4. 对称轴:二次函数的对称轴是指抛物线的中心线,对称轴的方程为x=-b/(2a)。
对称轴把抛物线分为两个对称的部分。
5. 最值:二次函数的最值是指函数图像的最低点或最高点的纵坐标值。
总结:一次函数和二次函数在图像与性质上具有明显的区别。
一次函数的图像是一条直线,具有斜率和截距,表示了线性关系。
而二次函数的图像是一条抛物线,具有开口方向、零点、极值点、对称轴和最值等性质。
了解和掌握一次函数和二次函数的图像与性质,对于数学问题的解决和实际应用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o 1
2
3
4
5
6 x
经过(0,1)和(2,0)两点
-4 -5 -6
总结: • 画一次函数的图像时,只要描出合 适关系式的两点,再连接两点即可, 我们通常选 b 取(0,b)和(,0 ) k
这两个点,也就是选取图像与x轴 和y轴的交点坐标。
3、学习一次函数性质
y 6
y=-2x+1 y=-x+1
y=2x+1 y=x+1
T=-2t
T=-2t-1
函数
自变量
1
为常数,且k≠0) y = k x +b b (k、b为常数
一次函数的概念:
一般地,形如y=kx+b(k、b是常数, 且k≠0)的函数,叫做一次函数。
特别注意: 1.k ≠ 0 2.自变量x的指数是“1”
一次函数与正比例函数的关系
当b=0时,y=kx+b(k、b为常数,且k≠0) 就成了y=kx(k为常数,且k≠0)。 因此,正比例函数是一种特殊的一次函数。
比一比:正比例函数y=-2x与一次函数y=- 2x+3 、y=-2x-3图象有什么异同点.
y 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 o 1
y=-2x+3
2 3 4
5
6
x
y=-2x-3
-4
-5 -6
y=-2x
观察:比较上面三个函数的相同点与不同点,根 据你的观察结果回答下列问题: (1)这三个函数的图象形状都是___,并且倾斜程 直线 度___; 相同 (2)函数y=-2x图象经过原点,一次函数y=-2x+3 的图象与y轴交于点____,即它可以看作由直线 (0,3) y=-2x向__平移__单位长度而得到; 上 3个 (0,-3) 一次函数y=-2x-3的图象与y轴交于点____, 即它可以看作由直线y=-2x向__平移__单位长 下 3个 度而得到;
(3)直线y=x+2可由直线y=x-1向 上 平 移 3 单位得到。
4(09湖南邵阳)在平面直角坐标系中,函数y=-2x+3 的图象经过( ) D A.一、二、三象限 B.二、三、四象限 C.一、三、四象限 D.一、二、四象限 5(2009宁夏)5.一次函数y=3x-2的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6(2009年株洲市)一次函数y=2x+1的图象不经过( ) D A.第一象限 B.第二象限C.第三象限D.第四象限 7 (2009年重庆市江津区)已知一次函数y=x-2的大致图像为(
y
B
y
y
y
)
C
x
x
x
x
A
B
C
D
减小 (8)对于函数y=5x+6,y的值随x的值减小而______. 与y轴的交点为( 0,6 ),与x轴交于( -6/5, 0) (9)函数y=2x - 4与y轴的交点为( 0, ),与 x轴交 -4 于( ) 2, 0 (10)已知一次函数y=(1-2k)x+k的函数值y随x的 增大而增大,且图象经过一、二、三象限,则k的取 值范围是__________. 0﹤k﹤1/2
④y=5x-6
②y=- 8 x x-1 ⑤y=3
③y=5x2+6 ⑥y=kx+b
(1)下列函数中,y的值随x值的增大而增大 的函数是____. C 互相平行的函数是_ A___. 和B A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2 (2)直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。
5 4 3 2 1
体验:在同一坐标 系中用两点法画 出函数
6 x
-6
-5
-4
-3
-2
-1 -1 -2 -3 -4
o 1
2
3
4
5
y=x+1, y=-x+1, y=2x+1 y=-2x+1 的图 象.
-5 -6
6.探究:观察上面四个一次函数的图象,类 比正比例函数y=kx中k的正负对图象的影 响,表述一次函数的性质.
(3)直线y=x+2可由直线y=x-1向 上 平 移 3 单位得到。
4(09湖南邵阳)在平面直角坐标系中,函数y=-2x+3 的图象经过( ) D A.一、二、三象限 B.二、三、四象限 C.一、三、四象限 D.一、二、四象限 5(2009宁夏)5.一次函数y=3x-2的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6(2009年株洲市)一次函数y=2x+1的图象不经过( ) D A.第一象限 B.第二象限C.第三象限D.第四象限 7 (2009年重庆市江津区)已知一次函数y=x-2的大致图像为(
练
习
1.直线y=2x-3与x轴交点坐标为_______,与y轴交点 坐标为_____,• 图象经过第_____象限,y随x增大而 _________. 2.分别说出满足下列条件的一次函数的图象过哪几个 象限? (1)k>0 b>0 (2)k>0 b<0 (3)k<0 b>0 (4)k<0 b<0
3、已知函数y=(m-2)x+n的图象经过一、二、 三象限. 求 : m、n的取值范围.
x
0
(0,b)
x
图象经过 三,二,一象限
图象经过 三,四,一象限
图象经过 二,一,四象限
图象经过 二,三,四象限
y随x的增大 而增大
y随x的增大 而增大
y随x的增大 而减小
y随x的增大 而减小
(1)下列函数中,y的值随x值的增大而增大 的函数是____. C 互相平行的函数是_ A___. 和B A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2 (2)直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。
6、已知某一次函数的图象经过(3, 4), (-2, 0)两点,试求这个一次函数的解析式.
一次函数y=kx+b(k、b是常数,k≠0)的图象
k>0,b>0
y
(0,b)
k>0,b<0
y
b - ,0 k Βιβλιοθήκη k<0,b>0
y
(0,b)
k<0,b<0
y
b - ,0 k
b - ,0 k
0
x
0
(0,b)
x
0
b - ,0 k
y
B
y
y
y
)
C
x
x
x
x
A
B
C
D
减小 (8)对于函数y=5x+6,y的值随x的值减小而______. 与y轴的交点为( 0,6 ),与x轴交于( -6/5, 0) (9)函数y=2x - 4与y轴的交点为( 0, ),与 x轴交 -4 于( ) 2, 0 (10)已知一次函数y=(1-2k)x+k的函数值y随x的 增大而增大,且图象经过一、二、三象限,则k的取 值范围是__________. 0﹤k﹤1/2
课内练习: 1.下列各点中,那些点在函数y=4x+1的图象上? 那些不在函数的图象上? (2, 9) (5,1) (-1,-3) (-0.5,-1) 2.若函数y=2x-3 的图象经过点(1,a) ,(b, 2) 两点, 则a= ,b= . 3.点已知M(-3, 4)在一次函数y=ax+1的 图象上,则a的值是 .
当K>0时,图象从左到右上升,y随x增大而增大 当K<0时,图象从左到右下降,y随x增大而减小
活动与探究 在同一直角坐标系中画出下列函数 图象,并归纳y=kx+b(k、b是常数, k≠0)中b对函数图象的影响. 1.y=x-1 y=x y=x+1 2.y=-2x+1 y=-2x y=-2x-1
b决定直线y=kx+b与y轴交点的坐标(0,b). 当b>0时,交点在原点上方. 当b=0时,交点即原点. 当b<0时,交点在原点下方.
一条直线; (1) 所有一次函数y=kx+b的图象都是________ (2)直线 y=kx+b与直线y=kx__________ 互相平行 ;
(3)直线 y=kx+b可以看作由直线y=kx___________ 平移b 个单位 而得到
当b>0,向上平移b个单位; 当b<0,向下平移b个单位。
※※※一次函数y=kx+b的图象是一条直线,我 们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度而得到(当b>0,向上平移; 当b<0时,向下平移)。
4、已知某一个函数的图象经过点P(3,5) 和Q(-4,-9),求这个一次函数的解 析式. 解:设这个一次函数的解析式为y=kx+b ∵点P(3,5)和点Q(-4,-9) 在直线y=kx+b上 ∴ 3k b5 k 2 解得
4k b 9
b 1
∴ 一次函数解析式为y=2x-1
5、已知直线y= -2x+4,它与x轴的交点为A, 与y轴的交点为B. (1).求A, B两点的坐标. (2).求∆AOB的面积. (O为坐标原点)
正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?
K影响:经过象限和增减性
y=kx K>0
x y
图 象
y
性 质
经过一、三象限 y随x增大而增大
K<0
x
经过二、四象限 y随x增大而减小