分式知识点精讲和典型题型分类练习(精品)

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

分式精讲精练

分式精讲精练

课四:分式【基础知识】知识点一:分式的基本概念一般地,如果A, B表示两个整式,并且B中含有字母,那么式子 -叫做分式.B在理解分式的概念时,注意以下六点:(1)分式的分母中必然含有字母;2)分式的分母的值不为0;(3)分式必然是写成两式相除的形式,中间以分数线隔开.(4)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(5)分式的分子可以含字母,也可以不含字母,但分母必须含有字母.(6)―———区别:* 是分式, 是整式,根据本来面目判断.3 茅3"整式与分式统称为有理式.”分式有意义的条件:分式的分母不为0分式的值为零的条件:同时满足:①分式的分子为零②分式的分母不为零知识点二:分式的基本性质分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.用公式可表示为:-=am- (m=0).b bm b b m注意:(1)在运用分式的基本性质时,基于的前提是m = 0 ;(2)强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;(3)分式的基本性质是约分和通分的理论依据.最简分式:分子与分母没有公因式的分式叫做最简分式.最简公分母:几个分式中各分母的数字因数的最小公倍数与所有字母(因式)的最高次幂的积叫这几个分式的最简公分母。

确定最简公分母的方法:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母因式的最高次幂的积知识点三:分式的运算1. 基本运算法则3. 负整数指数虫十=丄(口杏Q严为正整数).a94. 约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.注:(1)约分的主要步骤:1) 分式的分子、分母能分解因式的分解因式写成积的形式。

2) 分子、分母都除以它们的公因式。

(2)约分的依据是分式的基本性质;(3)若分式的分子、分母中有多项式,则要先分解因式,再约分.(4)分式的分子与分母因式只差一个符号时,先处理好符号再约分,因式变号规则如下:(5)约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式.当分式的分子,分母的多项式中有部分项不同时,不得将其中的一部分相同的项约去 (约分只能约分子分母中相同的因式)。

分式方程(知识点+典型例题)完美打印版

分式方程(知识点+典型例题)完美打印版

考点4 分式方程的特殊解问题【例7】若关于x 的方程2222=-++-xm x x 的解为正数,求m 的取值范围?【例8】已知关于x 的分式方程21a x ++=1的解是非正数,则a 的取值范围是( ) A .a≤-1B .a≤-1且a≠-2C .a≤1且a≠-2D .a≤1【例9】如图,点A ,B 在数轴上,它们所对应的数分别是3-和xx--21,且点A ,B 到原点的距离相等,求x 的值.【课堂练习】 1、分式方程0131-x 2=+-x 的解为( )[来源Com] A .x=3 B .x=﹣5 C .x=5 D .无解2、关于x 的分式方程=1的解为正数,则字母a 的取值范围为( )A. a≥﹣1B. a >﹣1C. a≤﹣1D. a <﹣1 3、若分式方程)2)(1(11+-=--x x m x x 有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和-2 D 、3 4、关于x 的分式方程1mx +=-1的解是负数,则m 的取值范围是( ) A .m >-1 B .m >-1且m≠0 C .m≥-1D .m≥-1且m≠05、方程201x xx +=+的根是 。

6、分式方程2111x x x +--=3的解是 。

-3xx --21 B .A .7、若关于x 的方程15102x mx x-=--无解,则m= 。

8、已知关于x 的分式方程2122=--x a x 的解为非负数,求a 得取值范围。

9、的值求有增根若分式方程m x x m x x ,)2)(1(11+-=--【课后作业】1、解分式方程x x -2=2+3x -2,去分母后的结果是( )A .x =2+3B .x =2(x -2)+3C .x(x -2)=2+3(x -2)D .x =3(x -2)+2 2、若分式的值为0,则x 的值是( )A. x=3B. x=0C. x=﹣3D. x=﹣43、若3x 与61x -互为相反数,则x 的值为( ) A.13 B.-13C.1D.-1 4、若方程32x x --=2mx-无解,则m=——————.5、已知x =2y +33y -2,用x 的代数式表示y ,则y =____.6、解方程:(1)x x 332=-; (2)11322x x x -=--- (3)2240x-11x -=-。

最新初二数学八上分式和分式方程所有知识点总结和常考题型练习题

最新初二数学八上分式和分式方程所有知识点总结和常考题型练习题

分式知识点一、分式的定义如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

四、分式的约分定义:把分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

五、分式的通分定义:把几个异分母的分式化成同分母分式,叫做分式的通分。

步骤:分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

确定最简公分母的一般步骤:Ⅰ 取各分母系数的最小公倍数;Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时,一般应先因式分解。

分式知识点及例题精讲

分式知识点及例题精讲

1、分式的加减:例1:化简1x +12x +13x等于( ) A .12x B .32x C .116x D .56x例2:x x x x x x 13632+-+-- 例7:2212a a a ++--224a a --例3:计算11--+a a a 的结果是( ) A 11-a B 11--a C 112---a a a D 1-a 例4:请先化简:21224x x x ---,然后选择一个使原式有意义而又喜欢的数代入求值.例5:已知:0342=-+x x 求442122++--+x x x x x 的值。

2、分式的混合运算:例1:4421642++-÷-x x x x 例2:34121311222+++-∙-+-+x x x x x x x例3:222)2222(x x x x x x x -∙-+-+- 例4:1342+∙⎪⎭⎫ ⎝⎛+-x x x3、分式求值问题:例1:已知x 为整数,且23x ++23x -+22189x x +-为整数,求所有符合条件的x 值的和.例2:已知x =2,y =12,求222424()()x y x y ⎡⎤-⎢⎥+-⎣⎦÷11x y x y ⎛⎫+ ⎪+-⎝⎭的值.例3:已知实数x 满足4x 2-4x+l=O ,则代数式2x+x21的值为________.例5:若13x x += 求1242++x x x 的值是( ). A .81 B .101 C .21 D .41 例6:已知113x y -=,求代数式21422x xy y x xy y----的值例7:先化简,再对a 取一个合适的数,代入求值221369324a a a a a a a +--+-÷-+-.4、化为一元一次的分式方程:(1)分式方程:含分式,并且分母中含未知数的方程——分式方程。

(2)解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

分式知识点及例题

分式知识点及例题

分式知识点及例题一、分式的概念形如 A/B(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。

其中 A 叫做分子,B 叫做分母。

例如:1/x,(x + 1)/(x 2) 等都是分式。

需要注意的是,分母不能为 0,否则分式无意义。

二、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。

即:A/B = A×C/B×C,A/B = A÷C/B÷C(C 为不等于 0 的整式)例如:若分式 2x/(3x 1) 的分子分母同时乘以 2,得到 4x/(6x 2),其值不变。

三、分式的约分把一个分式的分子和分母的公因式约去,叫做分式的约分。

约分的关键是确定分子和分母的公因式。

例如:对分式 6x/9 进行约分,分子分母的公因式为 3,约分后得到2x/3。

四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

通分的关键是确定几个分式的最简公分母。

最简公分母的确定方法:1、取各分母系数的最小公倍数;2、凡单独出现的字母连同它的指数作为最简公分母的一个因式;3、同底数幂取次数最高的。

例如:1/2x 和 1/3y 的最简公分母为 6xy。

五、分式的运算1、分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

例如:(2x/y) ×(3y/4x) = 3/2 ;(2x/y) ÷(3y/4x) =(2x/y) ×(4x/3y) = 8x²/3y²2、分式的加减法同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

例如:1/x + 2/x = 3/x ; 1/2x 1/3y =(3y 2x) / 6xy六、分式方程分母中含有未知数的方程叫做分式方程。

分式典型知识点与例题总结

分式典型知识点与例题总结

人教版八年级下册分式全章 知识点和典型例习题 知识点回顾知识点一:分式形如 的式子叫做分式 。

知识点二:分式B A 的值1.当 时,分式有意义;2.当 时,分式无意义;3.当 时,分式的值为0;4.当 时,分式的值为1;5.当 时, 分式的值为正;6.当 时,分式的值为负; 知识点三:分式的基本性质用式子表示 知识点四:分式中的符号法则用式子表示 知识点五: 分式的约分 约去分子、分母的最大公因式,使分式变成最简分式或者整式 1.最大公因式= 。

2.当分式的分子和分母为多项式时, 知识点六:分式的通分把异分母分式变成同分母分式的过程。

1.最简公分母= 。

2.当分式的分子和分母为多项式时,知识点七:分式的乘除法法则(用式子表示)乘法法则:用式子表示 除法法则: 用式子表示 知识点八:回顾因式分解总步骤:一提二套三分组1. 提公因式: 套 平方差公式: 2 . 公 完全平方和:式 完全平方差:知识点九:分式的加减法法则 加法法则:减法法则:知识点十:分式的混合运算先 再 最后再 。

知识点十一:整数指数幂七大公式1.同底数幂的乘法2.同底数幂的乘法3.幂的乘方4.积的乘方5.分式的乘方法则6.0指数幂7.负整数指数幂 知识点十二:科学计数法1.绝对值大于1数都可表示成2. 绝对值小于1数都可表示成 其中101<≤a 。

知识点十三:分式方程 1. 概念 2. 解法:①去分母:② ③知识点十四:分式方程解应用题的步骤 、 、 、 、【例题】下列有理式中是分式的有(1)-3x ;(2)yx ;(3)22732xy y x -;(4)x 81-;(5)35+y ; (6)112--x x ;(7)π12--m ; (8)5.023+m ;【练习】1、在下列各式ma m x xb a x xa,),1()3(,43,2,3222--÷++π中,是分式的有 个2.找出下列有理式中是分式的代号(1)-3x ;(2)yx ;(3)22732xyy x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7) π-12m ; (8)5.023+m .二.分式的值 【例题】 1.当a 时,分式321+-a a 有意义;2.当_____时,分式4312-+x x 无意义;3.若分式33x x --的值为零,则x = ;4.当_______时,分式534-+x x 的值为1;5.当______时,分式51+-x 的值为正;6.当______时分式142+-x 的值为负.【练习】1.①分式36122--x x 有意义,则x ;②当x_____时,分式1x x x-- 有意义;③当x ____时分式x x 2121-+有意义;④当x_____时,分式11x x +-有意义;⑤使分式9x 1x 2-+有意义的x 的取值范围是 ; 2.当x = 3时,分式bx a x +-无意义,则b ______ 3. ①若分式11x x -+的值为零,则x 的值为 ;②若分式)1x )(3x (1|x |=-+-,则x 的值为_________________; ③分式392--x x 当x __________时分式的值为0;④当x= _时,分式22943x x x --+的值为0;⑤当a=______时,分式2232a a a -++ 的值为零;4.当x __ 时,分式x -51的值为正.5.当x=_____时,分式232x x --的值为1.6.若分式231-+x x 的值为负数,则x 的取值范围是__________。

分式重点知识及经典例题

分式重点知识及经典例题

分式重点知识及经典例题一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

例1.下列各式aπ,11x +,15x+y ,22a b a b--,-3x 2,0•中,是分式的有( )个。

二、 分式有意义的条件是分母不为零;【B ≠0】 分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。

【B ≠0且A=0 即子零母不零】例2.下列分式,当x 取何值时有意义。

(1)2132x x ++; (2)2323x x +-。

例3.下列各式中,无论x 取何值,分式都有意义的是( )。

A .121x +B .21x x +C .231x x +D .2221x x +例4.当x______时,分式2134x x +-无意义。

当x_______时,分式2212x x x -+-的值为零。

例5.已知1x -1y =3,求5352x xy yx xy y+---的值。

三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C )四、分式的通分和约分:关键先是分解因式。

例6.不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• )。

例7.不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,则是(• )。

C B C A B A ⋅⋅=CB C A B A ÷÷=例8.分式434y x a +,2411x x --,22x xy y x y-++,2222a abab b +-中是最简分式的有( )。

例9.约分:(1)22699x x x ++-; (2)2232m m m m-+-例10.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -例11.已知x 2+3x+1=0,求x 2+21x 的值.例12.已知x+1x =3,求2421x x x ++的值.五、分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式的知识点及重点题型讲解

分式的知识点及重点题型讲解

分式复习一、分式的定义:一般地,如果A 、B (B 不等于零)表示两个整式,且B 中含有字母,那么式子A / B 就叫做分式,其中A 称为分子,B 称为分母。

1、下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、yx +3、m a 1+中分式的个数为( )(A ) 2 (B ) 3 (C ) 4 (D) 5 二、分式有,无意义,总有意义: 2、写出下列分式有意义的条件: (1)51-x ; ; 23x ++11x +; ;23x x +; ;3、无论x 取什么数时,总是有意义的分式是( )A .122+x x B.12+x x C.133+x x D.25x x -三、分式的值为零,大于零,小于零: 4、当x 时,分式121+-a a的值大于0 ; 5、如果分式22+-a a 的值为零,则a 的值为( )A. 2±B.2C. 2-D.以上全不对 6、若01=+aa,则a 是( ) A.正数 B.负数 C.零 D.任意有理数 四、分式的值为整数:如果分式的值是整数,那么分母必为分子的约数.若分式的分子、分母都含有字母,则用“分离常数法”。

7、如果m 为整数,那么使分式13++m m 的值为整数的m 的值有( ) (A )2个 (B )3个 (C )4个 (D )5个 8、若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个 五、分式的基本性质的应用:9、z y z y z y x +=++2)(3)(6 ; )(cb a cb --=+-10、如果把分式ba ba ++2中的a 和b 都扩大10倍,那么分式的值( ) A 、扩大10倍 B 、缩小10倍 C 、是原来的20倍 D 、不变11、不改变分式的值,使分式的分子、分母中各项系数为正整数,=---05.0012.02.0x x ;六、分式的约分及最简分式:①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分 ②分式约分的依据:分式的基本性质.③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. ④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式) 约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。

分式知识点总结及练习

分式知识点总结及练习

分式知识点总结一、本章知识精讲1.分式的概念:形如BA (A 、B 是整式,且B 中含有字母,B≠0)的式子叫做____.其中,A 叫分式的分子,B 叫分式的分母.2、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:_____。

3、约分和通分分式的约分:把一个分式的____叫约分.分式的通分:把几个异分母的分式____分式叫通分.4、分式运算 分式乘法法则:bd ac d c b a =⨯____;(b a )n =__。

除法法则:bcad c d b a d c b a =⨯=÷___=____。

分式的加减法则:b c a b c b a ±=±___,bd bc ad d c b a ±=±_____。

5、解分式方程的基本思想是把它化为___方程。

在分式方程的求解的过程当中有可能产生____,所以解分式方程必须_____。

例1 在分式222-++x x ax x 中,a 为常数,当x 为何值时,该分式有意义?当x 为何值时,该分式的值为零? 解析 由x 2+x -2=0,得(x -1)(x +2)=0,∴x =1或x =-2.∴当x ≠1且x ≠-2时,该分式有意义.由x 2+ax =0,得x (x +a )=0,即x =0或x =-a .当a ≠1且a ≠-2时,则x =0或x =-a 时,该分式的值为零.当a =2或a =-1时,则x =0时,该分式的值为零.点评 在解题中用了两个字“或”与“且”,它们所表达的含义完全不同,请认真体会. 例2 已知22221111x x x y x x x x+++=÷-+--。

试求当x =2009,y =2010时的值。

分析 对原分式进行化简后代入x,y 的值计算。

解 ∵222211111x x x x y x x x-+-=÷-+-+ =()21(1)11(1)(1)1x x x x x x x --÷-++-+=()21111(1)(1)(1)x x x x x x x-+⨯-++-- =111x x-+=1. 所以,不论x 为何值,y 的值都是1。

初二数学八上第十五章分式知识点总结复习和常考题型练习

初二数学八上第十五章分式知识点总结复习和常考题型练习

初二数学八上第十五章分式知识点总结复习和常考题型练习第十五章分式一、知识框架:二、知识概念:,A B、是整式,B中含有字母且B不1.分式:形如AB等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()n n n ab a b =(n 是正整数) ⑷m n m naa a -÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a -=(0a ≠,n 是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考例题精选1.(2015·宜昌中考)若分式有意义,则a 的取值范围是 ( ) A.a=0 B.a=1C.a≠-1D.a≠02.(2015·丽水中考)把分式方程=转化为一元一次方程时,方程两边需同乘以( )A.xB.2xC.x+4D.x(x+4)3.(2015·宜宾中考)分式方程-=的解为( )A.3B.-3C.无解D.3或-34.(2015·海南中考)今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获荔枝8 600kg和9 800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意,可得方程( )A.=B.=C.=D.=5.(2015·河池中考)若分式有意义,则x的取值范围是.6.(2015·白银中考)若代数式-1的值为零,则x= ________.7.(2015·齐齐哈尔中考)若关于x的分式方程=-2有非负数解,则a的取值范围是.8.(2015·呼和浩特中考)化简:÷.9.(2015·连云港中考)先化简,再求值:÷,其中m=-3,n=5.10.(2015·凉山州中考)某车队要把4000t货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:t)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.11.(2015·重庆中考)先化简,再求值:÷,其中x是不等式3x+7>1的负整数解.12.(2015·玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?13.(2015·娄底中考)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?1.(2015·黔西南州)分式1x-1有意义,则x的取值范围是( )A.x>1 B.x≠1 C.x<1 D.一切实数2.下列各分式与ba相等的是( )A.b2a2B.b+2a+2C.aba2D.a+b2a3.下列分式的运算正确的是( )A.1a+2b=3a+bB.(a+bc)2=a2+b2c2C.a2+b2a+b=a+b D.3-aa2-6a+9=13-a4.(2015·泰安)化简(a+3a-4a-3)(1-1a-2)的结果等于( )19.计算或化简:(1)38-2-1+|2-1|;(2)2xx2-4-1x-2;(3)3-a2a-4÷(a+2-5a-2).20.解分式方程:(1)1x-x-2x=1; (2)12x-1=12-34x-2.21.化简求值:(1)(2015·淮安)先化简(1+1x-2)÷x-1x2-4x+4,再从1,2,3三个数中选一个合适的数作为x的值,代入求值;(2)已知x2x2-2=3,求(11-x-11+x)÷(xx2-1+x)的值.22.当x取何值,式子3(2x-3)-1与12(x-1)-1的值相等.23.(2015·宜宾)近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?24.小明去离家2.4 km的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min,于是他立即步行(匀速)回家取票,在家取票用时2 min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?25.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)。

初二数学八上分式和分式方程所有知识点总结和常考题型练习题

初二数学八上分式和分式方程所有知识点总结和常考题型练习题

初二数学八上分式和分式方程所有知识点总结和常考题型练习题分式知识点一、分式的定义如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0) 三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ••=A B A ,CB C÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

四、分式的约分定义:把分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

式子表示为: db ca d cb a ••=• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为 cc ••=•=÷b da db a dc b a ① 分式的乘方:把分子、分母分别乘方。

式子nn nb a b a =⎪⎭⎫⎝⎛② 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。

式子表示为cb ac b ±=±c a异分母分式加减法:先通分,化为同分母的分式,然后再加减。

式子表示为 bdbcad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

分式 知识点及典型例题

分式 知识点及典型例题

分 式【知识网络】【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac •=,b c b d bda d a c ac÷=•=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2-b 2 ;(a ±b)2= a 2±2ab+b 2一、考点、热点知识点一:分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。

知识点二:与分式有关的条件 ①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ••=A B A ,CB C÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即BB A B B --=--=--=AA A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。

(完整版)初二年级分式所有知识点总结及常考题提高难题压轴题练习[含答案及解析]

(完整版)初二年级分式所有知识点总结及常考题提高难题压轴题练习[含答案及解析]

初二分式所有知识点总结和常考题知识点:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0。

3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

6。

最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式。

7.分式的四则运算: ⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。

用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。

用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd ⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:ac ad ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程。

(完整版)分式专题讲解(知识点+例题+练习+中考经典题)

(完整版)分式专题讲解(知识点+例题+练习+中考经典题)

分式专题讲解 知识点一、分式的概念: 一般地,如果A 、B 表示两个整式,并且除式B 中含有字母,那么式子叫分式。

解读:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;分式A/B 有意义,则B =0(2)分式的分母的值不能等于零.若分母的值为零,则分式无意义;反之,若分式A/B 无意义,则B =0(3)当分子等于零而分母不等于零时,分式的值才是零.反之,若分式A/B=0,则A =0,且B ≠0例题1、下列各式中,哪些是整式?哪些是分式?a ab 2,x 1,3s ,b a a --,πy x +,)(21b a -,)(1z x y -,a-31练习:这些代数式中x -,π4,x a ,y x y x -+2,a 5-,71,2ba -,x -3中,是分式的有( )。

A.3个B.4个C.5个D.6个练习:已知的值。

,求x x x 011=--练习:的值是的值为零,则b 32122---b b b ( ) A.1 B.-1 C.1± D.2练习:写出一个含字母x 的分式,使得不论x 取何值,分式都有意义。

练习:若0y 3y 21,322是)为负数()为正数;()(为何值时,y x xx y -=探索题型:观察下列各等式:323112=+,434122=+,545132=+,656142=+,......,设n 为正整数,试用含n 的等式表示这个规律。

1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于0的整式).特别提示:(1)在解题过程中,分母不为0是作为隐含条件给出的.若是分式,则说明分母中的字母一定能满足使分母不为0;(2)在运用分式的基本性质时,一定要重点强调分母不为0这个条件,没有给出的,要讨论是否等于0.例题1:下列运算中,错误的是( ).A.2b ab b a =B.b ab ab =2 C.b a b a b a b a 321053.02.05.0-+=-+ D .bc acb a =2、分式的约分根据分式的基本性质,把一个分式的分子和分母分别除以它们的公因式叫做分式的约分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卓越个性化教案 GFJW09011学生姓名 年级 授课时间 教师姓名 课时10-分式基础练习【知识点】1. 分式:整式A 除以整式B ,可以表示成 AB的形式,如果除式B 中含有 ,那么称 A B 为分式.若 ,则 A B 有意义;若 ,则 AB 无意义;若 ,则 AB=0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个 的整式,分式的 .用式子表示为 .3.约分:根据分式的基本性质,把一个分式的分子和分母的________约去,这样的分式变形叫做分式的约分.约分的关键是确定分子与分母的__________.约分的结果应化为最简分式.4.通分:根据分式的基本性质,分子和分母同乘以适当的整式,不改变分式的值.把几个异分母的分式化成同分母的分式,这样的分式变形叫做分式的 .最简公分母用下面的方法确定:(1)最简公分母的系数,取各分母系数的 ; (2)凡出现的字母为底的幂的因式都要取; (3) 相同字母的幂的因式取指数 的.特别注意:为了确定最简公分母,通常先将各分母分解因式. 5.分式的运算⑴ 加减法法则:①同分母的分式相加减, 不变,把 相加减② 异分母的分式相加减,先 ,化为同分母的分式,然后再按同分母的分式相加减法则进行计算. 用式子表示为:①a b a b c c c±±=; ② a c ad bc ad bcb d bd bd bd ±±=±=⑵ 乘法法则:把 相乘的积作积的分子,把 相乘的积作积的分母. 用式子表示为:a c a cb d b d⋅⋅=⋅. ⑶ 除法法则:把除式的 颠倒位置后再与被除式相乘. 用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅ (4)乘方法则:分式的乘方, 分别乘方.用式子表示为:()nn n a a b b=.(5) 分式的混合运算分式的混合运算,关键是弄清楚运算顺序.进行运算时要先算______,再算_______,最后算__________;有括号要先算括号里面的;计算结果可能为____________ 6.解分式方程(1)方法:化解为整式方程求解 (2)注意分母不为零【课堂讲解与练习】(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x(2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正; (2)当x 为何值时,分式2)1(35-+-x x为负;(3)当x 为何值时,分式32+-x x 为非负数. 练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零: (1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:M B MA MB M A B A ÷÷=⨯⨯= 2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x yx --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x yxy x +++-2232的值.提示:整体代入,①xy y x 3=+,②转化出yx 11+. 【例4】已知:21=-x x ,求221xx +的值. 【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值. 3.已知:311=-b a ,求aab b bab a ---+232的值. 4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂. 2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂. 题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x x x xx x ; (4)aa -+21,2 题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+;(3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--;(6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ;(7))12()21444(222+-⋅--+--x x x x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值; (2)已知:432zy x ==,求22232zy x xz yz xy ++-+的值; (3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ;(2)ab abb b a a ----222;(3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)ba b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-; (6)2121111x x x ++++-;(7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x .2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值.4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)分式方程的解题型一:解分式方程, 解分式方程时去分母后所得整式方程的解有可能使原分式方程的分母为0,所以解分式方程必须检验. 例1.解方程(1)2223-=---x x x (2) 114112=---+x x x专练一、解分式方程 (每题5分共50分)(1)14-x =1; (2)3513+=+x x ;(3)30120021200=--xx (4)255522-++x x x =1(5)2124111x x x +=+--. (6) 2227461x x x x x +=+--(7)11322x x x -+=--- (8)512552x x x =---(9) 6165122++=-+x x x x (10)223433x x x x +-=+题型二:关于增根:将分式方程变形为整式方程,方程两边同时乘以一个含有未知数的整式,并越去分母,有时可能产生不适合原分式方程的根,这种根通常称为增根.例2、 若方程xx x --=+-34731有增根,则增根为 . 例3.若关于x 的方程313292-=++-x x x m 有增根, 则增根是多少?产生增根的m 值又是多少?专练习二:1.若方程3323-+=-x x x 有增根,则增根为 .(5分) 2.当m 为何值时,解方程115122-=-++x m x x 会产生增根?(10分)题型三:分式方程无解①转化成整式方程来解,产生了增根;②转化的整式方程无解. 例4、 若方程xmx x -=--223无解,求m 的值.思考:已知关于x 的方程m x mx =-+3无解,求m 的值.(10分)题型四:解含有字母的分式方程时,注意字母的限制.例5、.若关于x 的方程81=+xax 的解为41=x ,则a =例6、.关于x 的方程12-=-+x mx 的解大于零, 求m 的取值范围. 注:解的正负情况:先化为整式方程,求整式方程的解 ①若解为正⎩⎨⎧>去掉增根正的解0x ;②若解为负⎩⎨⎧<去掉增根负的解x解:专练三: 1.若分式方程52)1()(2-=--x a a x 的解为3=x ,则a = .(5分)3.已知关于x 的方程323-=--x mx x 解为正数,求m 的取值范围.(10分)4.若方程kx x +=+233有负数根,求k 的取值范围.(10分)【作业】一、填空题(每空2分,共24分)1.若分式221x x --的值为0,则x 的值为________;当x=________时,分式1x x+没有意义. 2.当x=________,2x -3与543x +的值互为倒数.3.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义)_________.4.23mm x=-的根为1,则m=__________. 5.当m=________时,关于x 的分式方程213x mx +=--无解. 6.在分式12111F f f =+中,f 1≠-f 2,则F=_________. 7.a 、b 为实数,且ab=1,设11a b P a b =+++,1111Q a b =+++,则P_________Q . 8.已知113x y -=,则代数式21422x xy yx xy y----的值为_________. 9.某商店经销一种商品,由于进货价降低6.4%,使得利润率提高了8%,那么原来经销这种商品的利润率是_________.10.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b=,如3※=12※4=__________. 11.已知()()341212x A Bx x x x -=+----,则整式A -B=_________. 二、选择题(每题3分,共27分)12.在式子1a ,2xy π,2334a b c ,56x +,78x y +,109x y+中,分式的个数是 ( )A .2B .3C .4D .513.如果把分式2x x y+的x 和y 都扩大k 倍,那么分式的值应 ( )A .扩大k 倍B .不变C .扩大k 2倍 D .缩小k 倍 14.如果方程8877x kx x--=--有增根,那么k 的值 ( ) A .1 B .-1 C .±1 D .7 15.分式233a a b -、222b ab-与3358c a bc -的最简公分母是 ( )A .24a 2b 2c 2B .24a 6b 4c 3C .24a 3b 2c 3D .24a 2b 3c 316.若分式22325xx -+的值是负数,则x 的取值范围是 ( )A .23x >B .23x < C .x <0 D .不能确定17.下列各分式中,最简分式是 ( )A .()()3485x y x y -+B .22y x x y -+C .2222x y x y xy ++ D .()222x y x y -+ 18.若分式212x x m-+不论m 取何实数总有意义,则m 的取值范围是 ( )A .m ≥1B .m >1C .m ≤1D .m <119.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 ( )A .9696944x x +=+-B .4848944x x +=+- C .4849x += D .4848944x x +=+- 20.已知1110x y z ++=,则111111x y z y z x z x y ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是 ( ) A .1 B .-1 C .-3 D .3 三、解答题(49分)21.化简.(每题5分,共10分)(1)22225103621x y y y x x ÷ ; (2)4222a a a a ⎛⎫⎛⎫+-÷ ⎪ ⎪--⎝⎭⎝⎭.22.解下列分式方程.(每题5分,共10分)(1)132x x =-; (2)2133112133119x x x x x -++=+--.23.(7分)设14m n -=,m+n=2,求2222221112m n m mn n mn m n m n ⎡⎤⎛⎫-÷+⎢⎥ ⎪++-⎝⎭⎢⎥⎣⎦的值.24.(7分)若关于x 的方程211333x x kx x x x ++-=--有增根,求增根和k 的值.25.(7分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.26.(8分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.。

相关文档
最新文档