指数函数的概念、图像与性质(一)(B)

合集下载

指数与指数函数知识点

指数与指数函数知识点

指数与指数函数知识点数学中的指数与指数函数是非常重要且常见的概念。

在我们的日常生活中,指数和指数函数可以用来描述各种自然现象、科学问题以及经济趋势等。

本文将详细介绍指数与指数函数的定义、性质以及一些常见应用,以加深读者对这一概念的理解。

一、指数的定义和性质在数学中,指数是一种表示幂次方的数学运算。

指数是由两个数构成,其中一个为底数,另一个为指数。

底数表示要进行幂运算的数字,指数表示底数要乘以自身多少次。

例如,2的3次方即为2的指数为3的结果,即2x2x2=8。

指数函数是指数的一种特殊形式,即以常数为底数的幂函数。

指数函数的一般形式为y=a^x,其中a是底数,x是指数,y是指数函数的值。

指数函数的图像通常具有特定的特征,例如,当底数大于1时,指数函数呈现递增趋势;当底数在0和1之间时,指数函数呈现递减趋势。

指数有一些基本的性质。

首先,任何数的0次方都等于1,即a^0=1。

其次,任何非零数的负指数都是倒数,即a^(-n)=1/(a^n)。

此外,指数相乘等于底数不变指数相加,即a^m * a^n = a^(m+n)。

二、指数函数的应用指数函数在各个领域都有广泛的应用。

以下是指数函数在生活和科学中的一些常见应用:1. 经济增长:经济学家常常使用指数函数来描述一个国家或地区的经济增长趋势。

经济增长往往呈现指数增长的形式,即以固定的增长率逐渐增加。

指数函数可以帮助经济学家预测未来的经济趋势和制定相应的政策。

2. 生物衰变:在生物学的研究中,指数函数可以用来描述物种的衰变过程。

例如,放射性物质的衰变速度可以用指数函数进行建模。

指数函数的形式可以提供准确地描述和计算物种在特定时间内的衰减情况。

3. 自然增长:人口学家使用指数函数来研究人口的自然增长过程。

指数函数可以帮助人口学家了解一个地区的人口趋势和人口变化的因素,为政府提供人口规划和政策制定方面的参考。

4. 电子电路:在电子学中,指数函数可以用来描述电路中的电流和电压变化。

高中三年级数学第一轮复习讲义12指数函数与对数函数

高中三年级数学第一轮复习讲义12指数函数与对数函数

2018届高三第一轮复习讲义【12】-指数函数与对数函数一、知识梳理:1.指数函数的概念、图像和性质 (1)指数的运算性质()()()()()0,,;0,,;0,0,.m n m n nm mn nn n a a a a m n R a a a m n R a b a b a b n R ⋅⋅=>∈=>∈⋅=⋅>>∈(2)指数函数:一般地,函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .(3)指数函数的图像与性质【注意】(1)会根据复合函数的单调性特征“同增异减”,判断形如()f x y a =(0a >且1a ≠)函数的单调性;(2)会根据x y a = (0a >且1a ≠)的单调性求形如(),f x y ax D =∈,(),x y f a x D=∈(1)定义域:x R ∈(2)值域:(0,y ∈的值域;(3)解题时注意“分类讨论”、“数形结合”、“换元”等思想方法的应用。

2.对数的概念及其运算 (1)对数的定义:如果=ba N (>0a ,1a ≠),那么b 叫做以a 为底N 的对数,记作=a log N b .读作“以a 为底N 的对数”,其中a 叫做底数,N 叫做真数.必须注意真数0N >,即零与负数没有对数.(2)指数式与对数式的关系:=ba N ⇔=a log Nb (>0a ,1a ≠,0N >).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数的性质:① log a N 中0(0,1)N a a >>≠,零和负数没有对数,即0N >; ② 底数的对数等于1,即log =1a a ,log a NaN =,()0,1,0a a N >≠>③ 1的对数0,即log 1=0a . (4)对数的运算性质:① ()=+a a a log MN log M log N (0M >,0N >,>0a ,1a ≠);② =aa a Mlog log M log N N-(0M >,0N >,>0a ,1a ≠) ③ =n a a log M nlog M ;log a NaN =(0M >,0N >,>0a ,1a ≠)④ 对数换底公式:log =log a b a Nlog N b(>0a ,1a ≠,>0b ,1b ≠,0N >)【提醒】(1)注意真数0N >,即零与负数没有对数.(2)底数满足>0a ,1a ≠ 3.对数函数:对数函数的图像与性质二、基础检测:1. 设16log 27a =, 则用a 表示6log 16=_______________.2. 函数222xxy +=的单调递增区间是_____________, 值域是____________. 3. 函数|1|45x y -⎛⎫= ⎪⎝⎭的单调递减区间是_____________, 值域是____________.4. 函数20.1log (62)y x x =+-的单调递增区间是________________.5. 若2log 13a<, 则实数a 的取值范围是________________________. 6. 不等式2(21)1x a -<的解集为(,0)-∞, 则实数a 的取值范围是______________.三、例题精讲:【例1】指数函数①x y a =,②x y b =,③x y c =,④xy d =在同一坐标系内的图像如图所示,则,,,a b c d 的大小顺序是().A .b a d c <<<B .a b d c <<<C .b a c d <<<D .b c a d <<< 【参考答案】A .【例2】若不论a 取何正实数,函数12x y a +=-的图像都通过同一定点,则该点坐标是____________. 【参考答案】()1,1--【例3】不等式()2211xa -<的解集为(),0-∞,则实数a 的取值范围是.【参考答案】()(),11,-∞-+∞【例4】根据统计资料,在A 小镇,当某件信息发布后,t 小时之内听到该信息的人口是全镇人口的100(12)%kt--,其中k 是某个大于0的常数,今有某信息,假设在发布后3小时之内已经有70%的人口听到该信息.又设最快要T 小时后,有99%的人口已听到该信息,则T =_______小时.(保留一位小数) 【参考答案】11.5【例5】已知22124x x x-+⎛⎫≤ ⎪⎝⎭,求函数22x xy -=-的值域.解:222242122224414x x xxxx x x x x -++-+⎛⎫≤⇔≤⇔+≤-+⇔-≤≤ ⎪⎝⎭,而函数22xxy -=-在区间[]4,1-上是增函数,所以,函数22xxy -=-的值域为2553,162⎡⎤-⎢⎥⎣⎦.【例6】已知函数[)1423,2,x x y a x --=-⋅-∈-+∞的最小值是4-,求实数a 的值. 解:设2xu -=由于[)2,x ∈-+∞,所以(]0,4u ∈,()2124233x x y a u a a --=-⋅-=---①_x0001_(]0,4a ∈时,()()2min 34,1,f x a a =--==此时u a =,即0x =;②_x0001_当(),0a ∈-∞时,()()223g u u a a =---在(]0,4上是增函数,()f x 无最小值; ③_x0001_当()4,a ∈+∞时,()()223g u u a a =---在(]0,4上是减函数,()174,8a =∉+∞舍去. 综上所述,实数a 的值为1.【例7】若两个函数的图像经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列四个函数:()x x f 21log 2=,()()22log 2f x x =+,232log f x =,42log (2)f x =则“同形”函数是( ) A 1()f x 与2()f x B 2()f x 与3()f x C 2()f x 与4()f x D 1()f x 与4()f x【参考答案】C【例8】函数221()log (2)2ax f x x x -=+-+在[1,3]x ∈上恒有意义,则实数a 的取值范围是_________.【参考答案】(2)-+∞【例9】函数20.3log (2)y x x =-的单调递减区间为.解:先求定义域:由220x x ->得(2)0x x ->0x ∴<或2x >.∵函数0.3log y t =是减函数,故所求单调减区间即22t x x =-在定义域内的增区间, 又22t x x =-的对称轴为1x =,∴所求函数的单调递减区间为(2,)+∞. 【例10】已知函数2()log (01)2axf x a x+=<<-(1)试判断()f x 的奇偶性; (2)解不等式()log 3a f x x ≥. 解:(1)20222xx x+>⇒-<<-故()f x 的定义域关于原点对称, 且122()log log ()()22aa x x f x f x x x--+-===-+-∴()f x 是奇函数. (2)2()log 3log log 3.012a aa xf x x x a x+≥⇔≥<<-,故2220221(32)(1)230322xx x x x x x x x x+⎧-<<>⎧⎪⎪⎪-⇔⇔≤≤--⎨⎨+≥⎪⎪≤-⎩⎪-⎩,即原不等式的解集为2{|1}3x x ≤≤.【例11】设不等式211222(log )9(log )90x x ++≤的解集为M ,求当x M ∈时,函数22()(log )(log )28x xf x =的最大、最小值. 解:211222(log )9(log )90x x ++≤1122(2log 3)(log 3)0x x ∴++≤1233log 2x ∴-≤≤-即3333221112221111log ()log log (),()()2222x x ----≤≤∴≤≤∴8x ≤≤即{|M x x =∈又2222222()(log 1)(log 3)log 4log 3(log 2)1f x x x x x x =--=-+=--∵8x ≤≤∴23log 32x ≤≤ ∴当2log 2x =即4x =时min 1y =-;当2log 3x =,即8x =时,max 0y =. 【例12】通常表明地震能量大小的尺度是里氏震级,其计算公式是0lg lg M A A =-,其中,A 是被测地震最大振幅,0A 是“标准地震”的振幅,M 为震级.则7级地震的最大振幅是5级地震最大振幅的__倍.解:7050(lg lg )(lg lg )752A A A A ---=-=,即75lg 2A A =,75100AA =.【例13】已知函数()|lg |f x x =,若a b ≠,且()()f a f b =,则a b +的取值范围是________.解:如图,由()()f a f b =得|lg ||lg |a b =设0a b <<则lg lg 0a b +=∴1ab =∴22a b ab +>=,答案:(2,)+∞【例14】已知函数()log (01).a f x x x b a a =+->≠,且当234a b <<<<时,函数()f x 的零点*0(,1),,=x n n n N n ∈+∈则.解:方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图像与函数(34)y x b b =-<<的交点横坐标为0x , 且*0(,1),x n n n N ∈+∈,结合图像,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图像上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图像上点的横坐标(5,6)x ∈.故所求的2n =.四、难题突破: 例1. 已知函数1()log 1axf x x-=+(0, 1a a >≠). (1) 讨论函数()f x 的奇偶性和单调性;(2) 设函数()f x 的定义域为[,)a b , 值域为[1,)+∞, 求实数a , b 的值. (1)解: 函数的定义域为区间(1,1)-, 关于原点对称,任取(1,1)x ∈-, 111()log log log ()111a a ax x x f x f x x x x +--⎛⎫-===-=- ⎪-++⎝⎭, 即()f x 是奇函数.任取12,(1,1)x x ∈-, 12x x <, 则12011x x <+<+, 故有121211221111x x x x >⇔>++++, 因此1212121122111111x x x x x x ---+>-+⇔>++++, 当01a <<时, 由log a y x =在(0,)+∞上单调递减, 得121211log log 11a ax x x x --<++, 此时()f x 在(1,1)-上单调递增;当1a >时, 由log a y x =在(0,)+∞上单调递增, 得121211log log 11a ax x x x -->++, 此时()f x 在(1,1)-上单调递减.(2)解: 由题意, [,)(1,1)a b ⊆-, 故11a b -<<≤, 即01a b <<<,由(1)可知()f x 在(1,1)-上单调递增, 故有11()1log 111a a af a a a a--=⇔=⇔=++, 解得1a =;当1b <时, 由单调性得1()log 1a bf x b-<+, 不合题意, 故1b =;综上有1, 1a b =.例2. 已知函数22()lg[(1)(1)1]f x a x a x =-+++(其中a 为实常数). (1) 若函数的定义域为, 求实数a 的取值范围; (2) 若函数的值域为, 求实数a 的取值范围.(1)解: 即不等式22(1)(1)10a x a x -+++>的解集为,当1a =时, 不等式为210x +>, 不合题意;当1a =-时, 不等式为10>恒成立, 符合题意;当21a ≠时, 则有22210(1)4(1)0a a a ⎧->⎪⎨∆=+--<⎪⎩, 解得5(,1)(,)3a ∈-∞-⋃+∞; 综上所述, 5(,1](,)3a ∈-∞-⋃+∞;(2)解: 即函数22(1)(1)1y a x a x =-+++的值域包含+,当1a =时, 函数为21y x =+, 符合题意; 当1a =-时, 函数为1y =, 不合题意;当21a ≠时, 则有22210(1)4(1)0a a a ⎧->⎪⎨∆=+--≥⎪⎩, 解得5(1,]3a ∈, 综上所述, 5[1,]3a ∈.例3. 已知函数2()log ()a f x ax x =-(0, 1a a >≠)在区间[2,4]上是增函数, 求实数a 的取值范围.解: 令210(1)0(,0)(,)ax x x ax x a->⇔->⇒∈-∞⋃+∞给出,函数在[2,4]有定义, 则1122a a <⇒>, 令2t ax x =-, 其图像对称轴为直线12x a=, 当1a >时, 外层函数单调递增, 因此内层函数2t ax x =-在[2,4]上单调递增, 得11224a a ≤⇔≥, 结合定义域要求, 即1a >; 当01a <<时, 外层函数单调递减, 因此内层函数2t ax x =-在[2,4]上单调递减, 因此11428a a ≥⇒≤, 结合定义域要求, 无解; 综上所述, 1a >. 五、课堂练习:1. 函数||3x y -=的值域是____________.2. 已知01a <<, 1b <-, 则函数x y a b =+的图像不会经过第______象限.3. 函数y =_________________.4. 若()log (0, 1)a f x x a a =>≠在[,2]a a 上的最大值是最小值的3倍, 则实数a 的值为_____.5. 函数lg100xy =的图像与函数10010x y =⋅的图像关于直线______________对称; 函数lg100x y =的图像与函数0.1log 100x y =的图像关于直线______________对称. 6. 函数3()log |2|f x x a =+的图像的对称轴是直线2x =, 则实数a =__________. 7. 使2log ()1x x -<+成立的x 的取值范围是_____________. 8. 设223()2(1)xx f x x -+=≥, 则其反函数1()f x -=_______________________.9. 求2211()log ()log ()24f x x x =⋅, 当[2,8]x ∈时的最小值和最大值.10. 求函数2221()log log (1)log ()1x f x x p x x +=+-+--(其中p 为常数, 且1p >)的值域.11. 已知0a >, 1a ≠, 21(log )()1a a f x x a x=--, (1) 判断()f x 的定义域内的奇偶性及单调性, 并加以证明; (2) 若()40f x -<的解集为(,2)-∞, 求a 的值.12. 已知函数()lg()x x f x a b =-(其中a , b 为常数, 且01b a <<<). (1) 求函数()f x 的定义域;(2) 在函数()y f x =的图像上是否存在两个不同的点, 使得过它们的直线平行于x 轴? 若存在, 求出这样的点; 若不存在, 说明理由;(3) 当a , b 满足什么条件时, 不等式()0f x >对一切(1,)x ∈+∞都成立?六、回顾总结:1.主要方法:①指数函数、对数函数的单调性决定于底数a ,要分1a >与01a <<来分类讨论.②熟练掌握对、指数公式的使用和化简计算;2.易错、易漏点:①解决与对数函数有关的问题,要特别注意定义域(对数的底数和真数应满足的条件);注意区别log (1)a b +与log 1a b +的区别;②不同底的对数运算问题,应化为同底对数式进行运算.七、课后作业:1.幂函数)(x f y =图像经过点)21,41(,则=)(x f . 2.已知幂函数a x y =的图像,当10<<x 时,在直线x y =的上方,当1>x 时,在直线x y =的下方,则a 的取值范围是.3.函数2223()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =. 4.幂函数),*,,,()1(互质n m N k n m xy m nk ∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为.5.设,函数在区间上的最大值与最小值之差为,则( ) AB . C. D .6.已知函数|lg|)(x x f =,若b a <<0,且)()(b f a f =,则b a 2+的取值范围是 ( )A .B .C .D .7.设函数)(x f =若)()(a f a f ->,则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)8.函数的值域为 A . B . C . D .9.为了得到函数的图像,只需把函数的图像上所有的点() A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.在同一平面直角坐标系中,函数的图象与的图象关于直线对称.而函数的图象与的图象关于轴对称,若,则的值是()1a >()log a f x x =[]2a a ,12a =24)+∞)+∞(3,)+∞[3,)+∞()212log log x x ⎧⎪⎨-⎪⎩0,0x x ><()()2log 31x f x =+()0,+∞)0,+∞⎡⎣()1,+∞)1,+∞⎡⎣3lg 10x y +=lg y x =()y g x =x y e =y x =()y f x =()y g x =y ()1f m =-mA .B .C .D . 11.函数的图象大致是( )12.若在上是减函数,则的取值范围是 ( )A .B .C .D .13.若函数|1|()2x f x m --=-的图象与x 轴有交点,则实数m 的范围是__________. 14.函数)1,0(≠>=a a a y x 在[]2,1上最大值比最小值大2a ,则_________=a . 15.已知函数),0[,)(+∞∈+⋅=x cb a x f x 的值域为)3,2[-,则)(x f 的一个可能的解析式为__________.【思考题】1.设函数()121,x f x x R -=-∈e -1e -e 1elg ||x y x=)2(log ax y a -=]1,0[a )1,0()2,0()2,1(),2(+∞(1)分别作出()y f x =和()y f x =的图像;(2)求实数a 的取值范围,使得方程()fx a =与()f x a =都有且仅有两个实数解.2.已知2()lg x f x ax b =+,(1)0f =,当0x >时,恒有1()lg f x f x x ⎛⎫-= ⎪⎝⎭.⑴求()f x 的解析式;⑵若方程()lg()f x m x =+的解集是∅,求实数m 的取值范围.3.已知函数2()log (1)f x x =-,222x t g x t ⎛⎫-=∈ ⎪⎝⎭R ,.⑴求()y g x =的解析式;⑵若1t =,求当[2,3]x ∈时,()()g x f x -的最小值;⑶若在[2,3]x ∈时,恒有()()g x f x ≥成立,求实数t 的取值范围.。

课件3:4.1.2 指数函数的性质与图像(一)

课件3:4.1.2  指数函数的性质与图像(一)

知识点二 指数函数的图像与性质 a>1
0<a<1
图像
定义域 值域 性 过定点 质 函数值 的变化 单调性
R
_(_0_,__+__∞_ )
过点_(0_,_1_),即 x=__0__时,y=__1__
当 x>0 时,_y_>_1_;
当 x>0 时,0_<_y_<_1;
当 x<0 时,0_<_y_<_1
答案:B
3.在同一坐标系中,函数 y=2x 与 y=21x 的图像之间的关系是(
)
A.关于 y 轴对称
B.关于 x 轴对称
C.关于原点对称
D.关于直线 y=x 对称
解析:由作出两函数图像可知,两函数图像关于 y 轴对称,
故选 A.
答案:A
【课堂探究】
题型一 指数函数概念的应用
例 1 (1)若指数函数 f(x)=(2a-1)x 是 R 上的减函数,则实数 a
4.1.2 指数函数的性质与图像(一)
【课标要求】
(1)通过具体实例,了解指数函数的实际意义,理解指数函 数的概念. (2)能用描点法或借助计算工具画出具体指数函数的图像, 探索并理解指数函数的单调性与特殊点.
【自主预习】
知识点一 指数函数的定义 函数__y_=__a_x__ (a>0 且 a≠1)叫做指数函数,其中 x 是自变量. 定义域为 R. 状元随笔 指数函数解析式的 3 个特征 (1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
A.y=(-3)x B.y=-3x
C.y=3x-1
D.y=31x

高中新教材数学必修件时指数函数的图象与性质

高中新教材数学必修件时指数函数的图象与性质

对称变换规律
01
指数函数$y=a^x$($a>0$,$aneq 1$)的图像关于 原点对称。即当$x$取相反数时,$y$也取相反数。
02
指数函数图像也关于直线$y=x$对称。即当函数形式为 $y=a^x$和$x=a^y$时,两个函数的图像关于直线 $y=x$对称。
03
对称变换不改变图像的形状和开口方向,只改变图像的 位置和对称轴。
当$0 < a < 1$时,指数函数的 图像在$x$轴上方,但随着$x$ 的增大,函数值逐渐减小,图像
向右下方延伸。
指数函数的图像都经过点$(0, 1)$。
指数函数性质总结
01
指数函数的值域为$(0, +infty)$。
02
指数函数在其定义域内是连续的。
03
指数函数在其定义域内是可导的,且导数等 于其自身乘以一个常数。
03
电磁辐射衰减
在通信和电磁学领域,指数函数可用于描述电磁辐射在传播过程中的衰
减。根据衰减常数和传播距离,可以计算信号强度的变化。
复合增长问题中指数函数应用
复利计算
在金融领域,指数函数用于计算 复利问题。通过给定本金、年利 率和存款期限,可以计算存款到
期时的本息总额。
连续增长模型
在经济学和生物学等领域,指数 函数可用于描述连续增长的模型 。通过分析历史数据,可以估算 出连续增长率,并预测未来某一
时刻的数量或规模。
化学反应动力学
在化学领域,指数函数用于描述 化学反应的动力学过程。通过分 析反应速率与反应物浓度的关系 ,可以了解反应的动力学特性和
反应机理。
05 典型例题解析与课堂互动环节
典型例题解析过程展示
01

人教高中数学必修二B版《指数与指数函数》指数函数、对数函数与幂函数说课复习(指数函数的性质与图像)

人教高中数学必修二B版《指数与指数函数》指数函数、对数函数与幂函数说课复习(指数函数的性质与图像)

5 -3
8
与 1;
.
分析:若两个数是同底指数幂,则直接利用指数函数的单调性比
较大小;若不同底,一般用中间值法.
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答
3
4
解:(1)∵0< <1,
3
∴y= 4 在定义域 R 内是减函数.
3 -1.8
3 -2.6
又∵-1.8>-2.6,∴
<
.
4
4
5
(2)∵0< <1,
1
(a>0,且

a≠1)的图像关于 y 轴对
称,分析指数函数 y=ax(a>0,且 a≠1)的图像时,需找三个关键
点:(1,a),(0,1),
1
-1,
.
③指数函数的图像永远在 x 轴的上方.当 a>1 时,图像越接近于
y 轴,底数 a 越大;当 0<a<1 时,图像越接近于 y 轴,底数 a 越小.
解:因为y=(a2-3a+3)ax是指数函数,
所以
2 -3 + 3 = 1,
> 0,且 ≠ 1,
所以 a=2.
解得
= 1 或 = 2,
> 0,且 ≠ 1,
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答
当堂检测
反思感悟1.判断一个函数是指数函数的方法:
(1)看形式:即看是否符合y=ax(a>0,a≠1,x∈R)这一结构形式.
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答

指数函数及图像.ppt

指数函数及图像.ppt

[规律方法] 1.求含有指数型的函数定义域时,要注意考 虑偶次根式的被开方数大于等于0,分母不为0等限制条件.
2.求含有指数式的复合函数的值域时,要结合指数函数的 单调性和定义域来考虑,不要遗漏了指数函数的值域大于0.
【活学活用 3】 求下列函数的定义域与值域:
(1)y=
;(2)y= 1-3x.
解 (1)由 x-2≥0,得 x≥2.
R.因为5-x>0,所以5-x-1>-1,
所以函数的值域为(-1,+∞)
课堂小结
1.指数函数的定义域为(-∞,+∞),值域为(0,+∞),
且f(0)=1.
2. 当a>1时,a的 值 越 大,图 象 越 靠 近y轴 ,递增速度越 快.当0<a<1时,a的值越小,图象越靠近y轴,递减的速
度越快.
历史ⅱ岳麓版第13课交通与通讯 的变化资料
”;此后十年间,航空事业获得较快发展。
筹办航空事宜

三、从驿传到邮政 1.邮政 (1)初办邮政: 1896年成立“大清邮政局”,此后又设 , 邮传邮正传式部脱离海关。 (2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国。邮联大会
2.电讯 (1)开端:1877年,福建巡抚在 架台设湾第一条电报线,成为中国自 办电报的开端。
二、水运与航空
1.水运 (1)1872年,
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“

高一数学指数函数的概念、图象与性质(解析版)

高一数学指数函数的概念、图象与性质(解析版)

专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D. 2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.[解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2, 所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x ,x <0,画出图象,可知选C. 4.函数y =a -|x |(0<a <1)的图象是( )A B C D[解析]y =a-|x |=⎝⎛⎭⎫1a |x|,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交, 交点在下面的是函数y =m x 的图象,故选C.8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限[解析]A,∵a >1,且-1<b <0,故其图象如图所示.]9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0[解析]函数y =a x +b -1(a >0,且a ≠1)的图象是由函数y =a x 的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图象向下平移至少大于1个单位长度,即b -1<-1⇒b <0.故选C.10.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析]选B,y =a x (a >0)的图象在第一、二象限内,欲使y =a x +m -1的图象经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图象向下移动才可能经过第一、三、四象限.当a >1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B. 11.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()[解析]由函数f(x)=(x-a)(x-b)(其中a>b)的图象可知0<a<1,b<-1,所以函数g(x)=a x+b是减函数,排除选项C、D;又因为函数图象过点(0,1+b)(1+b<0),故选A.14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c[解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x=1,在第一象限内直线x=1与各曲线的交点的纵坐标即各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x轴.15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.[解析]作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,∴a≥1或a=0.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析]因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.[解析]令x+3=0得x=-3,此时y=2a0+2=2+2=4.即函数y=2a x+3+2(a>0,且a≠1)的图象过定点(-3,4).18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解, 即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫132x -的定义域与值域;(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}.(2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x的定义域为[0,+∞).5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( ) A .[0,1)∪(1,+∞) B .(1,+∞) C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B. 8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16, 即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x(x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞[解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12. 12.函数y =⎝⎛⎭⎫1222x x -+的值域是________. [解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1; 当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x 3x +1的值域是________.[解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。

高一数学必修教学课件第三章指数函数的图像和性质

高一数学必修教学课件第三章指数函数的图像和性质
伸缩变换
对于形如$y = a^{bx}$的指数函数,可以通过伸缩基本指数函数的图像得到。具体地,当$b > 1$时,图像在纵 坐标方向上进行压缩,同时在横坐标方向上进行拉伸;当$0 < b < 1$时,图像在纵坐标方向上进行拉伸,同时 在横坐标方向上进行压缩。
图像特点总结与对比分析
指数函数图像特点
THANKS
感谢观看
阅读材料
推荐了一些与指数函数相 关的阅读材料,供学生课 后阅读,以拓宽视野。
下节课预习内容提示
下节课内容
简要介绍了下节课将要学 习的内容,包括指数函数 的运算性质和应用等。
预习要求
要求学生提前预习下节课 的内容,了解指数函数的 运算性质和应用场景,为 下节课的学习做好准备。
问题思考
提出了一些与下节课内容 相关的问题,引导学生进 行思考和预习。
解析
考察指数函数$y = 1.7^{x}$的单调性,由于底数大于1,函数在全体实数范围 内单调递增。因此,$1.7^{3} > 1.7^{2.5} > 1.7^{-1.5}$。
例题2
已知函数$f(x) = a^{x}(a > 0$且$a neq 1)$在区间$[-1,2]$上的最大值为4,最 小值为$m$,且函数$g(x) = (1 - 4m)sqrt{x}$在区间$[0, + infty)$上是单调函 数,求$a$和$m$的值。
明确任务要求
教师需要向学生明确任 务的要求,包括任务的 目标、完成时间、提交 方式等。
学生自主查阅资料及整理成果展示
1 2 3
学生自主查阅资料
学生可以利用图书馆、互联网等资源,自主查阅 与指数函数相关的资料,包括教材、参考书、学 术论文等。

4.2 第1课时 指数函数及其图象、性质(一)

4.2  第1课时 指数函数及其图象、性质(一)
当0<a<1时,选项C符合题意.故选C.
答案: C
3.已知函数f(x)=4+ax+1(a>0,且a≠1)的图象经过定点P,则点P的
坐标是(
)
A.(-1,5) B.(-1,4)
C.(0,4)
D.(4,0)
解析:当x+1=0,即x=-1时,ax+1=a0=1,此时f(x)=4+1=5,故点P的
坐标为(-1,5).
设f(x)=0.8x, 因为0<0.8<1,所以f(x)在R上单调递减.
又因为0.9>0.8,所以0.80.9<0.80.8.
再比较0.80.8与0.90.8的大小,设g(x)=x0.8,
因为0.8>0,所以g(x)在区间(0,+∞)内单调递增.
又因为0.8<0.9,所以0.80.8<0.90.8.
第1课时
4.2 指数函数
指数函数及其图象、性质(一)
学习目标
1.通过具体实例,了解指数函数的实际意义.
2.理解指数函数的概念.
3.能用描点法或借助计算工具画出具体指数函
数的图象.
4.探索并理解指数函数的单调性.
5.感悟数学抽象的过程,提升直观想象和逻辑推
理素养.
自主预习·新知导学
合作探究·释疑解惑
(-5,-1),即点P的坐标为(-5,-1).
答案:(1)D (2)(-5,-1)
反思感悟
1.指数函数图象问题的处理技巧
(1)抓住图象上的特殊点,如指数函数的图象必过的定点;
(2)利用图象变换,如函数图象的左右平移、上下平移;
(3)利用函数的奇偶性与单调性,奇偶性确定函数的对称情况,

指数函数的概念、图像与性质(一)

指数函数的概念、图像与性质(一)

2016-2017学年度第一学期数学导学案 编号:014 班级: 姓名: 学习小组: 层级编码: 组内评价: 教师评价: 第一页 第二页编制:叶平阳 审核: 年级主任: 使用时间:2016.10指数函数的概念、图像与性质(一)【学习目标】1.由实例中的解析式概括出指数函数的概念;2.会画指数函数)10(≠>=a a a y x且的图像;3.画出x y 2=和x y )21(=,xy 3=和x y )31(=的图像,并能说出图像的几何特征;4.根据四个图像的几何特征,能说出其数量特征,并能归纳出一般指数函数的性质;5.会用指数函数的性质比较大小、解不等式;6.通过对指数函数性质的探究进一步体会从特殊到一般、数形结合数学方法在研究数学问题中的应用. 【重点难点】重点:由指数函数的图像归纳性质及性质应用. 难点:指数函数单调性的应用.【学法指导】一般来说,函数与图像紧密联系,图像反映函数的性质。

研究指数函数图像与性质思路是:画出 图像,通过图像发现并归纳性质(定义域、值域、特殊点、单调性、奇偶性). 【问题导学】一、指数函数概念1. (填一填)问题1:细胞分裂时,第一次由1个分裂成2个(即12),第2次由2个分裂成4个(即22), 第3次由4个分裂成8个(即 ),如此下去,如果第x 次分裂得y 个细胞,那么细胞个数y 与 次数x 的函数关系式是 .问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。

”请你写出截取x 次后,木 棰剩余量y 关于x 的函数关系式是 .分析问题1 和问题2所列的函数解析式,得出指数函数的概念 .思考:在函数 xy a =(a >0且a ≠1)中为什么规定a >0且a ≠1呢?2.(辨一辨)(1)下列函数是指数函数的序号为 . ①xy ⎪⎭⎫ ⎝⎛=51 ②25x y =⨯ ③2x y = ④23-=x y ⑤xy 4-=⑥xy )14.3(-=π ⑦12-=x y ⑧(2)xy =- ⑼(1)xy a =- (a >1,且2a ≠)(2)已知函数xa a a y ⋅+-=)33(2是指数函数,则=a二、探究指数函数性质 1.(算一算)完成表格:x… -3 -2 -1 0 1 2 3 …x… -3 -2 -1 0 1 2 … x y 2=x y 3=x y )21(=2.(画一画)在图1中画出x y 2=和xy )21(=的图像,在图2中画出x y 3=和x y )31(=图像.图1 图23.(比一比) 观察图1和图2中的4个函数的几何特征完成下表:图像特征图像性质图像都位x 轴 定义域 值域图像都过点=a当a >1时,图像都落在第 、 象限,在第 象限,图像都分布在直线y =1的上方,在第 象限,图像都分布在直线y =1的下方;当0<a <1时,图像都落在第 、 象限,在第 象限,图像都分布在直线y =1的上方,在第 象限,图像都分布在直线y =1的下方. a >1,当x >0时, 1xa ,当x <0时, 1x a0<a <1,当x >0时,1x a 当x <0时,1x a从左向右看:当a >1时,)10(≠>=a a a y x且 图像逐渐 ;当0<a <1时,)10(≠>=a a a y x 且图像逐渐 .当a >1时,a xy =(,0>a 且)1≠a 是 函数,0<a <1时,a x y =(,0>a 且)1≠a 是 函数.xy )31(=4.(写一写)通过探究得出指数函数)10(≠>=a a a y x且与上表相同的性质,试完成下表:5.(做一做)(1)分别比较53525353--⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛与; 30.8与 30.7 ; 2.0332.0--与;3.07.1与1.39.0.的大小.(2)分别比较 ; (,0>a 且)1≠a 中 m 、n 的大小.(3)函数 )3(a y -=x在定义域内为减函数,求a 的取值范围.【合作探究】1.求使不等式324>x成立的x 的集合.变式:试求函数32)21(-=x y 的定义域.归纳:解简单指数不等式方法是 .2.比较大小 (1)8.09.07.02.1,8.0,8.0===c b a (2)2131a a 与,1,0≠>a a 且.、3.函数)1,0()(≠>=a a a x f x 且在区间[]2,1上的最大值比最小值大2a,求a 的值.归纳:解决底数含参量的指数问题时,一般采用的方法是【我的困惑】22nm <a anm >2016-2017学年度第一学期数学导学案编号:014 班级:姓名:学习小组:层级编码:组内评价:教师评价:第一页第二页)(,nmaa nm。

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)
4.2 指数函数
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.

理解指数函数的基本概念与性质

理解指数函数的基本概念与性质

理解指数函数的基本概念与性质指数函数是数学中的一种特殊函数,它的定义域是全体实数,值域是大于零的实数。

指数函数以其特殊的增长特性和广泛的应用而备受关注。

本文将从基本概念和性质两方面来深入理解指数函数。

一、基本概念指数函数是以常数e(数学常数,约等于2.71828)为底的幂函数,表达式为f(x) = a^x,其中a为底数,x为指数。

在指数函数中,底数a大于0且不等于1,指数x可以是任意实数。

1.1 指数函数的图像特点指数函数的图像呈现出特殊的增长规律。

当底数a大于1时,指数函数呈现增长趋势;当底数a介于0和1之间时,指数函数呈现下降趋势。

指数函数的图像经过点(0, 1),这是由于a^0等于1。

1.2 指数函数的性质指数函数有以下重要性质:a) 当指数为零时,指数函数的值始终为1,即a^0 = 1;b) 当指数为正数时,指数函数呈现递增趋势,即a^n(n为正数);c) 当指数为负数时,指数函数呈现递减趋势,即a^(-n) = 1 / a^n(n为正数)。

二、指数函数的常见应用指数函数在科学、金融和工程等领域有着广泛的应用。

以下是几个常见的应用场景:2.1 大自然的增长规律许多自然现象都可以使用指数函数来描述,如人口增长、细胞分裂等。

指数函数可以帮助我们预测和研究这些现象的增长趋势和规律。

2.2 经济增长与财务规划经济增长也可以通过指数函数来描述,特别是在复利计算中。

指数函数可以帮助我们理解和规划财务增长,包括银行利息计算、投资回报预测等。

2.3 无限接近与趋势逼近指数函数的特殊性质使其在数学中有着广泛的应用,如级数求和、数值逼近等。

指数函数可以帮助我们更好地理解和利用数学中的各种概念和方法。

三、指数函数的注意事项在应用指数函数时,需要注意以下几点:3.1 底数a的取值指数函数中,底数a大于0且不等于1,具体数值的选择取决于具体应用场景。

需要根据问题需求和实际情况来确定合适的底数。

3.2 指数函数的定义域和值域指数函数的定义域是全体实数,值域是大于零的实数。

指数函数的概念与性质

指数函数的概念与性质

指数函数的概念与性质指数函数是高中数学中的一个重要概念,它在各个学科中都有广泛的应用。

本文将介绍指数函数的概念,并详细讨论其性质和特点。

一、指数函数的概念指数函数是以底数为常数且指数为变量的函数,通常以f(x) = a^x 的形式表示,其中a为底数,x为指数,a为正数且不等于1。

指数函数是一种具有指数增长或指数衰减特征的函数,其增长速度非常快。

当x增大时,函数值也会迅速增大;当x减小时,函数值会迅速减小。

在实际应用中,指数函数常用于描述人口增长、金融投资、物质衰变等现象。

它具有十分重要的意义。

二、指数函数的性质1. 定义域和值域对于指数函数f(x) = a^x,其定义域为全体实数集R,即指数可以是任意实数。

值域的范围与底数a有关:- 当a>1时,函数的值域为(0, +∞),即正实数集;- 当0<a<1时,函数的值域为(0, 1),即(0, 1)之间的正实数集。

2. 奇偶性指数函数的奇偶性与底数有关:- 当底数a为正数时,指数函数为奇函数,即f(-x) = 1/(a^x) = 1/f(x)。

图像关于原点对称;- 当底数a为负数时,指数函数为偶函数,即f(-x) = a^x = f(x)。

图像关于y轴对称。

3. 单调性当底数a>1时,指数函数是递增函数,即对于任意的x₁ < x₂,有a^(x₁) < a^(x₂);当0<a<1时,指数函数是递减函数,即对于任意的x₁ < x₂,有a^(x₁) > a^(x₂)。

4. 极限性质当x趋向于无穷大时,指数函数具有如下极限性质:- 当a>1时,a^x的极限为正无穷大,即lim(x→+∞) a^x = +∞;- 当0<a<1时,a^x的极限为0,即lim(x→+∞) a^x = 0。

5. 图像特点指数函数的图像特点与底数a的大小有关:- 当0<a<1时,函数的图像在x轴上方,随着x的增大而逐渐趋近于x轴;- 当a>1时,函数的图像在x轴下方,随着x的增大而迅速上升;- 当a=1时,指数函数退化为常数函数,即f(x) = 1。

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质指数函数是高中数学中的重要概念,是实数范围内的一类特殊函数。

指数函数的图像和性质对于深入理解数学和应用到实际问题中都有很大帮助。

在本文中,我们将讨论指数函数的图像和性质,以便读者能够更好地理解这一概念。

一、指数函数的定义指数函数是形如y=a^x的函数,其中a为常数且a>0,x为自变量,y为因变量。

其中,a被称为底数,x被称为指数,a和x可以是正数、负数或零。

在指数函数中,底数为正数时,函数值随着指数的增大而变得非常大,函数图像呈指数增长趋势。

底数为1时,函数值始终为1。

底数为小于1的正数时,函数值随着指数的增大而逐渐变小,函数图像呈指数衰减趋势。

底数为负数时,函数图像具有各种特殊性质,需要进行特殊的讨论。

因此,在指数函数的图像和性质中,底数的符号和大小都是重要的因素。

二、指数函数的图像为了更好地理解指数函数的图像,我们可以分别讨论不同底数的指数函数。

1.底数a>1的指数函数当底数a>1时,指数函数呈现指数增长趋势。

例如,y=2^x的函数图像如下所示:(插入一张y=2^x的函数图像)当x等于0时,函数值为1。

随着x的增大,函数的值也增大,但增长速度越来越快。

当x趋近于正无穷小和负无穷时,函数值逐渐趋近于0。

2.底数a=1的指数函数当底数为1时,函数值始终为1,函数图像是一条直线。

例如,y=1^x的函数图像如下所示:(插入一张y=1^x的函数图像)3.底数0<a<1的指数函数当底数0<a<1时,指数函数呈现指数衰减趋势。

例如,y=(1/2)^x的函数图像如下所示:(插入一张y=(1/2)^x的函数图像)当x等于0时,函数值为1。

随着x的增大,函数的值也减小,但衰减速度越来越慢。

当x趋近于正无穷时,函数值逐渐趋近于0。

4.底数a<0的指数函数当底数为负数时,函数图像具有各种特殊性质,需要进行特殊的讨论。

例如,y=(-2)^x的函数图像如下所示:(插入一张y=(-2)^x的函数图像)可以看出,当x为奇数时,函数值为负数,当x为偶数时,函数值为正数。

指数函数的概念与计算

指数函数的概念与计算

指数函数的概念与计算指数函数是数学中常见且重要的一类函数,它是以常数e(自然对数的底数)为底的幂函数。

指数函数在各种科学领域和经济领域中都有广泛应用,如物理学、生物学、金融学等。

本文将介绍指数函数的概念以及如何进行指数函数的计算。

一、指数函数的概念指数函数的一般形式为:y = a * e^x,其中a为常数,e为自然对数的底数,x为自变量,y为因变量。

指数函数中的指数x可以是任意实数,因此指数函数可以表示正、负、零的实数幂。

1. 自然指数函数当a = 1时,指数函数的形式为y = e^x,这就是常见的自然指数函数。

自然指数函数的图像是一个递增的、连续的曲线,在坐标系中从原点开始,并且过点(0, 1)。

自然指数函数在x轴的正半轴上是逐渐增大的,在负半轴上是逐渐趋近于零的。

2. 广义指数函数当a不等于1时,指数函数的形式为y = a * e^x,它是自然指数函数的一般形式,也被称为广义指数函数。

广义指数函数不仅可以进行水平平移(通过调整a的值),还可以进行垂直平移、压缩和伸缩等变换。

二、指数函数的计算计算指数函数时,可以利用一些常用的指数函数性质和运算法则。

下面将分别介绍指数函数的常用运算法则和指数函数的图像特点。

1. 指数函数的运算法则(1)指数函数的加减法则:指数函数满足加减法法则,即e^(x+y) = e^x * e^y,e^(x-y) = e^x / e^y。

这个法则可以简化指数函数的计算,特别是当指数函数中的指数为复杂的代数式时。

(2)指数函数的乘除法则:指数函数还满足乘除法法则,即(e^x)^y = e^(xy),e^(x/y) =(e^x)^(1/y)。

这个法则可以简化指数函数的运算,特别是当指数函数需要进行幂运算或开根运算时。

2. 指数函数的图像特点指数函数的图像特点主要包括增减性、奇偶性以及渐近线等。

(1)增减性:自然指数函数e^x在整个实数范围内是递增的,即随着x的增大,函数值也增大。

课件2:4.1.2 指数函数的性质与图像(一)

课件2:4.1.2  指数函数的性质与图像(一)

(2)定义域为 R,y=(2x)2-2x+1=2x-122+34, 因为 2x>0,所以当 2x=12时,即 x=-1 时,y 取最小值34, 所以 y=4x-2x+1 的值域为34,+∞.
【规律方法】 解此类题的要点是设 ax=t,利用指数函数的性质求出 t 的范 围.从而把问题转化为 y=f(t)的问题.
【规律方法】 y=af(x)的定义域即 f(x)的定义域,求 y=af(x)的值域可先求 f(x)的 值域,再利用 y=at 的单调性结合 t=f(x)的范围求 y=at 的范围.
【跟踪训练】求下列函数的定义域与值域: (1)y=0.3x-1 1;(2)y=3 5x-1. 解:(1)由 x-1≠0,得 x≠1,所以所求函数的定义域为{x|x≠1}. 由x-1 1≠0,得 y≠1,所以所求函数的值域为{y|y>0 且 y≠1}. (2)由 5x-1≥0,得 x≥15,所以所求函数的定义域为xx≥15. 由 5x-1≥0,得 y≥1,所以所求函数的值域为{y|y≥1}.
【规律方法】 函数 y=ax 的图像主要取决于 0<a<1 还是 a>1.但前提是 a>0 且 a≠1.此题主要考虑二次函数的系数与指数函数底数大小关系.
【跟踪训练】已知函数 f(x)=4+ax+1 的图像经过定点 P,则点 P
的坐标是( )
A.(-1,5)
B.(-1,4)
C.(0,4)
D.(4,0)
【跟踪训练】求下列函数的定义域与值域. (1)y= 1-12x; (2)y=aaxx- +11(a>0,且 a≠1).
解:(1)因为 1-12x≥0,所以12x≤1,解得 x≥0, 所以 y= 1-12x的定义域为[0,+∞). 令 t=1-12x (x≥0),则 0≤t<1,所以 0≤ t<1, 所以 y= 1-12x的值域为[0,1).

指数函数的定义和性质

指数函数的定义和性质

指数函数的定义和性质在数学中,指数函数是一种基本的函数之一。

它的应用非常广泛,包括在金融、科学、工程和计算机科学等领域。

指数函数的定义和性质是数学学科中非常重要的一部分,本文将着重介绍指数函数的定义和性质,以帮助读者更好地理解这一重要概念。

一、指数函数的定义指数函数的定义非常简单,它是以自然常数e为底数的幂函数。

即:f(x) = e^x其中,e是自然常数,它的值约为2.71828。

根据这个定义,我们可以得到一些指数函数的基本性质。

二、指数函数的性质1. 增长速度指数函数是一个无限增长的函数。

随着x的增大,e的x次方也会越来越大。

这意味着,指数函数的增长速度非常快,远远快于其他函数,比如多项式函数和三角函数。

2. 渐近线指数函数的图像会与y = 0轴有一个渐近线。

这条线是指数函数的图像在x轴右侧逼近y = 0而趋近于它时所形成的。

3. 对称轴指数函数的对称轴为y = 0轴。

这是因为当x为正数时,e的x 次方和e的-x次方是关于y = 0轴对称的,即f(x) = f(-x)。

4. 交点指数函数和y = 1直线有一个交点,这个交点的坐标为(0,1)。

这个交点是由于e的0次方为1引起的。

5. 常函数关系指数函数和指数函数之间还存在常函数的关系。

换句话说,如果f(x) = e^x,那么g(x) = ln(x)就是f(x)的反函数。

这意味着,指数函数和对数函数是相互关联的。

6. 求导指数函数的求导结果还是自身。

换句话说,如果f(x) = e^x,那么f'(x) = e^x。

这个性质在微积分中是非常有用的。

三、应用指数函数有很多应用,包括用于描述人口增长率、财务计算、化学反应速率等方面。

这些应用需要对指数函数的性质有深入的理解,并能够使用指数函数进行数学建模。

例如,在人口学中,指数函数可以描述人口的增长率。

假设某个国家的人口现在为P0,每年的增长率为r,那么在t年后,该国的人口大小为:P(t) = P0 * e^(rt)这个方程式体现了指数函数的性质,即随着时间的增加,该国的人口会迅速增加。

课件4:4.1.2 指数函数的性质与图像(一)

课件4:4.1.2  指数函数的性质与图像(一)

单调性
在 R 上是_增__函__数__
在 R 上是__减__函__数__
3.比较幂大小的方法 (1)对于同底数不同指数的两个幂的大小,利用指数函数的_单__调__性__来判断. (2)对于底数不同指数相同的两个幂的大小,利用指数函数的__图__像____的 变化规律来判断. (3)对于底数不同指数也不同的两个幂的大小,则通过_中__间__值__来判断.
3.从左向右,指数函数 y=ax(a>0 且 a≠1)的图像呈上升趋势还是下降 趋势?其图像是上凸还是下凸? [提示] 当 0<a<1 时,指数函数 y=ax(a>0 且 a≠1)的图像从左向右呈下 降趋势;当 a>1 时,指数函数 y=ax(a>0 且 a≠1)的图像从左向右呈上升 趋势.指数函数的图像下凸.
法二:(解方程法)指数函数 y=ax(a>0 且 a≠1)的图像过定点 (0,1);在 f(x)=ax-1+2 中,令 x-1=0,即 x=1,则 f(x)=3, 所以函数 f(x)=ax-1+2(a>0 且 a≠1)的图像过定点(1,3).
2.指数函数 y=ax(a>0 且 a≠1)的图像可能在第三或第四象限吗? 为什么? [提示] 不可能.因为指数函数 y=ax(a>0 且 a≠1)的定义域是(-∞, +∞),值域是(0,+∞),这就决定了其图像只能在第一象限和第二 象限.
(2)令 t=2x-x2,则 y=12t,而 t=-(x-1)2+1≤1,
所以 y=12t≥12,故所求函数的值域为12,+∞.
因为
=12t,由于二次函数 t=2x-x2 的对称轴为 x=1,
可得函数 t 在(-∞,1]上是增函数,函数 y 在(-∞,1]上是减函数, 故函数 y 的减区间是(-∞,1]. 函数 t 在(1,+∞)上是减函数,函数 y 在(1,+∞)上是减函数, 故函数 y 的增区间是(1,+∞).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第一学期数学导学案 编号:014(B ) 班级: 姓名: 学习小组: 层级编码: 组内评价: 教师评价:
第一页 第二页
指数函数的概念、图像与性质(一)
【学习目标】
1.由实例中的解析式概括出指数函数的概念;
2.会画指数函数)10(≠>=a a a y x 且的图像;
3.画出x
y 2=和x y )21(=,x y 3=和x
y )3
1(=的图像,并能说出图像的几何特征;
4.根据四个图像的几何特征,能说出其数量特征,并能归纳出一般指数函数的性质;
5.会用指数函数的性质比较大小、解不等式;
6.通过对指数函数性质的探究进一步体会从特殊到一般、数形结合数学方法在研究数学问题中的应用. 【重点难点】
重点:由指数函数的图像归纳性质及性质应用. 难点:指数函数单调性的应用.
【学法指导】
一般来说,函数与图像紧密联系,图像反映函数的性质。

研究指数函数图像与性质思路是:画出 图像,通过图像发现并归纳性质(定义域、值域、特殊点、单调性、奇偶性). 【问题导学】
一、指数函数概念
1. (填一填)
问题1:细胞分裂时,第一次由1个分裂成2个(即1
2),第2次由2个分裂成4个(即2
2), 第3次由4个分裂成8个(即 ),如此下去,如果第x 次分裂得y 个细胞,那么细胞个数y 与 次数x 的函数关系式是 .
问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。

”请你写出截取x 次后,木 棰剩余量y 关于x 的函数关系式是 .
分析问题1 和问题2所列的函数解析式,得出指数函数的概念 .
思考:在函数 x y a =(a >0且a ≠1)中为什么规定a >0且a ≠1呢?
2.(辨一辨)
(1)下列函数是指数函数的序号为 .
①x
y ⎪


⎝⎛=51 ②25x y =⨯ ③2x y = ④23-=x y ⑤x
y 4-=
⑥x
y )14.3(-=π ⑦1
2
-=x y ⑧(2)x y =- ⑼(1)x
y a =- (a >1,且2a ≠)
(2)已知函数x a a a y ⋅+-=)33(2是指数函数,则=a
二、探究指数函数性质 1.(算一算)完成表格:
2.(画一画)在图1中画出x y 2=和x y )2(=的图像,在图2中画出x y 3=和x
y )3
(=图像.
图1 图2
3.(比一比) 观察图1和图2中的4个函数的几何特征完成下表:
2
1a ,1,0≠>a a 且.
3,求a 的值.
1
D .(3,2)。

相关文档
最新文档