《大学物理》干涉光学 (1)

合集下载

《大学物理》光的干涉知识点

《大学物理》光的干涉知识点

《大学物理》光的干涉知识点咱们来聊聊大学物理里超有意思的光的干涉!先说说啥是光的干涉啊。

简单说,就是两束或者多束光相遇的时候,它们会相互影响,产生一些特别有趣的现象。

这就好比两个人在舞台上跳舞,配合好了就能跳出精彩的舞步。

比如说杨氏双缝干涉实验,这可是光的干涉里的经典。

托马斯·杨当年做这个实验的时候,那可是打开了新世界的大门。

想象一下,一束光通过两条窄缝,然后在后面的屏幕上就出现了明暗相间的条纹。

这就像是光在跟我们玩捉迷藏,一会儿亮,一会儿暗。

那为啥会出现这种现象呢?这就得从光的波动性说起啦。

光啊,它可不是简单的直线跑的小粒子,而是像波浪一样传播的。

当两束光的波峰和波峰相遇,或者波谷和波谷相遇,就会变得更亮,这叫加强;要是波峰和波谷相遇,那就会变暗,这叫减弱。

我记得有一次在实验室里,自己动手做杨氏双缝干涉实验。

那时候紧张又兴奋,小心翼翼地调整着仪器,眼睛紧紧盯着屏幕,就盼着能看到那神奇的条纹。

当终于看到那清晰的明暗相间的条纹时,心里那种激动和惊喜,简直没法形容!感觉自己像是揭开了大自然的一个小秘密。

还有薄膜干涉,这在生活中也很常见。

比如夏天马路上的油膜,在阳光下会呈现出五彩斑斓的颜色,这就是薄膜干涉的杰作。

还有相机镜头上的镀膜,也是利用了薄膜干涉的原理来减少反射,提高成像质量。

光的干涉在现代科技中的应用那可多了去了。

比如在光学检测中,通过干涉条纹的变化可以检测出物体表面的微小缺陷。

还有干涉仪,可以用来测量长度、角度等物理量,精度高得吓人。

总之,光的干涉这个知识点,看似神秘,其实就在我们身边。

只要我们用心去观察、去探索,就能发现它的无穷魅力。

希望通过我这一番不太专业但充满热情的讲解,能让您对光的干涉有了更清楚的认识。

下次您再看到那些奇妙的光学现象,就知道背后的原理啦!。

大学物理电磁波与光的干涉与衍射

大学物理电磁波与光的干涉与衍射

大学物理电磁波与光的干涉与衍射干涉与衍射是物理学中重要的概念,特别是在电磁波和光学中有着广泛的应用。

本文将介绍电磁波与光的干涉和衍射现象及其相关理论,并探讨其在实际应用中的重要性。

一、电磁波与光的干涉现象干涉是指两个或多个波源发出的波相遇时所产生的相互干涉现象。

在电磁波和光学中,干涉现象表现为光的干涉,主要分为以下几种形式:1. 杨氏双缝干涉杨氏双缝干涉是最经典的干涉实验之一,它通过在光路上设置两个相隔较远的狭缝,使光通过后形成干涉图样。

当两个光波相遇时,会出现相长和相消的现象,从而形成明暗相间的干涉条纹。

2. 牛顿环干涉牛顿环干涉也是一种常见的干涉现象,它是通过将平凸透镜与平凹透镜叠在一起形成的。

当光线从平凸透镜上射入空气中,然后经过平凹透镜后再次汇聚,会在两个透镜之间形成明暗相间的圆环。

3. 薄膜干涉薄膜干涉是指当光线从两个介质的交界面入射时,经过反射和折射后产生干涉现象。

常见的例子是气泡的彩色干涉,当光线从气泡的表面反射和折射时,由于波长的不同,会产生明暗相间的彩色光。

二、电磁波与光的衍射现象衍射是指当波通过物体的缝隙或尺寸接近波长的物体时,波的传播方向发生偏离的现象。

在电磁波和光学中,衍射现象也有多种形式:1. 单缝衍射单缝衍射是一种常见的衍射现象,当光通过一个小缝隙时,会出现中央明亮,两侧逐渐暗淡的衍射图样。

这是因为当光通过缝隙时,会发生弯曲并扩散,使得光束在屏幕上形成衍射斑。

2. 双缝衍射双缝衍射是一种与杨氏双缝干涉相似的现象,当光通过两个相隔较近的缝隙时,会产生明暗相间的衍射条纹。

与干涉不同的是,衍射是由于波的传播特性而形成的,而不是波的相互干涉。

3. 衍射光栅衍射光栅是一种由许多平行的细缝组成的光学元件,用于分析和分离光的不同波长。

当光通过衍射光栅时,会出现多个明亮和暗淡的光斑,这是由于不同波长的光经过光栅后发生不同程度的衍射而产生的。

三、干涉与衍射的应用电磁波与光的干涉与衍射现象在实际应用中具有重要作用,主要体现在以下几个方面:1. 光学仪器干涉和衍射现象广泛应用于光学仪器中,包括显微镜、干涉仪、光栅等。

大学物理实验:光的干涉

大学物理实验:光的干涉

4.11光的干涉—-牛顿环要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠起来。

由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。

获得相干光方法有两种。

一种叫分波阵面法,另一种叫分振幅法。

牛顿环是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现,所以叫牛顿环。

在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。

【实验目的】1. 通过实验加深对等厚干涉的理解。

2. 学会使用读数显微镜并通过牛顿环测量透镜的曲率半径。

3. 学会使用读数显微镜测距。

4. 学会用图解法和逐差法处理数据。

【实验仪器】读数显微镜,牛顿环仪,钠光灯。

【实验原理】牛顿环仪是由曲率半径较大的平凸透镜L 和磨光的平玻璃板P 叠和装在金属框架F 中构成,如图4-11-1所示。

框架边上有三个螺旋H用来调节L 和P 之间的接触,以改变干涉条纹的形状和位置。

调节H 螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜。

1114--图如图4-11-2所示平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。

从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图4-11-3所示),称为牛顿环。

由于同一干涉环上各处的空气层厚度是相同的,因此它属于等厚干涉。

••• •• 由图4-11-2可见,如设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,其几何关系式为:222)(r d R R +-=2222r d Rd R ++-=由于R>>d,可以略去d 2得Rr d 22= (4-11-1)•• 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从而带来λ/2的附加光程差,所以总光程差为•• 22λ+=∆d (4-11-2)产生暗环的条件是: • ∆=(2k+1)2λ(4-11-3) 其中k=0,1,2,3,...为干涉暗条纹的级数。

大学物理实验光的干涉

大学物理实验光的干涉
大学物理实验光的干涉
目录
• 光的干涉概述 • 实验原理 • 实验步骤与操作 • 实验结果与分析 • 结论与总结
01 光的干涉概述
光的干涉现象
01
光的干涉是指两束或多束相干光 波在空间某些区域相遇叠加,形 成光强分布的周期性变化现象。
02
在干涉区域,光强增强或减弱, 形成明暗相间的干涉条纹。
干涉的形成条件
相干光源
干涉现象要求光源具有 相干性,即光源发出的 光波具有确定的相位关
系。
频率相同
参与干涉的两束光波的 频率必须相同。
振动方向相同
参与干涉的两束光波的 振动方向必须相同。
恒定的相位差
两束光波在相遇点必须 具有恒定的相位差。
干涉的应用
01
02
03
04
干涉测量
利用光的干涉现象测量长度、 厚度、表面粗糙度等物理量。
调整激光器
确保激光束垂直照射到双缝上 。
观察干涉图样
调整屏幕位置,观察到明暗交 替的干涉条纹。
测量条纹间距
使用测量尺测量相邻亮条纹或 暗条纹之间的距离。
薄膜干涉实验步骤
准备实验器材
包括单色光源、薄膜、屏幕和测量尺。
观察干涉图样
调整屏幕位置,观察到明暗交替的干涉图样。
调整光源和薄膜
确保单色光垂直照射到Байду номын сангаас膜上。
解释
干涉现象的产生是由于波的振动方向相同使得波峰与波峰或波谷与波谷叠加,使振幅增强 ;而振动方向相反时则会使振幅相互抵消。干涉现象是光的波动性质的重要体现之一。
应用
干涉现象在光学、声学、电子等领域有广泛应用,如光学干涉仪、声呐、电子显微镜等。
03 实验步骤与操作

大学物理光的干涉详解

大学物理光的干涉详解


E1
完全一样(传播方向,频率, 相位,振动方向)
6
2. 光的单色性
例:普通单色光
: 10-2 10 0 Å 激光 :10-8 10-5 Å 可见光 103Å
7
3. 光的相干性
相干光:满足相干条件的几束光
相干条件:振动方向相同,频率相同,有恒定的相位差
相干光相遇时合成光的振动:
nd
k 0,1, 2L
19
注意:① k 等于几,代表第几级明纹。 ② 零级明纹(中央明纹)由光程差=0决定。
暗纹 (2k 1) , k 1,2, 3L
2
k级暗纹位置: x (2k 1) D
nd
k 1,2, 3
注意:k=1第一级暗纹, k=2第二级暗纹…. 无零级暗纹
Imin
-4 -2 0 2 4
-4 -2 0 2 4
衬比度差 (V < 1)
衬比度好 (V = 1)
▲ 决定衬比度的因素:
振幅比,光源的单色性,光源的宽度
干涉条纹可反映光的全部信息(强度,相位)。 15
8. 半波损失:
当光从光疏媒质(折射率较小)入射到光密媒质(折 射率较大)再反射回光疏媒质时,在反射点,反射光损失 半个波长。 (作光程差计算时,在原有光程差的基础上加或减半波长)
干涉结果
明纹: 2k k
2
k 0,1, 2
36
① n1 n n2 , n1 n n2
2e
n2

n12
sin2
i


2

k
k 1, 2, 3
注意:此处k等于几,代表第几级明纹,这

大学物理演示(赵)(光干涉)

大学物理演示(赵)(光干涉)

17.2、 杨氏双缝干涉实验 双镜 劳埃德镜
1. 杨氏双缝干涉实验
实验装置 分波阵面干涉 缝宽: 10-4 m 双缝距离 d: 0.1--3 mm
屏到双缝距离 D: 1--10 m
屏上横向观测范围: 1--10 cm
2、 杨氏干涉条纹
S1 和 S2 振动方向相同, 频率相同 相位相同


A
P点光强 I I1 I2 2 I1I2 cos 2I0 (1 cos )


2
n1 n2 n3
光线1有,光线2有 2n2e cos
n1 n2 n3
n1 n2 , n3 n2
光线1没有,光线2没有 2n2e cos
光线1没有,光线2有


2n2e cos


2
2n2e cos 0
Oi
f tgi P 屏幕 f
谱线的自然宽度 ν
波包 i()
λ 谱线宽度
λ0 λ
波列
L c ~ 1 ~109 s
ν
2.相干光的获得
S1
分波前法 S
分波面法 S2
cos 0
不满足相 干条件
满足相 干条件 先分 后合
P
S
分振幅法
薄膜
1
2
托马斯.扬 (Thomas.Yong ,1773—1829)。幼年 时就聪慧过人,尤其擅长语言,青年 时会10种语言。后来他攻读医学,但 对物理学也有很大的兴趣。在研究听 觉和视觉问题时。他注意到光的微粒 说和波动说的争论,尽管当时在学术 界占统治地位的是微粒说,但是他注 意到惠更斯的波动说的合理性,1801 年他完成了著名的杨氏双缝实验,验 证了光的波动性

物理知识点光的干涉

物理知识点光的干涉

物理知识点光的干涉光的干涉是光学中的重要概念之一,它揭示了光波的波动性质及其产生的干涉现象。

本文将依据物理知识点,对光的干涉进行详细论述。

一、干涉现象的基本原理光的干涉是指两个或多个光波相互叠加所形成的干涉图案。

干涉现象的产生需要满足两个基本条件:光源是相干光源,波长相同。

当光波经过不同路径传播后再次相遇时,它们会相互干涉,产生增强或减弱的干涉效应。

二、双缝干涉1. 双缝干涉的实验装置双缝干涉实验一般采用光源、狭缝、透镜和屏幕等组成。

光源发出的光经狭缝后,形成一个光源光斑,通过透镜聚焦后照射到屏幕上。

2. 双缝干涉的光程差当光波通过两个缝隙后再次相遇时,其传播路径的长度差称为光程差。

光的干涉现象取决于光程差的大小。

3. 双缝干涉的干涉图案双缝干涉的干涉图案呈现出一系列明暗相间的条纹,称为干涉条纹。

该条纹呈现出一定的规律性,可通过干涉公式和级差条件进行分析和计算。

三、杨氏双缝干涉实验1. 杨氏双缝干涉实验的装置杨氏双缝干涉实验是一种经典的干涉实验方法。

实验装置由一束狭缝光源、双缝、透镜和幕板等组成。

2. 杨氏双缝干涉的干涉条纹杨氏干涉条纹呈现出一系列黑白相间的圆环或直线条纹。

根据实验条件和光波的干涉效应,可以通过杨氏双缝干涉公式进行计算。

四、单缝干涉1. 单缝干涉的实验装置单缝干涉实验通常采用单缝光源、单缝和屏幕等组成。

单缝光源发出的光波通过单缝后形成一个光斑,映射到屏幕上形成单缝干涉图样。

2. 单缝干涉的干涉条纹单缝干涉的干涉条纹呈现出明暗相间且中央最亮的中央极大和两侧较暗的暗条纹分布。

单缝干涉的干涉效应可由单缝干涉公式和级差条件加以说明。

五、干涉现象的应用光的干涉在科学研究和实际应用中有着重要的意义。

1. 干涉仪干涉仪是一种基于光的干涉原理设计的精密仪器,常用于光学测量、干涉剖析和光学检测等领域。

2. 光纤通信光纤通信是一种基于光的传输技术。

光波经光纤传输时,可能会产生干涉现象,影响信号传输质量,因此需要进行干涉相关的优化和控制。

大学物理光的干涉

大学物理光的干涉

干涉在光谱分析中的应用
干涉滤光片
利用光的干涉原理,设计出具有特定光谱透过率 的滤光片,用于光谱分析和图像增强。
傅里叶变换光谱仪
通过干涉原理,将复杂的光谱分解为简单的干涉 图样,便于分析物质的成分和结构。
原子干涉仪
利用原子在空间中的干涉现象,测量原子波长和 原子能级,用于原子结构和量子力学的研究。
干涉在全息摄影中的应用
大学物理光的干涉
目录
CONTENTS
• 光的干涉基本理论 • 干涉现象的实验验证 • 光的干涉的应用 • 光的干涉的深入研究
01 光的干涉基本理论
CHAPTER
光的波动性
01
光的波动性描述了光在空间中传播的方式,类似于水波在液体 中的传播。
02
光的波动性表现为光在传播过程中产生的振动和波动,这些振
动和波动具有特定的频率和波长。
光的波动性是理解光的干涉、衍射等光学现象的基础。
03
波的干涉
波的干涉是指两个或多个波在空间中相遇时,它们相互叠加产生新的波动现象。
当两个波的相位相同,即它们的振动方向一致时,它们会产生相长干涉,导致波峰 叠加和波谷叠加。
当两个波的相位相反,即它们的振动方向相反时,它们会产生相消干涉,导致波峰 抵消和波谷抵消。
量子通信、量子计算等领域。
03
量子纠缠的实验验证
科学家们通过实验验证了光子纠缠现象的存在,如著02
03
光的相干性
光的偏振
干涉现象的产生是由于两束光的 波前相干,即它们的相位差恒定。
光波的电场和磁场在垂直于传播 方向上的振动方向称为光的偏振 态。
光子纠缠现象
01
光子纠缠
当两个或多个光子相互作用后,它们的状态变得相互关联,即一个光子

大学物理中的光的干涉与衍射问题

大学物理中的光的干涉与衍射问题

大学物理中的光的干涉与衍射问题在大学物理中,光的干涉与衍射是一个非常重要的课题。

干涉和衍射现象是光的波动性质所导致的,它们对于我们理解光的本质和物质的性质起到了关键的作用。

本文将详细介绍光的干涉与衍射问题,以及相关的实验和应用。

一、干涉现象干涉是指两束或多束光波相互叠加产生的明暗相间的干涉条纹的现象。

干涉现象的产生需要满足两个条件:一是光源是相干光源,二是光的传播路径存在差异。

1. 条纹的产生当两束相干光波相遇时,会在空间中形成干涉条纹。

这些干涉条纹的产生可以通过弗朗霍夫衍射公式来解释,该公式描述了光通过一个狭缝时的衍射现象。

2. 干涉条纹的特征干涉条纹具有明暗相间的特征,这是因为光波的干涉会导致光的增强和相消干涉。

光的增强会使得干涉条纹出现明亮区域,而光的相消干涉则会导致干涉条纹出现暗区。

二、衍射现象衍射是指光波传播时发生弯曲和障碍物附近出现干涉效应的现象。

衍射现象的产生需要满足光波传播经过障碍物或者经过狭缝。

1. 衍射的产生光的衍射现象可以由基尔霍夫衍射公式来解释,该公式描述了光波传播经过一个孔径时所发生的衍射现象。

2. 衍射的特征衍射现象会导致光波的扩散,使得光的传播区域扩大。

衍射还会导致光的强度分布不均匀,形成明暗相间的衍射图案,这一特征是衍射现象的重要标志。

三、实验与应用光的干涉与衍射是许多实验和应用领域的基础。

以下是一些与干涉与衍射相关的实验和应用:1. 杨氏干涉实验杨氏干涉实验是用来观察干涉现象的经典实验之一。

通过在两面平行的玻璃板之间引入光源和接收屏,可以观察到明暗相间的干涉条纹。

2. 双缝干涉实验双缝干涉实验是观察干涉现象的经典实验之一。

通过在光源前放置两个狭缝,可以观察到通过狭缝后形成的干涉条纹。

这个实验不仅可以用来验证光的波动性质,还可以用来测量光的波长等重要参数。

3. 衍射光栅衍射光栅是一种利用光的衍射现象来实现光谱分析和波长测量的装置。

它由许多平行的狭缝构成,通过光的衍射,可以将不同波长的光分散成明暗相间的衍射光谱。

大学物理基础知识光的干涉与衍射现象

大学物理基础知识光的干涉与衍射现象

大学物理基础知识光的干涉与衍射现象光的干涉与衍射现象光的干涉和衍射现象是大学物理基础知识中的重要内容。

本文将介绍光的干涉和衍射的基本概念、原理以及实际应用。

一、光的干涉现象光的干涉是指两个或多个光波相遇时发生的现象。

干涉可以是构成性干涉(增强光强)或破坏性干涉(减弱或抵消光强)。

干涉现象可以通过光的波动性解释。

1. 干涉光的波动模型根据互相干涉的光波的波函数,可以使用叠加原理对光的干涉进行数学描述。

干涉是由于波峰与波峰相遇或波谷与波谷相遇而形成的,这种相遇会产生干涉图案。

2. 干涉的光程差干涉的关键参数是光程差,它是指两束相干光的传播路径的差值。

当光程差为整数倍的波长时,会出现构成性干涉;当光程差为半整数倍的波长时,会出现破坏性干涉。

3. 干涉的类型干涉现象可分为两种类型:薄膜干涉和双缝干涉。

薄膜干涉是指光线在介质的两个表面之间反射、透射产生的干涉现象;双缝干涉是指光通过两个相隔较近的缝隙后形成的干涉现象。

二、光的衍射现象光的衍射是指光线通过小孔或物体的边缘时发生的现象,光波会向周围扩散形成衍射图样。

衍射现象可以通过光的波动性解释。

1. 衍射光的波动模型光通过一个小孔或物体的边缘时,光波会发生弯曲,并在周围空间中形成散射波。

这些散射波的叠加就会形成衍射图样。

2. 衍射的特点衍射的特点是衍射波传播范围广,可以绕过物体的边缘,进入遮挡区域。

衍射图样的大小与孔径或物体边缘大小有关,小孔或细缝会产生较宽的衍射图样,大孔或宽缝会产生较窄的衍射图样。

3. 衍射的应用光的衍射现象在实际应用中具有广泛的意义,例如天文学中使用的干涉仪、显微镜的分辨率提升、光学存储器的读写操作等。

三、光的干涉与衍射的应用光的干涉与衍射现象不仅仅是基础学科的内容,也有着广泛的实际应用。

1. 干涉与衍射在光学仪器中的应用干涉仪是利用光的干涉现象进行测量和分析的仪器,如干涉计和迈克尔逊干涉仪等。

衍射仪是利用光的衍射现象进行实验和观测的仪器,如杨氏双缝干涉实验装置和夫琅禾费衍射装置等。

《大学物理》-光的干涉

《大学物理》-光的干涉
第22章
光的干涉
针孔的衍射
二、光的衍射现象的分类
单缝衍射
不同波长光的单缝衍射条纹照片
白光, a = 0.4 mm
方孔衍射
等厚干涉
双缝干涉
增透膜
网格衍射
一、光的本性
1、微粒说与波动说之争
牛顿的微粒说: 光是由光源发出的微粒流。
惠更斯的波动说: 光是一种波动。
2、 光的电磁本性
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
解: P 点为七级明纹位置
r2 r1 7
插入云母后,P点为零级明纹
r2 r1 d nd 0
d r1
s1
r2
s2
P 0
7 dn 1
d 7 7 55001010 6.6 106 m
n 1 1.58 1
三 薄膜干涉
1 等倾干涉
一、倾斜入射*
光程差:
n2 ( AB BC ) n1 AD n1
: :
c : 2
(b c)
(a d
2
b) :a
x1 x2
0.495cm 10mm
4.95mm
明纹的位置 d sin k
2
s1
s 2*
a
Mb
d xk k
abc 2
K=3, K=4, K=5,
x3=5.05mm x4=7.07mm x5=9.09mm

《大学物理(上)》光的干涉

《大学物理(上)》光的干涉
★ 结论:薄透镜不会引起各相干光之间的附加光程差。
20
万物之美 科学之理
目录
第一节 光源 光波 光的相干性 第二节 光波的叠加 光程与光程差 第三节 分波阵面干涉 第四节 分振幅干涉 第五节 迈克尔逊干涉仪 第六节 迈克尔逊干涉仪
第三节 分波阵面干涉
杨氏双缝干涉实验
实验现象
s1
S
s2
明条纹位置 明条纹位置 明条纹位置
42
第四节 分振幅干涉
43
第四节 分振幅干涉
练一练 观察 n=1.33 的薄油膜的反射光,它呈波长为 500nm 的绿光, 且这时法线和视线夹角 i=45o
求 (1)膜的最小厚度
i
(2)若垂直观察,此膜呈何种颜色
d
解 (1) 绿光干涉相长
数据代入(k=1): (2) 垂直观察
深黄色
44
第四节 分振幅干涉
P
S1
r2 d
x
2
1
0
I
S2
D
1
x
2
25
第三节 分波阵面干涉
讨论
D、d 一定时, x 或 x
若用白光照射双缝,屏上中心明纹仍为白色,两侧对称分布各级紫内红 外的彩色条纹。更高级次的彩色条纹可能会发生重叠 。
0
1
2
3
0 1 23 4
中央明纹
3
2
1
0
1
2
3
26
第三节 分波阵面干涉 洛埃镜
M
S1 •
5
第一节 光源 光波 光的相干性
光波
1、颜色与光波
光色 波长(nm)


760~622

光 七

光学光的干涉现象及干涉条纹解释

光学光的干涉现象及干涉条纹解释

光学光的干涉现象及干涉条纹解释光的干涉现象是指当两束或多束光波相交时,由光波的叠加而产生明暗相间的条纹现象。

这是光的波动性质所导致的,根据不同的光源和干涉方式,干涉现象可以具有不同的特点和应用。

1. 干涉现象的基本原理干涉现象基于光的波动性质,可以通过光的传播速度和光的相位差来解释。

当两束光波相交时,如果它们的相位差为整数倍的波长,那么它们的振幅将叠加,光强增强,形成明条纹;相位差为奇数个半波长时,振幅将相互抵消,光强减弱,形成暗条纹。

2. 干涉实验中的光源干涉实验中光源的选择对于产生干涉现象起着重要的作用。

常用的光源有自然光、单色光和相干光。

自然光由多个不同波长的光波组成,因此产生多种干涉条纹;单色光只包含某一特定波长的光波,能够产生清晰且稳定的干涉条纹;而相干光是一种光波在多次反射和折射后形成的,具有高度的一致性和稳定性,可用于精密干涉测量。

3. 干涉实验中的干涉方式干涉实验中常见的干涉方式有双缝干涉、薄膜干涉和牛顿环干涉。

双缝干涉是利用两个狭缝间的光波干涉产生的明暗条纹。

薄膜干涉是通过光在不同折射率的介质中传播时产生的干涉现象,例如油膜和气泡表面的干涉条纹。

牛顿环干涉利用透明介质和光的反射干涉形成的干涉圆环。

4. 干涉条纹解释干涉条纹的解释可以通过光程差和相位差来理解。

光程差是指两束光波在到达观察点之前所走的光路长度之差,而相位差则是光波振动状态的差异。

当光程差为整数倍波长时,相位差为0,光波振动状态一致,明条纹出现;当光程差为半波长时,相位差为π,光波振动状态相反,暗条纹出现。

5. 干涉现象的应用干涉现象在科学研究和技术应用中具有广泛的应用。

例如,干涉测量可以用于测量薄膜厚度、折射率和表面形貌;干涉显示可以用于制造三维显示和光学元件;干涉光谱学可以用于分析物质的光学性质和结构等。

总结起来,光学光的干涉现象是光的波动性质所引起的现象,通过光的波长、相位差和光程差的关系解释了干涉条纹的出现。

《大学物理学》(网工)光的干涉练习题(解答)(1)

《大学物理学》(网工)光的干涉练习题(解答)(1)


k

k
取 2,有 d2

3 4

450
nm ,k 取
5,有 d5

9 4
1350
nm ,则 d
900
nm 】
拓展题:用 600 nm 的单色光垂直照射牛顿环装置时,第 4 级暗纹对应的空气膜厚度为
m。
【提示:首先要考虑半波损失,由于只考虑第 4 级暗纹对应的空气膜厚度,所以此装置是否是牛顿环并不重要,直
(A)中央明条纹向下移动,且条纹间距不变;
(B)中央明条纹向上移动,且条纹间距增大; (C)中央明条纹向下移动,且条纹间距增大; (D)中央明条纹向上移动,且条纹间距不变。
S1 S
S
S2
【提示:画出光路,找出 S ' 到光屏的光路相等位置】
(D)
O
拓展题:双缝干涉实验中,若双缝所在的平板稍微向上平移,其他条件不变,则屏上的干涉条纹( B )
S2
【提示:两光在玻璃内的光程差应为 5λ,即(n2-1)d-(n1-1)d=5λ,可得玻璃片厚度 d】
P O
拓展题:用白光光源进行双缝试验,如果用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光
片遮盖另一条缝,则:
(D)
(A)干涉条纹的宽度将发生改变; (B)产生红光和蓝光两套彩色干涉条纹; (C)干涉条纹的亮度将发生改变; (D)不产生干涉条纹。
光的干涉(解答)-4
合肥学院《大学物理 B》自主学习材料(解答)
6.波长=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜
厚度之差为
nm。
【提示:首先要考虑半波损失,由于只考虑第 k 级明纹对应的空气膜厚度,所以此装置是否是牛顿环并不重要,直

4-1光-光 的 干 涉 大学物理作业习题解答

4-1光-光 的 干 涉 大学物理作业习题解答

n 1 1.5 1
6
1-5 用白光垂直照射在折射率为1.40的薄膜上,如果紫光 (400纳米)在反射光中消失,问此薄膜的最小厚度是多少?紫 光在薄膜中的波长是多少?
解(1)设薄膜在空气中,反射极小时光程差满足
2nd (k 1 ),
2
2
当k=1时有最小厚度,由上式解得
dmin
2n
400106 21.4
141 .
1-10 一个透明塑料(n=1.40)制成的劈尖,当用单色光垂直照射 时,观测到两相邻干涉明(或暗)条纹之间的距离为2.5毫米, 设劈尖的夹角=1.0×10-4弧度,求单色光的波长.
解 相邻两明(或暗条纹)的距离为 x 2.5mm,劈尖的夹角
1.0104rad, 又因 x 2 n ,
1-8 为了使可见光中黄绿光反射最少,在照相机镜头表面覆盖一层
折射率为1.38的氟化镁介薄膜. 照相机镜头呈蓝紫色就是因为反射
光中缺少了黄绿光. 若照相机镜头的折射率为1.5 , 试求氟化镁介质
薄膜的最小厚度.
9
解 人眼对黄绿光反应最灵敏,但照相底片没有这种性
能..为了使照片显示出人眼观察到的色彩,必须对黄绿光
变)(3)当膜快要破时,从反射方向看它是暗的,为什么?
解 (1)入射角i 3 00 ,由折射定律1.0 sin i n sin
式中 n 1.33, 解得 220 , 为膜内折射角. 相干加强条件为:
2nd cos k. 2
取k=0,得膜最小厚度为
d
4n cos
.
在300方向上,绿光(=500纳米)相干加强,因此最小厚度为 8
增透,这样照片的景色才能接近人眼观察到的景色. 对黄绿光增透, 反射光中黄绿光相干相消, 光程差公

大学物理光的干涉和衍射

大学物理光的干涉和衍射
路程折算为真空中的路程来研究。这就避免了波长随 媒质变化而带来的困难。
7
2.光程差—两束光光程之差
s1
r1
n1
p
n2 s2
r2
=n1r1- n2r2
图20-1
p
s1 s2
S1p= r1 S2p= r2
= (r1-e1 +n1e1) - (r2-e2 +n2e2) 图20-2
8
3.两束光干涉的强弱取决于光程差,而不是几 何路程之差
解 凡是求解薄膜问题应先求出两反射光线的光 程差。对垂直入射,i =0,于是
反 2e
n22 n12sin2i
+ 半 = 2en2
(0, )
2
无反射意味着反射光出现暗纹,所以
e 1.25 1.50
1

2en2
(k
) 2
(k=0,1,2,……)
n2=1.25(薄膜的折射率);要e最小,k =0
e =1200Å=1.2×10-7m
这对讨论光经过几种媒质后的相干叠加问题,是很不 方便的。为此引入光程的概念。
6
n=c/
= /n
1.光程
设经时间t,光在折射率为n媒质中通过的几何
路程为r,则nr称为光程。
显然,光程 nr=n t =c t 。
光程的物理意义: 光程等于在相同的时间内光在 真空中通过的路程。
引入光程概念后,就能将光在媒质中通过的几何
代入:d=0.25mm, L=500mm, 2=7×10-4mm , 1= 4 ×10-4mm得:
x =1.2mm 18
例题20-2 将双缝用厚e、折射率分别为n1=1.4、 n2=1.7的透明薄膜盖住,发现原中央明级处被第五级 亮纹占据,如图20-5所示。所用波长=6000Å,问:原中

大学物理12光的干涉

大学物理12光的干涉
第十二章 光的干涉
S1
Sd
S2
杨氏双缝实验
§12-1 光源 光的特性
2.分振幅法:利用光在两种介质分界面 上的反射光和透射光作为相干光
iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
第十二章 光的干涉
§12-1 光源 光的特性
§12-2 双缝干涉
一、杨氏双缝实验 1.装置原理
S1
Sd
S2
第十二章 光的干涉
第十二章 光的干涉
§12-3 光程与光程差
三、反射光的相位突变和附加光程差
1、n1 n2 n3 或 n1 n2 n3 无附加光程差
12
i
n1
e
n2
n3
2、n1 n2 n3 或 n1 n2 n3 1’ 2’
有附加光程差 2
3、对于折射光,无任何相位突变
第十二章 光的干涉
§12-3 光程与光程差
§12-2 双缝干涉
2.干涉明暗条纹的位置
r1
S1
S d
r2
波程差
S2
r2 r1
D
P
x
0
r2
r1
d sin
d
tan
d
x D
第十二章 光的干涉
§12-2 双缝干涉
d
x D
k 极大
(2k 1) 极小
2
干涉明暗条纹的位置
d x
D
x
k
D
d
2k 1
D
2d
明纹 暗纹
其中 k 0, 1, 2, 3
实际中,i 0
2n2e '
明纹和暗纹条件
2n2e

光学干涉原理

光学干涉原理

光学干涉原理
光学干涉原理是指当光波传播过程中,遇到不同的障碍或介质界面时,会发生波的叠加现象,从而产生干涉现象。

干涉是由于光波的特性——波动性所引起的,其原理可以用波动理论和光的相干性来解释。

光学干涉现象通常表现为明暗相间的干涉条纹。

这些条纹的产生是因为,当两个或多个光波相遇时,它们会叠加在一起形成一个新的波。

如果两个波的相位差为整数倍的波长,它们就会相干叠加,形成增强的干涉波,此时产生明条纹;如果相位差为半个波长的奇数倍,则会出现相消干涉,形成暗条纹。

光学干涉可分为两种主要类型:光的波前干涉和光的波长干涉。

波前干涉是指光波通过不同路径到达观察者处时,由于不同路径上的光程差而产生的干涉现象。

这种干涉常见于双缝干涉、薄膜干涉等实验中。

波长干涉是指光波在同一路径上不同位置的干涉。

例如,当光波通过狭缝时,会出现衍射现象,光波在狭缝后方形成圆形衍射图案,这是波长干涉的一种典型现象。

光学干涉原理在实际应用中具有广泛的意义。

它被广泛应用于光学仪器、光学传感器、干涉测量、光栅、光学检测等领域。

通过研究和利用光学干涉现象,可以实现对光的测量、成像和调控,进而推动光学技术的发展。

南开大学姚江宏特色大学物理课件光学1-1第一章 光的干涉

南开大学姚江宏特色大学物理课件光学1-1第一章 光的干涉
若观察到零级明条纹移到原来第k级明条纹处,求该透明 介质的厚度。设入射光波长为。
解:在真空中 r2 r1
S2上盖一介质
S1 r1
r2 h nh r1
Sd
p
r2
x
o
零级明条纹:=0 r2 r1 h nh (1 n)h
S2 L
光路中有介质时n>1,r2<r1,零级明条纹向下移动。
且当 D b, D d 时
A' S2 A' S1 2D
36
由几何关系: A' S2 [(d / 2 b / 2)2 D2 ]1/2 A' S1 [(d / 2 b / 2)2 D2 ]1/2
得出:( A' S2 )2 ( A' S1)2 bd
A' S2 A' S1 2D
)2
r22 r12 (r2 r1)(r2 r1) 2xd
当L >>d 时:
r1
r2 2L 2 xd
r2
r1
xd L
0 L
S1 r1
Sd
p
r2
x
o
S2
19
L
结论1:明暗条纹的中心位置
2 xd 0 L
2 xd 2k L
明条纹中心位置: x kL
d
0统一写成
k 0,1,2,
k 叫波矢,波矢的方向表示波的传播方向。k=2 /
是光矢量每振动一次在介质中传播的距离叫波长。
5
电磁场的能量密度 w 1 E2 1 H 2
2
2
平面电磁波的能量密度 E 2 H 2 w E 2
能流密度矢量的大小
S uw uE2 uA2 cos2 (t o 2r )

大学物理光学知识点大一

大学物理光学知识点大一

大学物理光学知识点大一光学是物理学的重要分支之一,主要研究光的传播、干涉、衍射、偏振、光的色散等现象。

作为大学物理的一门核心课程,光学是大学物理学习的重要一环。

本文将介绍大一学生所需要了解的光学知识点,帮助大家更好地理解和掌握光学的基础概念。

一、光的特性1. 光的来源:光的来源有自发辐射和感光材料的激发等。

2. 光的传播:光的传播包括直线传播和波动传播,可以用光线模型和波动模型来描述。

3. 光的能量:光是一种能量的传播形式,可以用能量和功率来描述光的特性。

二、光的干涉和衍射1. 光的干涉:光的干涉是指两束或多束光波叠加产生的干涉现象。

主要包括构成干涉的两个条件和干涉的分类。

2. 光的衍射:光的衍射是指光波通过物体的缝隙或物体的边缘传播时产生的偏折现象。

主要包括菲涅尔衍射和夫琅禾费衍射两种情况。

三、光的偏振1. 光的偏振现象:光的偏振是指特定方向的光振动相对于光传播方向振动的现象。

主要包括线偏振、圆偏振和椭圆偏振。

2. 光的偏振态描述:可用偏振态矢量、偏振滤波器和琥珀石偏振片等来描述光的偏振。

四、光的色散1. 光的色散现象:光的色散是指光波在介质中传播速度不同,导致折射角度发生变化的现象。

主要包括色散的原因和色散的分类。

2. 色散的衍射光栅:色散光栅是利用光的衍射现象,通过一定的结构和参数来实现光的分光。

五、光学仪器1. 凸透镜和凹透镜:凸透镜和凹透镜是光学仪器中最常见的两种光学元件,用于收集和聚焦光线。

2. 显微镜和望远镜:显微镜和望远镜是利用透镜和物镜将光线放大的光学仪器,用于观察微观和远距离的物体。

光学作为物理学的一个重要分支,对于大一学生来说是一门重要的课程。

通过对光学知识点的学习和理解,不仅可以加深对光的本质和特性的认识,还可以为今后的专业学习打下基础。

希望大家能够积极学习光学知识,充实自己的物理学习内容,提升自己在物理领域的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二. 波的干涉
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、频率相同、周相差恒定,称这两
波源为相干波源。
二. 波的干涉
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、频率相同、周相差恒定,称这两
波源为相干波源。
s1
*
波源 yS1= A 1cosω( t +φ 1 )
二. 波的干涉

λ
r1
)+
A
2
sin(φ
2

λ
r1
)+
A
2
cos(φ
2

λ
r2
)
2π r2 )
λ
ΔΦ =φ2
φ 1
2π( r2 λ
r1 )
1-5-5
A=
A21+
A2 2
+2A 1A 2
cos Δ Φ
tgφ =
A 1sin(φ 1 A 1cos(φ 1

λ
r1
)+
A
2
sin(φ
2

λ
r1
)&#= 0,1,2,
干涉减弱条件:
ΔΦ =+(2k+1π) k = 0,1,2,
ΔΦ
=φ 2 φ 1
2π( r 2 λ
r1 )
1-5-5
ΔΦ
=φ 2 φ 1
2π( r 2 λ
r1 )
1-5-5
若:φ 1 =φ 2 则有:
ΔΦ
=φ 2 φ 1
2π( r 2 λ
r1 )
1-5-5
若:φ 1 =φ 2 则有:
波源为相干波源。
波源 P点
yS1= A 1cosω( t +φ 1 )
yS2= A 2cosω( t +φ 2 )
y 1
= A1
cosω(
t

1
2π r 1 )
λ
* *
s1 s2
r1 y
P. 1
二. 波的干涉
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、频率相同、周相差恒定,称这两
波源为相干波源。
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
ΔΦ
=

( r2
λ
r1 ) =
+ 2kπ
波程差 r 2 r 1 = + kλ
干涉加强
Δ
Φ
= 2π
( r2
λ
r1 )
= +(2k+1π)
ΔΦ
=φ 2 φ 1
2π( r 2 λ
r1 )
1-5-5
若:φ 1 =φ 2 则有:
ΔΦ
=

( r2
λ
r1 ) =
+ 2kπ
波程差 r 2 r 1 = + kλ
ΔΦ =+ 2kπ
k = 0,1,2,
ΔΦ =φ2
φ 1
2π( r2 λ
r1 )
1-5-5
A=
A21+
A2 2
+2A 1A 2
cos Δ Φ
tgφ =
A 1sin(φ 1 A 1cos(φ 1

λ
r1
)+
A
2
sin(φ
2

λ
r1
)+
A
2
cos(φ
2

λ
r2
)
2π r2 )
λ
干涉加强条件:
ΔΦ =+ 2kπ
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、频率相同、周相差恒定,称这两
波源为相干波源。
波源 yS1=A 10cosω( t +φ 1 ) yS2=A 20cosω( t +φ 2 )
* *
s1 s2
二. 波的干涉
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、频率相同、周相差恒定,称这两
干涉加强
Δ
Φ
= 2π
( r2
λ
r1 )
= +(2k+1π)
波程差
r2
r1
=
+ (2k
+ 1)
λ
2
干涉减弱
2

λ
r2
)
2π r2 )
λ
干涉加强条件:
ΔΦ =φ2
φ 1
2π( r2 λ
r1 )
1-5-5
A=
A21+
A2 2
+2A 1A 2
cos Δ Φ
tgφ =
A 1sin(φ 1 A 1cos(φ 1

λ
r1
)+
A
2
sin(φ
2

λ
r1
)+
A
2
cos(φ
2

λ
r2
)
2π r2 )
λ
干涉加强条件:
波源 P点
yS1= A 1cosω( t +φ 1 )
yS2= A 2cosω( t +φ 2 )
y 1
= A1
cosω(
t

1
y 2
=A
2cos(ω
t

2
2π r 1 )
λ
2π r 2 )
λ
* *
s1 s2
r 2
r1
y
P.
1
y
2
二. 波的干涉
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、频率相同、周相差恒定,称这两
ΔΦ
=

( r2
λ
r1 ) =
+ 2kπ
ΔΦ
=φ 2 φ 1
2π( r 2 λ
r1 )
若:φ 1 =φ 2 则有:
ΔΦ
=

( r2
λ
r1 ) =
+ 2kπ
波程差 r 2 r 1 = + kλ
1-5-5
干涉加强
ΔΦ
=φ 2 φ 1
2π( r 2 λ
r1 )
1-5-5
若:φ 1 =φ 2 则有:
二. 波的干涉
1-5-5
二. 波的干涉
1-5-5
相干波源:若有两个波源,
二. 波的干涉
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、
二. 波的干涉
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、频率相同、
二. 波的干涉
1-5-5
相干波源:若有两个波源,它们的振动
方向相同、频率相同、周相差恒定,
φ 1
2π( r2 λ
r1 )
1-5-5
ΔΦ =φ2
φ 1
2π( r2 λ
r1 )
1-5-5
A=
A21+
A2 2
+2A 1A 2
cos Δ Φ
ΔΦ =φ2
φ 1
2π( r2 λ
r1 )
1-5-5
A=
A21+
A2 2
+2A 1A 2
cos Δ Φ
tgφ =
A 1sin(φ 1 A 1cos(φ 1
波源为相干波源。
波源 P点
yS1= A 1cosω( t +φ 1 )
yS2= A 2cosω( t +φ 2 )
y 1
= A1
cosω(
t

1
y 2
=A
2cos(ω
t

2
2π r 1 )
λ
2π r 2 )
λ
Δ Φ =φ 2
φ1

(
r
2
λ
r1 )
* *
s1 s2
r 2
r1
y
P.
1
y
2
ΔΦ =φ2
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5
一. 波的叠加原理
波的叠加原理: 有几列波同时在媒质中传 播时,它们的传播特性(波长、频率、波速、 波形)不会因其它波的存在而发生影响。
1-5-5
波的叠加原理 波的干涉
1-5-5 波的叠加原理
1-5-5
一. 波的叠加原理
1-5-5 波的叠加原理
1-5-5
一. 波的叠加原理
两水波的叠加
S 1
S 2
1-5-5 波的叠加原理
1-5-5
一. 波的叠加原理
相关文档
最新文档