高三数学选择题填空题专项训练一

合集下载

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。

【高三数学试题】高三数学试题1(理科)及参考答案

【高三数学试题】高三数学试题1(理科)及参考答案

高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。

高三数学专项训练:排列与组合练习题

高三数学专项训练:排列与组合练习题

高三数学专项训练:排列与组合练习题一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()A.81 B.64 C.14 D.122.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A.324B.328C. 360D.6483.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的左边,那么不同的排法共有()A.60种 B.48种 C.36种 D.24种4.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法的种数是()A.360 B.288 C.216 D.965.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种 B.10种 C.9种 D.8种6.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,从中任选1人参加某项活动,则不同选法种数为()(A)60 (B)12 (C)5 (D)57.从10名大学生中选3个人担任乡村干部,则甲、丙至少有1人入选,而乙没有入选的不同选法的种数为()A. 85 B. 56 C. 49 D. 288.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有()A. 24种B. 36种C. 38种D. 108种9.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙不能排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种10.有6人被邀请参加一项活动,必然有人去,去几人自行决定,共有()种不同去法A. 36种B. 35种C. 63种D. 64种11.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A. 6种B. 12种C. 30种D. 36种12.从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有()A.240种 B.280种 C. 96种 D.180种13.2位教师与5位学生排成一排,要求2位教师相邻但不排在两端,不同的排法共有()A. 480种B.720种C. 960种D.1440种14.4名运动员报名参加3个项目的比赛,每人限报一项,不同的报名方法有(A)43种(B)34种(C)34A种(D)34C种15.从9名学生中选出4人参加辩论赛,其中甲、乙、丙三人至少有两人入选的不同选法的种数为()A.36 B.51 C.63 D.9616.今有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,现从10人中选派4人承担这三项任务,不同的选派方法有A.1260种B.2025种C.2520种D.5054种17.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种 B.36种 C.42种 D.60种18.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )A.140种 B. 120种 C. 35种 D. 34种19.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有()不同的装法.A.240 B.120 C.600 D.36020.有11名学生,其中女生3名,男生8名,从中选出5名学生组成代表队,要求至少有1名女生参加,则不同的选派方法种数是 ( )A.406B.560C.462D.15421.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的种数为()A.5 B.80 C.105 D.21022.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为A.85B.56 C.49 D.2823.某班乒乓球队9名队员中有2名是校队选手,现在挑5名队员参赛,校队必须选,那么不同的选法共有()种.A)126;B)84;C)35;D)21;24.三名教师教六个班的课,每人教两个班,分配方案共有()A.18种B.24种C.45种D.90种25.某班级有一个8人小组,现任选其中3人相互调整座位,其余5人座位不变,则不同的调整方案的种数有()A.56B.112C.336D.16826.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种27.平面上有5个点,其中任何3个点都不共线,那么可以连成的三角形的个数是( ) A.3 B.5 C.10 D.2028.6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是()A.2264C C B C.336A D.36C29.某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14B.24C.28D.4830.有5盆互不相同的玫瑰花,其中黄玫瑰2盆、白玫瑰2盆、红玫瑰1盆,现把它们摆放成一排,要求2盆白玫瑰不能相邻,则这5盆玫瑰花的不同摆放种数是()A、120 B、72 C、12 D、3631.从6人中选4人分别到北京、哈尔滨、广州、成都四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且在这6人中甲、乙不去哈尔滨游览,则不同的选择方案共有A.300种B.240种C.144种D.96种32.将4个不同的球放入3个不同的盒中,每个盒内至少有1个球,则不同的放法种数为()(A)24 (B)36 (C)48 (D)9633.现安排5名同学去参加3个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案个数为()(A)72 (B)114 (C)144(D)150 34.某人有3个不同的电子邮箱,他要发5个电子邮件,发送的方法的种数()A . 8 B. 15 C. 243 D. 12535.7名志愿者安排6人在周六,周日两天参加社区公益活动若每天安排3人,则不同的安排方案共有()A.280种B.140种C.360种D.300种36.某班级要从4名男生、2名女生中选4人接受心理调查,如果要求至少有1名女生,那么不同的选法种数为()A.14 B.24 C.28 D.4837.某节目表有6个节目,若保持其相对顺序不变,在它们之间再插入2个小品节目,且这2个小品在表中既不排头也不排尾,那么不同插入方法有()A. 20种B. 30种C. 42种D. 56种38.现从甲、乙、丙等6名学生中安排4人参加4×100m接力赛跑。

高考数学客观题训练【6套】选择、填空题

高考数学客观题训练【6套】选择、填空题

数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。

高三数学选择题专题训练(17套)含答案

高三数学选择题专题训练(17套)含答案

(每个专题时间:35分钟,满分:60分)1.函数y =的定义域是( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]2.函数221()1x f x x -=+, 则(2)1()2f f = ( ) A .1 B .-1 C .35D .35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C. D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。

那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭ ③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有:( ) A .0个 B .1个C .2个D .3个9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310D .712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是A .258B .234C .222D .2101.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅2.︒+︒15cot 15tan 的值是( )A .2B .2+3C .4D .334 3.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率为( )A .32 B .33 C .22 D .235.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1B .-1C .2D .216.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:其中真命题的个数是( ) ①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β.A .0B .1C .2D .37.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π 9.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2810.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,4] 时,f(x)= x -2,则 ( ) A .f (sin21)<f (cos 21) B .f (sin 3π)>f (cos 3π) C .f (sin1)<f (cos1) D .f (sin 23)>f (cos 23) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上任意选一处M 建一座码头,向B 、C 两地转运货物,经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km 、那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2) a 万元C .27a 万元D .(7-1) a 万元专题训练(三)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A .-3 B .-1 C .1 D .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( )A .[)(]3,21,2-- B .(]()3,21,--+∞C . (][)3,21,2--D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A .12-B .14- C .14 D .134.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n5.函数f(x)22sin sin 44f x x x ππ=+--()()()是( ) A .周期为π的偶函数 B .周期为π的奇函数 C . 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A .0.1536B . 0.1808C . 0.5632D . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23 B . 76 C . 45 D . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A . 6 B . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是( ) A . 4 B . 12 C .2 D . 1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 ( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则( ) A . 1f -()>f (0)>f (1) B . f (0)>f(1)>f (-1) C . 1f ()>f (0)>f (-1) D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x –y+1=0的交点在( )A . 第四象限B . 第三象限C .第二象限D . 第一象限1.设集合P={1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17 D.9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个人数(人)时间(小时)专题训练(五)1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于10<<a ,给出下列四个不等式,其中成立的是( )① )11(log )1(log a a a a +<+ ②)11(log )1(log aa a a +>+ ③aa a a 111++<④aaaa 111++>A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.圆064422=++-+y x y x 截直线x -y -5=0所得弦长等于( ) A .6 B .225 C .1 D .5 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p --- 6.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下:则==)10(ξP ( )A .932 B .103 C .93 D .103 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐, 并且这2人不.左右相邻,那么不同排法的种数是( )A .234B .346C .350D .3631.设集合U A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( ) A .21 B .-21 C .2 D .-23.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10C .13D .44.函数)1(11>+-=x x y 的反函数是 ( )A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( ) A .57B .51C .27 D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95 B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3C .-21-3D .21+31.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( ) A .{2|-<x x } B .{3|>x x } C .{21|<<-x x } D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7.函数xe y -=的图象( ) A .与xe y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称 8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=( ) A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2π C .π D .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A .56个 B .57个 C .58个 D .60个专题训练(八)1、设集合22,1,,M x y xy x R y R =+=∈∈,2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .42、函数sin 2xy =的最小正周期是( ) A .2πB .πC .2πD .4π3、记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2 B . 2-C . 3D . 1- 4、等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 1925、圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=6、61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-7、若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,) 8、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 549、不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .11、在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C . 32D .12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种1.设集合U={1U A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为( ) A .)0(ln 2>=x x y B .)0)(2ln(>=x x y C .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为( ) A .26 B . 6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( ) A .1 B .2 C .3 D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 A .160 B .180 C .200 D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( ) A .-3 B .-2 C .-1 D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+ C .232+ D .32+1.设集合A .PQ P = B .P Q 包含Q C .P Q Q = D . P Q 真包含于P2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞ 3.对任意实数,,a b c 在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件 4.若平面向量b 与向量)2,1(-=的夹角是o 180,且53||=,则=b ( ) A . )6,3(- B . )6,3(- C . )3,6(- D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。

高三数学选择题、填空题专项训练

高三数学选择题、填空题专项训练

高三数学选择题、填空题专项训练(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2高三数学选择题、填空题专项训练(1)1.sin600 = ( ) (A) –23 (B)–21. (C)23. (D) 21. 2.设 A = { x| x 2}, B = { x | |x – 1|< 3}, 则A ∩B= ( )(A)[2,4] (B)(–∞,–2] (C)[–2,4] (D)[–2,+∞)3.若|a |=2sin150,|b |=4cos150,a 与b 的夹角为300,则a ·b 的值为 ( )(A)23. (B)3. (C)32. (D)21.4.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则a cos C+c cos A 的值为 ( )(A)b. (B)2cb +. (C)2cosB. (D)2sinB. 5.当x R 时,令f (x )为sinx 与cosx 中的较大或相等者,设a f ( x ) b, 则a + b 等于 ( )(A)0 (B) 1 + 22. (C)1–22. (D)22–1. 6、函数1232)(3+-=x x x f 在区间[0,1]上是( ) (A )单调递增的函数. (B )单调递减的函数. (C )先减后增的函数 . (D )先增后减的函数.7.对于x ∈[0,1]的一切值,a +2b > 0是使ax + b > 0恒成立的( )(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件8.设{a n }是等差数列,从{a 1,a 2,a 3,··· ,a 20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有( )(A)90个 . (B)120个. (C)180个. (D)200个.9.已知函数y = f ( x )(x ∈R )满足f (x +1) = f ( x – 1),且x ∈[–1,1]时,f (x) = x 2,则y = f ( x ) 与y = log 5x 的图象的交点个数为 ( )3(A)1. (B)2 . (C)3 . (D)4. 10.给出下列命题:(1) 若0< x <2π, 则sinx < x < tanx . (2) 若–2π< x< 0, 则sin x < x < tanx.(3) 设A ,B ,C 是△ABC 的三个内角,若A > B > C, 则sinA > sinB > sinC. (4) 设A ,B 是钝角△ABC 的两个锐角,若sinA > sinB > sinC 则A > B > C.. 其中,正确命题的个数是( ) (A) 4. (B )3. (C )2. (D )1.11. 某客运公司定客票的方法是:如果行程不超过100km ,票价是元/km , 如果超过100km , 超过100km 部分按元/km 定价,则客运票价y 元与行程公里数x km 之间的函数关系式是 .12. 设P 是曲线y = x 2 – 1上的动点,O 为坐标原点,当|→--OP |2取得最小值时,点P 的坐标为 .高三数学选择题、填空题专项训练(2)1.函数12x y -=(x >1)的反函数是( ) (A )y =1+log 2x (x >1) (B )y =1+log 2x (x >0) (C )y =-1+log 2x (x >1) (D )y =log 2(x -1) (x >1) 2.设集合A ={(x , y )| y =2si n 2x },集合B ={(x , y )| y =x },则( ) (A )A ∪B 中有3个元素 (B )A ∪B 中有1个元素 (C )A ∪B 中有2个元素 (D )A ∪B =R3.焦点在直线3x -4y -12=0上的抛物线的标准方程为( ) (A )x 2=-12y (B )y 2=8x 或x 2=-6y (C )y 2=16x (D )x 2=-12y 或y 2=16y 4.在△ABC 中“A >B ”是“cos A <cos B ”的( ) (A )充分非必要条件 (B )必要非充分条件4(C )充要条件 (D )既不充分也不必要条件5.已知mn ≠0,则方程mx 2+ny 2=1与mx +ny 2=0在同一坐标系下的图象可能是( )6.在数列{a n }中,已知1n n ca n +=+(c ∈R ),则对于任意正整数n 有( ) (A )a n <a n +1 (B )a n 与a n +1的大小关系和c 有关 (C )a n >a n +1 (D )a n 与a n +1的大小关系和n 有关 二.填空题:7.函数f (x)=12log (1)x -的定义域为 。

高三数学基础练习题

高三数学基础练习题
其中不可能成立的关系式有()
A.1个B.2个C.3个D.4个
6.函数 为奇函数且 的周期为3, ,则 等于()
A.1B.0C.-1D.2
7.函数 的定义域是()
A. B.
C. D.
8.若 ,则 、 的值为()
A. =-5, = 4B. =1. =-2C. =4, =-5D. =-2 , =1
9.已知函数 且 ,满足 ,则 的值是()
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数
4.若 的图象按象量a平移得到 的图象,则向量a等于( )
A. B. C. D.
5.函数 的定义域为R,且 ,已知 为奇函数,当 时, ,那么当 时, 的递减区间是( )
A.充分但非必要条件B.必要但非充分条件
C.充要条件D.既非充分也非必要条件
4.一个年级有12个班,每一个班有50名学生,随机编号为1~50号,为了了解他们的课外兴趣爱好,要求每班的32号学生留下来进行问卷调查,这里运用的方法是()
A.分层抽样B.抽签法C.随机数表法D.系统抽样法
5.若直线x+ 2y+m= 0按向量 = (-1,-2)平移后与圆C:x2+y2+ 2x-4y= 0相切,则实数m的值等于()
13.如图,在四棱锥P-ABCD中,O为CD上的动点,四边形ABCD满足条件______时VP-AOB恒为定值.(写出你认为正确的一个即可)
14.若记号“*”表示求两个实数a与b的算术平均数的运算,即a*b= ,则两边均含有运算符号“*”和“+”,且对于任意三个实数a、b、c都能成立的一个等式是______.
15.设n≥2,若an是(1 +x)n展开式中含x2项的系数,则
等于.

高三数学练习题及答案

高三数学练习题及答案

高三数学练习题及答案一、选择题1. 已知函数f(x) = 2x + 3,那么f(1)的值为()。

A. 1B. 5C. 1D. 52. 若|a| = 5,则a的值为()。

A. 5 或 5B. 0C. 5D. 53. 下列函数中,奇函数是()。

A. y = x^2B. y = x^3C. y = |x|D. y = 1/x4. 在等差数列{an}中,若a1 = 1,a3 = 3,则公差d为()。

A. 1B. 2C. 3D. 45. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()。

A. 实轴上B. 虚轴上C. 原点D. 不在坐标轴上二、填空题1. 已知等差数列{an}的通项公式为an = 3n 2,则第7项的值为______。

2. 若向量a = (2, 3),向量b = (4, 1),则2a 3b = ______。

3. 不等式2x 3 > x + 1的解集为______。

4. 二项式展开式(a + b)^10中,含a^3b^7的项的系数为______。

5. 在三角形ABC中,a = 5, b = 8, sinA = 3/5,则三角形ABC的面积为______。

三、解答题1. 讨论函数f(x) = x^3 3x在区间(∞, +∞)上的单调性。

2. 设函数f(x) = (1/2)^x 2^x,求f(x)的单调递减区间。

3. 已知等差数列{an}的前n项和为Sn = 2n^2 + n,求该数列的通项公式。

4. 在△ABC中,a = 10, b = 15, C = 120°,求sinA和cosA的值。

5. 解三角形ABC,已知a = 8, b = 10, sinB = 3/5。

6. 已知函数f(x) = x^2 + ax + 1在区间[1, 3]上的最小值为3,求实数a的值。

7. 设函数f(x) = x^2 2x + c,讨论函数在区间[0, 3]上的最大值和最小值。

2013届高三数学选择题、填空题专项卷(1)

2013届高三数学选择题、填空题专项卷(1)

选择题、填空题专项卷一一、选择题1.已知全集U=R ,{|23}A x x =-<≤,{|1B x x =<-或4}x >,那么集合B C A U A .{|24x x -≤<} B .{|3x x ≤或4x ≥}C .{|21}x x -≤<-D .{|13}x x -≤≤ 2.函数cos(4)3y x π=+的图象的两条相邻对称轴间的距离为 ( )A .8π B .4π C .2π D .π3.等差数列{}n a 的前n 项和为n S ,若110()m m n a a a m n +++++=<…,则m n S +等于A .2m n + B .m n + C .0 D .14.若是实数x 满足xx og -=2012l 2012,则下列不等关系正确的是 ( )A .21xx >> B .21xx >>C .21x x >>D .21x x >>5.如果以原点为圆心的圆必过双曲线22221(0)x y a b a b -=>>的焦点,而且被双曲线的右准线分成2:1的两段圆弧。

那么该双曲线的离心率为 ( )ABCD6.北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为,旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为( )A .35(米/秒) B.5(米/秒) C.5(米/秒) D .15(米/秒)7.设)(),()(,x f x f e a e x f R a x x ''⋅+=∈-且的导函数是函数是奇函数,若曲线)(x f y =的一条切线的斜率是23,则切点的横坐标为 ( )A .22ln - B .2ln - C .22ln D .2ln8.函数xx y ||lg =的图象大致是( )9.已知yx y x y x 311,2lg 8lg 2lg ,0,0+=+>>则的最小值是 ( )A .2B .22C .4D .3210.已知)(x f 是定义在R 上的奇函数,且)1,0[),()1(∈-=+x x f x f 当时,)61(log ,12)(2f x f x 则-=的值为 ( )A .—6B .—5C .25-D .21-二、填空题11.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则方程)1()(f x f =的解集是 ;12.设曲线()a ax x f -=32在点(1,)a 处的切线与直线210x y -+=平行,则实数a 的值为 .13. 已知1tan 2α=,()2tan 5αβ-=-,那么()tan 2αβ-的值是 ;14.若函数)sin()(ϕω+=x x f (ϕ < 2π)的图象(部分)如图所示,则)(x f 的解析式是 .15.设函数()y f x =在(-∞,+∞)内有定义,对于给定的正数K ,定义函数(),()(),()k f x f x K f x K f x K ≤⎧=⎨>⎩,取函数()2x f x x e -=--,若对任意的(,)x ∈+∞-∞, 恒有()f x =()f x ,则K 的最小值为___________11 12 13 14 15 得分练习一答案一.选择题答案DBCABADDCD二.填空题答案 11.{}3,1,3- 12.31 13.112 14.)(x f = )621sin(π+x 15. 1。

备战2022年高考数学寒假选择题+填空题精准限时训练 1(新高考版)(原卷版)

备战2022年高考数学寒假选择题+填空题精准限时训练 1(新高考版)(原卷版)

D. 13 或 9 44
二、多选题(本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目
要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.)
9.(2021·海南华侨中学高二阶段练习)关于方程 x2 y2 1(m 3 且 m 11) 所对应的图形,下列说 m 3 11 m
,则 A B (

A.x 2 x 2
B.x 2 x 2
C.x 1 x 2
D.x 1 x 2
2.(2021·广东汕头·高三期末)已知 i 为虚数单位,复数 z 满足: x(1 i) 4 3i ,则 z =( )
A. 7 i 2
B. 7 i 2
C. 1 i 2
D. 1 i 2
a1 42 ,则下列结论中正确的是( A. a0 6
n
C. ai 1092 i0
) B. an1 192
n
D. 1iiai 6 i 1
三、填空题:(本题共 4 小题,每小题 5 分,共 20 分,其中第 16 题第一空 2 分,第二空 3 分。)
13.(2021·河北沧州·高三阶段练习)已知点 A(1, 2) , B(x, y)(6 y 2) 都在抛物线 C : y2 2 px( p 0)
A. 4
B. 8
C. 32 3
D.16
5.(2021·内蒙古·赤峰二中高三阶段练习(理))随着网络技术的发达,电子支付变得愈发流行,若电
子支付只包含微信支付和支付宝支付两种.若某群体中的成员只用现金支付的概率为 0.45,既用现金支付也
用非现金支付的概率为 0.15,则不用现金支付的概率为
A.0.3
B
,点
P

高中数学填空选择题专项练习.docx

高中数学填空选择题专项练习.docx

选择填空专项训练(1)答案:1—5 BDAAD6—10 DBACC 11—12 CC..、 8扼刀 6-2^571 … … … 13. ---------------------- (l,e) 14. ----- 15. 16.①③④3 81.已知全集U = R,集合 A = {』|3£工<7},3 = {心一7口+10<0},贝临(A B)=A. (YO ,3)(5,-H ») C . (YO ,3] [5,+OO )B. (YO ,3)[5,-FW ) D. (YO ,3] (5,-K »)记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x 的 值为( ) 3.函数/(x) = tan x H ——-—,XE [X \-—<X < 0^0 <x<—}的图像为()tan X 2 24.曲线y = 2x —V 在x = —l 处的切线方程为A. x+y + 2 = 0B. x+ y-2 = 0C. x- y + 2 = 0 5.已知各项不为0的等差数列{%},满足巫—《+瓦| =。

数列也,}是等比数列,且》7=«7,贝肪少8= ()A. 2B. 4C. 8D. 16Z6.已知复数z x =m + 2z, z 2 = 3 - 4z,若一1■为实数,则实数m 的值为()Z 22. 一次选拔运动员,测得7名选手的身高(单位cm )分布茎叶图如图,18 0 117 ° 3A. 5B. 6C. 7D. 8 D. x- y-2 = 0( )38 3 B. — ---- C. D .——一2 3 2JT7. 将函数y = sin2x + cos2尤的图象向左平移一个单位,所得图像的解析式是48. 若椭圆% + % = 1(。

>人>0)的离心率为业,贝II 双曲线与一也=1的渐近线方程为a b 2 a b( )A. y = 土;工B. y = ±2xC. y = ±4xD. y = ±^x9. 在如图所示的程序框图中,如果输入的〃 =5,那么输出的住()A. 3B. 4C. 5D. 611-设函数f(x)定义在实数集上,/'(2 —x) = y(x),且当X21时,/•3) = lnx,则有(8 A.— 3A. y = cos 2x + sin 2xB. y = cos 2x — sin 2xC. y = sin 2x — cos 2xD. y = cosxsinx S3第9题图10.已知三棱锥的三视图如图所示,A. 16〃B. 8兀第10题图则它的外接球表面积为C. 471D. 271C.</(2)D. /(2)<n^n/2俯视图A. /(|) < /(2) <B. < /(2) <12.已知椭圆—+/ = 1的焦点为h、F2,在长轴A1A2上任取一点M,过M作垂直于A1A24的直线交椭圆于P,则使得尸鸟•明 <0的M点的概率为( )72 2^6 A/6 1A.——B. ---C. ——D.—3 3 3 213.过原点作曲线y = e*的切线,切点坐标为.14.已知直三棱柱ABC-AiBiCi的顶点都在球面上,若AAi = 2, BC = 1, ZBAC = 150° ,则该球的体积是.—2x+y—2^015.已知平面区域2x+y—6W0内有一个圆,向该区域内随机投点,将点落在圆内的概率y^O最大时的圆记为G)M,此时的概率P为.16.下面给出的四个命题中:①对任意的neN * ,点R (n, a n )都在直线y=2x+l上是数列{%}为等差数列的充分不必要条件;②“m = —2”是直线(m + 2) x+my + l = 0 与“直线(m —2) x4- (m + 2) y—3 = 0 相互垂直”的必要不充分条件;③设圆X2+y2 +Dx+Ey + F = 0 ( D2-\~E2—4F>0)与坐标轴有4个交点A (也,0),B ( x2, 0),C (0, y1 ),D (0, y2 ),则有X]互一 Vi y2 =0TT TT④将函数y=cos2x的图象向右平移一个单位,得到函数y=sin (2x——)的图象.3 6其中是真命题的有.(填序号)选择填空专项训练(2)答案:1—6 CCDACA 7—12 DBDABC13、3x&R,2x~ +1<0; 14、-- 15、b = ^6(或写成c= 3,2 + 把)---------------- 2 ------------------- ---------- 216、(0«)D(4,4W)41.复数出(i 是虚数单位)的虚部为( ) 1- ZA. -1B. 0C. 1D. 26. 7. x > 0,y > 0, - 表示的平面区域是一个三角形,则实数s 的取值范围是( )y + .¥ < 5, y + 2x < 4A. 0 < 5 < 2^s > 4B. 0 < 5 < 2C. s > 4D. 5 < 2或s > 4 如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三若不等式组!8. 9. A. 11 B.—2 1 C. - D.3如果执行右侧的程序框图,那么输出的S 的值为(A. 2450B. 2550C. 2500D. 26527T 3勿对于函数/*(尤)=cos (a + ')sin (项+工),给出下列四个结论:设集合A = {x\-2-a<x<a,a> 0},命题7:1 G A,命题q : 2 e A 若p v 0为真命题,PW 为假命题,则a 的取值范围是A. 0<。

高考数学选择、填空题专项汇编题(共40套)[附答案]

高考数学选择、填空题专项汇编题(共40套)[附答案]

三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。

(完整版)高三数学选择、填空题专项训练(共40套)[附答案]

(完整版)高三数学选择、填空题专项训练(共40套)[附答案]

三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556 B.-6556 C.-6516 D. 6516 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34. 函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2 B.22 C.4 D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒)12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒) 12 12.4 12.8 13 12.2 12.8 12.3 12.5三基小题训练二1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量 OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( ) A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠TEF DO C B A8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132- 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________. 14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

高三数学基础训练试卷

高三数学基础训练试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴是()A. x = 2B. x = 1C. x = 3D. x = 03. 若log2(3x - 1) = 3,则x的值为()A. 2B. 3C. 4D. 54. 下列函数中,单调递增的函数是()A. y = 2x - 1B. y = -x^2 + 1C. y = x^3D. y = 1/x5. 在三角形ABC中,若a=3,b=4,c=5,则sinA的值为()A. 3/5B. 4/5C. 5/3D. 5/46. 已知复数z = 1 + i,则|z|^2的值为()A. 2B. 3C. 4D. 57. 下列方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 4 = 0D. x^2 - 1 = 08. 若等差数列{an}的前n项和为Sn,且a1=1,S5=15,则公差d的值为()A. 2B. 3C. 4D. 59. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)10. 已知等比数列{an}的前n项和为Sn,且a1=1,S4=15,则公比q的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x) = 2x - 3,则f(-1)的值为______。

12. 在等差数列{an}中,若a1=2,公差d=3,则第10项an的值为______。

13. 已知复数z = 3 - 4i,则|z|^2的值为______。

14. 在三角形ABC中,若∠A=60°,a=5,b=8,则c的值为______。

15. 若等比数列{an}的前n项和为Sn,且a1=1,S5=31,则公比q的值为______。

高三复习数学试题(附答案)

高三复习数学试题(附答案)
距离.

152o 122o
B

32 o
A
C
18.(本小题满分 14 分) 在 ABC 中, a, b, c 分别为 A, B, C 的对边,已知 a ,b,c 成等比数列, 且 a2 c2 ac bc . 求: (1)A 的大小; (2) b sin B 的值 .
c
19.(本小题满分 14 分) 某厂用甲、乙两种原料生产 A 、 B 两种产品,已知生产 1t A 产品, 1t B 产 品分别需要的甲、 乙原料数, 可获得的利润数及该厂现有原料数如下表所示. 问: 在现有原料下,
题分数 )
11.(文科选做) 等差数列 { an} 中,已知 a1 a10 12 ,那么 S10 的值是 __________.
(理科选做) 若数列 an 的前 n 项和 Sn n2 10n(n 1,2,3, ) ,则此数列的通项公式为
;数列 nan 中数值最小的项是第
项.
12. 在 ABC 中, a 3 3 , b 2 , C 150 ,则 c __________ .
高三复习数学试题
时间: 120 分钟
满分: 150 分
【一】 选择题 (本大题共 10 小题,每小题 5 分,共 50 分)
1.在 ABC 中 , 已知 a 4, b 4 3, B 600 ,则角 A 的度数为


A . 30 0
B. 45 0
C. 60 0
D. 900
2.在数列 { an} 中, a1 =1, an 1 an 2 ,则 a51 的值为


A . 99
B. 49
C.101
D. 102
4
3.已知 x 0 ,函数 y

高考数学填空选择题必考知识点强化练习及解答题答案

高考数学填空选择题必考知识点强化练习及解答题答案

ab
线的一条渐近线与抛物线的准线的交点坐标为
双曲线 x2 y2 1上,若 | PF1 | 9 ,则 | PF2 | 17 (复习双曲线定义)
16 20
6) .设点 F(0, 3\2),,,动圆 P 经过点 F 且和直线 y=-3\2 相切, 则动圆的圆心 P 的轨迹 W 的方程为 ( )
S2 A. 11 B. 5 C. 11D. 8
3)设数列 an 的前 n 项和为( n N ), 关于数列 an 有下列三个命题:
①若 a n an 1 ( n N) ,则 a n 既是等差数列又是等比数列;
②若 Sn a n 2 b n a、b R ,则 an 是等差数列;
③若 Sn 1
1
n
,则
an 是等比数列。这些命题中,真命题的序号是
R} ,则 M
3.框图 1)执行如图所示的程序框图,则输出的 λ是 -2 .
(eU N )
. 0,1
开始
S 1, i 1
i①

S S 2i i i1

输出 S
结束
开始
输入 a, b
ab

Sb

Sa
输出 S
结束
B
( A) 4 ( B) 5 ( C) 6 (D) 7
2). 阅读右侧程序框图, 为使输出的数据为 31,则①处应填的数字为
2
的面积 S=4- 2
2
x 4
dx
.
0
5. 向量
1)已知两个单位向量 a , b 的夹角为 60°, c = t a + (1- t ) b ,若 b ·c = 0,则 t =___2_____
因为 |a |= | b |= 1, a ·b= 12,所以

高三数学 选择题填空题训练(含解析)-人教版高三全册数学试题

高三数学 选择题填空题训练(含解析)-人教版高三全册数学试题

高三数学 选择题填空题训练(含解析)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1. 设集合{2,04,},{2,}n A x x n n B x x n n ==<<∈==∈Z Z ,则AB 为A.{1,2,4,8,16}B.{1,2,4,8}C. {2,4,8}D.{2,4}2. 关于复数2(1)1i z i+=-,下列说法中正确的是A. 在复平面内复数z 对应的点在第一象限B. 复数z 的共轭复数1z i =-C. 若复数1z z b =+()b ∈R 为纯虚数,则1b =D. 设,a b 为复数z 的实部和虚部,则点(,)a b 在以原点为圆心,半径为1的圆上3. 下列函数一定是偶函数的是A. cos(sin )y x =B. sin cos y x x =C. ln(sin )y x =D. sin xy e=4. 已知等比数列}{n a 的前n 项和为n S ,且满足8417S S =,则公比q = A.12 B. 12± C.2 D. 2±5. 执行如图所示程序框图,输出的x 值为A.11B. 13C.15D. 46.二项式5的展开式中常数项为A. 5B.10C.20-D. 407. 设函数()|sin(2)|3f x x π=+,则下列关于函数()f x 的说法中正确的是A. ()f x 是偶函数B. ()f x 最小正周期为πC. ()f x 图象关于点(,0)6π-对称 D. ()f x 在区间7[,]312ππ上是增函数 8. 某几何体的三视图如图所示,则这个几何体的体积为A.4B.203C.263D.89. 如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC 的夹角为30︒,且3||2,||,||232OA OB OC ===(,)OC OA OB λμλμ=+∈R ,则A. 4,2λμ==B. 83,32λμ==C. 42,3λμ==D. 34,23λμ==10. 若数列{}n a 满足规律:123212......n n a a a a a -><><><,则称数列{}n a 为余弦数列,现将1,2,3,4,5排列成一个余弦数列的排法种数为 A. 12B. 14C. 16D. 1811. 已知双曲线12222=-by a x (0,0)a b >>以及双曲线22221y x a b -=(0,0)a b >>的渐近线将第一象限三等分,则双曲线12222=-by a x 的离心率为A. 2C. 212. 已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为A.711B. 611 C. 511D. 411第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 设,x y 满足约束条件00+2y y x x y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a=______.14. 函数y =(1,1)-处的切线与x 轴所围成区域的面积为________. 15. 给出下列5种说法:①在频率分布直方图中,众数左边和右边的直方图的面积相等;②标准差越小, 样本数据的波动也越小;③回归分析就是研究两个相关事件的独立性;④在回归分 析中,预报变量是由解释变量和随机误差共同确定的;⑤相关指数2R 是用来刻画回 归效果的,2R 的值越大,说明残差平方和越小,回归模型的拟合效果越好.其中说法正确的是____________(请将正确说法的序号写在横线上).16. 函数()f x ()x ∈R 满足(1)1f =,1()2f x '<,则不等式221()22x f x <+的解集为______.一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1. 不等式组36020x y x y -+⎧⎨-+<⎩≥表示的平面区域是侧视图俯视图AB C O2. 已知复数z a bi =+(,0)a b R ab ∈≠且,且(12)z i -为实数,则a b= A. 3B. 2C.12D.133. 已知3cos 5α=,则2cos 2sin αα+的值为 A. 925 B. 1825C. 2325D. 34254. 执行如图所示的程序框图,若输出的5k =,则输入的整数p 的最大值为A. 7B. 15C. 31D. 635. 已知,,a b c 是平面向量,下列命题中真命题的个数是① ()()⋅⋅⋅⋅a b c =a b c② ||||||⋅= a b a b③ 22||()+=+a b a b ④ ⋅⋅⇒=a b =b c a c A. 1B. 2C. 3D. 46. 已知函数()sin cos fx x a x =+的图像关于直线53xπ=对称,则实数a 的值为A.B. D.27. 一个棱长都为a 的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为A. 273a πB. 22a πC. 2114a πD. 243a π8. 已知数列{}n a 满足10a =,11n n a a +=+,则13a =A. 143B. 156C. 168D. 1959. 在Excel 中产生[0,1]区间上均匀随机数的函数为“rand ( )”,在用计算机模拟估计函数x y sin =的图像、直线2π=x 和x 轴在区间[0,]2π上部分围成的图形面积时,随机点11(,)a b 与该区域内的点),(b a 的坐标变换公式为 A. 11,2a ab b π=+= B. 112(0.5),2(0.5)a a b b =-=-C. [0,],[0,1]2a b π∈∈D. 11,2a a b b π== 10. 已知抛物线28y x =的焦点为F ,直线(2)y k x =-与此抛物线相交于,P Q 两点,则11||||FP FQ += A. 12B. 1C. 2D. 411. 如图所示是一个几何体的三视图,则该几何体的体积为A. 162π+B. 82π+C. 16π+D. 8π+12. 已知两条直线1l y a =:和21821l y a =+: (其中0a >),1l 与函数4log y x =的图像从左至右相交于点A ,B ,2l 与函数4log y x =的图像从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为,m n .当a 变化时,nm的最小值为 A. 4B. 16C. 112D. 102第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.1)x dx =⎰____________.14. 用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数字夹在两个奇数字之间的四位数的个数为_____________.15. 双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 和2F ,左、右顶点分别为1A 和2A ,过焦点2F 与x 轴垂直的直线和双曲线的一个交点为P ,若1PA 是12F F 和12A F 的等比中项,则该双曲线的离心率为.16. 设集合224{(,)|(3)(4)}5A x y x y =-+-=,2216{(,)|(3)(4)}5B x y x y =-+-=, {(,)|2|3||4|}C x y x y λ=-+-=,若()A B C ≠∅,则实数λ的取值X 围是____________.正视图侧视图俯视图简答与提示:【试题解析】C 由题可知{2,4,8}A =,{}B =偶数,因此 {2,4,8}A B =, 故选C.1. . 【试题解析】C 由题可知2(1)2111i iz i i i+===-+--,若z b +()b ∈R 为纯虚数, 则1b =,故选C.2. 【试题解析】A 由偶函数定义可知,函数cos(sin )y x =中,x 的定义域关于原点 对称且cos(sin())cos(sin )x x -=,故选A.3. 【试题解析】D 由题可知1q ≠,则818484414(1)11117(1)11a q S q qq a q S qq---===+=---,得 416q =,因此2q =±,故选D.4. 【试题解析】B 由程序框图可知:02x =,13x =,25x =,36x =,47x =,59x =,610x =,711x =,813x =而后输出x 值为13,故选B.5. 【试题解析】D 由题可知,展开式中的常数项为2325(40C =,故选D.6. 【试题解析】D 由三角函数的性质可知:()|sin(2)|3f x x π=+的单调区间232k x k ππππ≤+≤+,则26212k k x ππππ-≤≤+()k ∈Z ,当1k =时, 7[,]312x ππ∈,故选D.7.【试题解析】B 由三视图可知,该几何体可分为一个三棱锥和一个四棱锥,则12111202242223323V V V =+=⨯⨯⨯+⨯⨯⨯⨯=,故选B. 8. 【命题意图】【试题解析】C设与,OA OB 同方向的单位向量分别为,ab ,依题意有42OC a b =+,又2OA a =,32OB b =,则423OC OA OB =+,所以42,3λμ==. 故选C.9. 【命题意图】【试题解析】C ①将3,4,5排在中间和两侧,再用1,2插两缝共323212A A =种; ②将2,4,5排列,则结果必为21435; 将2,5,4排列,则结果必为21534; 将4,5,2排列,则结果必为43512; 将5,4,2排列,则结果必为53412. 故选C. 10. 【命题意图】【试题解析】A由题可知,双曲线渐近线的倾角为30︒或60︒,则bk a ==或.则2c e a ====,故选A. 11. 【命题意图】本小题通过具体的立体几何考查学生的空间想象能力与运算求解能力,着重考查几何体中点线面的关系问题,是一道较难的试题.【试题解析】B 由题意可知,12,A A 为半径为2的球的 球心,12,B B 为半径为3的球的球心,则124A A =, 126B B =,取12A A 的中点C ,12B B 的中点D ,则DC =r ,则OC ==611r =. 故选B.二、填空题(本大题包括4小题,每小题5分,共20分) 13. 214.1315.②④⑤16. (,1)(1,)x ∈-∞-+∞简答与提示:12. 【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且 可以使一条斜率为3-的直线经过该点时取最大值,因此点(2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0),因此2a =.13. 【命题意图】本小题通过积分问题考查学生的运算求解能力,着重考查积分在曲边图形面积求取上的应用,是一道中档难度试题.【试题解析】由y ='y =,112x y =-'=-,即切线方程为11(1)2y x -=-+, 即为1122y x =-+,将y =2x y =-,将1122y x =-+改写成12x y =- 因此1232100111[(12)()]()|11333S y y dy y y y =---=-+=-+=⎰. 14. 【命题意】本小题通过统计学基本定义问题考查学生的统计学的思想,是一道中档难度的综合试题.【试题解析】由统计学的相关定义可知,②④⑤的说法正确.15. 【命题意图】本小题以导数与函数图像的基本关系为载体,考查数形结合的数学思想,是一道较难综合试题.【试题解析】利用换元法,将2x 换元成t ,则原式化为1()22t f t <+, 当1t=时,()1f t =,且1122t +=,又由1()2f t '<, 可知当1t >时,1()22t f t <+;当1t <时,1()22t f t >+. 故1()22t f t <+的解集为1t >,即21x >,因此(,1)(1,)x ∈-∞-+∞.一、选择题(本大题包括12小题,每小题5分,共60分)1.B 2 .C 3. A 4. B 5.A 6.B 7.A 8.C 9.D 10.A 11.B 12.COA 2B 1B 2A 1CD简答与提示:1. 【命题意图】.【试题解析】B 360x y -+≥表示直线360x y -+=以及该直线下方的区域,20x y -+<表示直线20x y -+=的上方区域,故选B.2. 【命题意图】.【试题解析】C 由(12)z i ⋅-为实数,且0z ≠,所以可知(12)z k i =+,0k ≠,则122a kb k ==,故选C. 3. 【命题意图】.【试题解析】A 由3cos 5α=,得22229cos 2sin 2cos 11cos cos 25ααααα+=-+-==,故选A. 4. 【命题意图】.【试题解析】B 由程序框图可知:①0S =,1k =;②1S =,2k =;③3S =,3k =;④7S =,4k =;⑤15S =,5k =. 第⑤步后k 输出,此时15S P =≥,则P 的最大值为15,故选B.5. 【命题意图】本小题主要考查平面向量的定义与基本性质,特别是对平面向量运算律的全面考查,另外本题也对考生的分析判断能力进行考查.【试题解析】A 由平面向量的基础知识可知①②④均不正确,只有③正确, 故选A. 6. 【命题意图】【试题解析】B由函数()sin cos f x x a x =+的图像关于直线53x π=对称,可知5()3f π=a =. 故选B.7. 【命题意图】【试题解析】A 如图:设1O 、2O 为棱柱两底面的中心,球心O 为12O O 的中点. 又直三棱柱的棱长为a ,可知112OO a =,1AO =,所以2222211712a R OA OO AO ==+=,因此该直三棱柱外接球的表面积为2227744123a S R a πππ==⨯=,故选A.8. 【命题意图】【试题解析】C由11n n a a +=+,可知211111)n n a a ++=++=,1=,故数列是公差为1的等差数列,1213==,则13168a =. 故选C. 9. 【命题意图】【试题解析】D. 由于[0,]2a π∈, [0,1]b ∈,而1[0,1]a ∈,1[0,1]b ∈,所以坐标变换公式为12a a π=,1b b =. 故选D.10. 【命题意图】求.【试题解析】A设11(,)P x y ,22(,)Q x y ,由题意可知,1||2PF x =+,2||2QF x =+,则1212121241111||||222()4x x FP FQ x x x x x x +++=+=+++++, 联立直线与抛物线方程消去y 得,2222(48)40k x k x k -++=,可知124x x =,故121212121244111||||2()42()82x x x x FP FQ x x x x x x +++++===+++++. 故选A. 11. 【命题意图】【试题解析】B 由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此21241282V ππ=⨯⨯+⨯⨯=+. 故选B.12. 【命题意图】【试题解析】C 设(,),(,),(,),(,)A A B B C C D D A x y B x y C x y D x y ,则4a A x -=,4aB x =,18214a C x -+=,18214a D x +=,则182118214444aa aa n m+--+-=-,分子与分母同乘以18214a a ++ 可得183********a a a a nm++++==,又363622*********a a a a +=++-≥=++,当且仅当216a +=,即52a =时,“=”成立,所以n m的最小值为112. 故选C.二、填空题(本大题包括4小题,每小题5分,共20分)13.7614. 816. 4] 简答与提示:13. 【命题意图】【试题解析】113122221217()()32326x x dx x x +=+=+=⎰. 14. 【命题意图】【试题解析】2122228A C A ⋅⋅=种.15. 【命题意图】【试题解析】由题意可知211212||||||PA F F A F =⨯,即222()()2()b a c c a c a++=+, 经化简可得22a b =,则c e a ====. 16. 【命题意图】本小题主要考查曲线与方程的实际应用问题,对学生数形结合与分类讨论思想的应用作出较高要求.【试题解析】由题可知,集合A 表示圆224(3)(4)5x y -+-=上点的集合,集合B 表示圆2216(3)(4)5x y -+-=上点的集合,集合C 表示曲线2|3||4|x y λ-+-=上点的集合,此三集合所表示的曲线的中心都在(3,4)处,集合、表示圆,集合C 则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得λ的取值X围是[4]5.OADO 1O 2。

高三数学选择填空题训练(1)

高三数学选择填空题训练(1)

高三数学选择填空题训练(1)高三数学选择填空题训练(1)一.填空题1.已知定义域在[-1,1]上的函数y=f(_)的值域为[-2,0],则函数y=f(cos)的值域为A.[-1,1] B.[―3,―1]C.[-2,0] D.不能确定2.已知函数y=f(_)是一个以4为最小正周期的奇函数,则f(2)=A.0 B.-4 C.4 D.不能确定3.如果采用分层抽样法从个体数为N的总体中,抽取一个容量为n的样本,那么每个个体被抽到的概率等于( )A. B. C.D.4.首项系数为1的二次函数y=f(_)在_=1处的切线与_轴平行,则A.f(arcsin)_gt;f(arcsin)B.f(arcsin)=f(arcsin)C.f(arcsin)_gt;f(arcsin) D.f(arcsin)与f(arcsin)的大小不能确定5.关于_的不等式a_-b_gt;0的解集为(1,+∞),则关于_的不等式_gt;0的解集为A.(-1,2) B.(-∞,-1)∪(2,+∞) C.(1,2)D.(―∞,―2)∪(1,+∞)6.若O为⊿ABC的内心,且满足(-)__8226;(+-2)=0A.等腰三角形 B.正三角形 C.直角三角形D.以上都不对7.设有如下三个命题甲:m∩l=A, , m.lb;乙:直线m.l中至少有一条与平面b相交;丙:平面a与平面b相交.当甲成立时,乙是丙的条件.A.充分而不必要B.必要而不充分 C.充分必要 D.既不充分又不必要8.⊿ABC中,3sinA+4cosB=6,3cosA+4sinB=1,则∠C的大小为A.B.C.或 D.或9.等体积的球和正方体,它们的表面积的大小关系是A.S球_gt;S正方体 B.S球_lt;S正方体 C.S球=S正方体 D.S球=2S正方体10.若连结双曲线-=1与其共轭双曲线的四个顶点构成面积为S1的四边形,连结四个焦点构成面积为S2的四边形,则的最大值为A.4 B.2C. D.二.填空题11.函数的最小值是.12.某中学高一年级400人,高二年级320人,高三年级280人,若每人被抽取的概率为0.2,问该中学抽取一个容量为n的样本,则n=.13.若指数函数f(_)=a_ (_∈R)的部分对应值如下表:_-22f(_)0.69411.44则不等式(_-1)_lt;0的解集为.14.若两个向量与的夹角为q,则称向量〝_〞为〝向量积〞,其长度_=__8226;__8226;sinq.今已知=1,=5,__8226;=-4,则_= .15.已知点P(2,-3),Q(3,2),直线a_+y+2=0与线段PQ相交,则实数a的取值范围是: .16.若在所给的条件下,数列{an}的每一项的值都能唯一确定,则称该数列是〝确定的〞,在下列条件下,有哪些数列是〝确定的〞?请把对应的序号填在横线上.①{an}是等差数列,S1=a,S2=b(这里的Sn是{an}的前n项的和,a,b为实数,下同);②{an}是等差数列,S1=a,S10=b;③{an}是等比数列,S1=a,S2=b;④{an}是等比数列,S1=a,S3=b;⑤{an}满足a2n+2=a2n+a,a2n+1=a2n-1+b,(n∈N_), a1=cC A B A B ACABC11:-2;12 20013 (0,1)∪(1,2) 14.3 15.[-,]16.①②③。

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.(2015•深圳校级模拟)用反证法证明命题“设a ,b 为实数,则方程x 2+ax+b=0至少有一个实根”时,要做的假设是( )A .方程x 2+ax+b=0没有实根B .方程x 2+ax+b=0至多有一个实根C .方程x 2+ax+b=0至多有两个实根D .方程x 2+ax+b=0恰好有两个实根2.已知,且,则的最小值为( )A .5B .7C .8D .9二、填空题设S n 是数列{a n }的前n 项和,a 1=﹣1,a n+1=S n S n+1,则S n =_____.三、解答题1.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天? (2)若第一次喷洒2个单位的净化剂,6天后再喷洒a ()个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).2.如图所示,已知两个正方形ABCD 和DCEF 不在同一平面内,M,N 分别为AB,DF 的中点.(1)若CD=2,平面ABCD ⊥平面DCEF,求MN 的长; (2)用反证法证明:直线ME 与BN 是两条异面直线.3.已知函数f(x)的导函数为f ′(x),且对任意x >0,都有f ′(x)>.(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;(Ⅱ)设x 1,x 2∈(0,+∞),证明:f(x 1)+f(x 2)<f(x 1+x 2);(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.全国高三高中数学专题试卷答案及解析一、选择题1.(2015•深圳校级模拟)用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根【答案】A【解析】直接利用命题的否定写出假设即可.解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是方程x2+ax+b=0没有实根.故选:A.【考点】反证法与放缩法.2.已知,且,则的最小值为()A.5B.7C.8D.9【答案】D【解析】由题意得,,所以,当且仅当时,即等号是成立的,故选D.【考点】基本不等式的应用.【方法点晴】本题主要考查了利用基本不等式求解最值问题,属于中档试题,此类问题解答中要注意基本不等式的成立的条件和等号成立的条件,灵活应用,着重考查了构造思想的应用,本题的解答中,由,两边同除以,得,即可化为,利用基本不是求解最值,解答中注意灵活运用条件.二、填空题设Sn 是数列{an}的前n项和,a1=﹣1,an+1=SnSn+1,则Sn=_____.【答案】【解析】因为,所以,所以,即,又,即,所以数列是首项和公差都为的等差数列,所以,所以.【考点】数列的递推关系式及等差数列的通项公式.【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到,,确定数列是首项和公差都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方法的积累与总结,属于中档试题.三、解答题1.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).【答案】(1)可达8天;(2)a的最小值为.【解析】(1)根据题中条件每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系已经给出,则易得一次喷洒4个单位的净化剂时的函数关系式:,这样就得到一个分段函数,对分段函数的处理常用的原则:先分开,现合并,解两个不等式即可求解; (2)中若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,根据题意从第6天开始浓度来源与两方面,这是题中的难点,前面留下的为:,后面新增的为:,所得化简即可得到:,结合基本不等式知识求出最小值,最后解一个不等式:,即可求解.试题解析:(1)因为一次喷洒4个单位的净化剂,所以浓度则当时,由,解得,所以此时. 3分当时,由解得,所以此时.综合得,若一次投放4个单位的制剂,则有效净化时间可达8天. 7分(2)设从第一次喷洒起,经x()天,浓度. 10分因为,而,所以,故当且仅当时,y有最小值为.令,解得,所以a的最小值为. 14分【考点】1.实际应用问题;2.分段函数;3.基本不等式.2.如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;(2)用反证法证明:直线ME与BN是两条异面直线.【答案】(1)(2)见解析【解析】(1)解:取CD的中点G,连结MG,NG.因为四边形ABCD,DCEF为正方形,且边长为2,所以MG⊥CD,MG=2,NG=.因为平面ABCD⊥平面DCEF,所以MG⊥平面DCEF.可得MG⊥NG.所以MN==.(2)证明:假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN.由题意知两正方形不共面,故AB⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF,而EN为平面MBEN与平面DCEF的交线,所以AB ∥EN.又AB ∥CD ∥EF,所以EN ∥EF, 这与EN∩EF=E 矛盾,故假设不成立. 所以ME 与BN 不共面,它们是异面直线.3.已知函数f(x)的导函数为f ′(x),且对任意x >0,都有f ′(x)>.(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;(Ⅱ)设x 1,x 2∈(0,+∞),证明:f(x 1)+f(x 2)<f(x 1+x 2);(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论. 【答案】(Ⅰ)F(x)=在(0,+∞)上是增函数;(Ⅱ)f(x 1)+f(x 2)<f(x 1+x 2);(Ⅲ)f(x 1)+f(x 2)+…+f(x n )<f(x 1+x 2+…+x n ).【解析】(Ⅰ)判断F(x)的单调性,则需对F(x)求导,得F′(x)=,∵f ′(x)>,x >0,则xf ′(x)-f(x)>0,即F′(x)>0,F(x)=在(0,+∞)上是增函数.(Ⅱ)要证明f(x 1)+f(x 2)<f(x 1+x 2),可以从第(Ⅰ)的结论入手,∵x 1>0,x 2>0,∴0<x 1<x 1+x 2,F(x)=在(0,+∞)上是增函数,则F(x 1)<F(x 1+x 2),即<,而x 1>0,所以f(x 1)<f(x 1+x 2),同理f(x 2)<f(x 1+x 2),两式相加,得f(x 1)+f(x 2)<f(x 1+x 2),得证.(Ⅲ)(Ⅱ)中结论的推广形式为:设x 1,x 2,…,x n ∈(0,+∞),其中n≥2,则f(x 1)+f(x 2)+…+f(x n )<f(x 1+x 2+…+x n ).证明的方法同(Ⅱ)的证明,∵x 1>0,x 2>0,…,x n >0,∴0<x 1<x 1+x 2+…+x n .F(x)=在(0,+∞)上是增函数,F(x 1)<F(x 1+x 2+…+x n ),即<,而x 1>0,所以f(x 1)<f(x 1+x 2+…+x n ),同理f(x 2)<f(x 1+x 2+…+x n ),……f(x n )<f(x 1+x 2+…+x n ),以上n 个不等式相加,得f(x 1)+f(x 2)+…+f(x n )<f(x 1+x 2+…+x n ),得证.试题解析:(Ⅰ)对F(x)求导数,得F′(x)=.∵f ′(x)>,x >0,∴xf ′(x)>f(x),即xf ′(x)-f(x)>0,∴F′(x)>0. 故F(x)=在(0,+∞)上是增函数.(Ⅱ)∵x 1>0,x 2>0,∴0<x 1<x 1+x 2. 由(Ⅰ),知F(x)=在(0,+∞)上是增函数, ∴F(x 1)<F(x 1+x 2),即<.∵x 1>0,∴f(x 1)<f(x 1+x 2). 同理可得f(x 2)<f(x 1+x 2).以上两式相加,得f(x 1)+f(x 2)<f(x 1+x 2). (Ⅲ)(Ⅱ)中结论的推广形式为:设x 1,x 2,…,x n ∈(0,+∞),其中n≥2,则f(x 1)+f(x 2)+…+f(x n )<f(x 1+x 2+…+x n ). ∵x 1>0,x 2>0,…,x n >0, ∴0<x 1<x 1+x 2+…+x n . 由(Ⅰ),知F(x)=在(0,+∞)上是增函数,∴F(x 1)<F(x 1+x 2+…+x n ),即<.∵x 1>0,∴f(x 1)<f(x 1+x 2+…+x n ).同理可得 f(x 2)<f(x 1+x 2+…+x n ), f(x 3)<f(x 1+x 2+…+x n ),…… f(x n )<f(x 1+x 2+…+x n ).以上n 个不等式相加,得f(x 1)+f(x 2)+…+f(x n )<f(x 1+x 2+…+x n ). 【考点】1.利用导数求单调性;2.利用函数单调性证明不等式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六盘水第二实验中学2013届高三复习数学选择题和
填空题专项训练一
2007年普通高等学校招生全国统一考试(宁夏卷)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >
D.:p x ⌝∀∈R ,sin 1x >
2.已知平面向量(11)(11)==-,,,a b ,则向量13
22
-=a b ( ) A.(21)--,
B.(21)-,
C.(1
0)-,
D.(1
2)-,
3.函数πsin 23y x ⎛⎫=- ⎪⎝
⎭在区间ππ2⎡⎤-⎢⎥⎣⎦
,的简图是( )
4.已知{}n a 是等差数列,1010a =,其前10
其公差d =( ) A.23
-
B.13
-
C.
13
D.
23
5.如果执行右面的程序框图,那么输出的S =x
A.
B.
C.
A.2450 B.2500
C.2550 D.2652
6.已知抛物线22(0)y px p =>的焦点为F , 点111222()()P x y P x y ,,,,333()P x y ,在抛物线上, 且2132x x x =+, 则有( ) A.123FP FP FP +=
B.2
2
2
123FP FP FP +=
C.2132FP FP FP =+ D.22
1
3FP FP FP =· 7.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd
+的
最小值是( ) A.0 B.1 C.2 D.4 8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )
A.
3
4000cm 3
B.3
8000cm 3
C.3
2000cm
D.34000cm 9.

c o s2π2s i n 4αα=-

⎫- ⎪

⎭则c o s s i n αα+的值
为( )
A.2
-
B.12
-
C.
12
10.曲线12
e x y =在点2
(4e ),处的切线与坐标轴所围三角形的面积为( ) A.
29e 2
B.2
4e
C.2
2e
D.2
e
11.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表
正视图
侧视图
俯视图
123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )
A.312s s s >> B.213s s s >> C.123s s s >>
D.231s s s >>
12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =( )
2:2
二、填空题:本大题共4小题,每小题5分.
13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .
14.设函数(1)()
()x x a f x x ++=
为奇函数,则a = .
15.i 是虚数单位,51034i
i
-+=+ .(用a bi +的形式表示,a b ∈R ,)
16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答)。

相关文档
最新文档