2-3-2两个变量的线性相关1
高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3
2.3.1 & 2.3.2 变量间的相关关系 两个变量的线性相关习课本P73~78,思考并完成以下问题预(1)相关关系是函数关系吗?(2)什么是正相关、负相关?与散点图有什么关系?(3)回归直线方程是什么?如何求回归系数?(4)如何判断两个变量之间是否具备相关关系?[新知初探]1.两个变量的关系分类函数关系相关关系 特征两变量关系确定两变量关系带有随机性2.散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. 3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.4.最小二乘法设x ,Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx ,当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q =i =1n(y i -a-bx i)2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.5.回归直线方程的系数计算公式回归直线方程回归系数系数a^的计算公式方程或公式y^=a^+b^x b^=∑i=1nxiyi-n x-y-∑i=1nx2i-n x2a^=y-b^x-上方加记号“^ ”的意义区分y的估计值y^与实际值ya,b上方加“^ ”表示由观察值按最小二乘法求得的估计值[小试身手]1.下列命题正确的是( )①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A.①③④B.②③④C.③④⑤D.②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.v,u;对变量1,得散点图图10),…,1,2=i)(iy,ix(有观测数据y,x.对变量2)(由这两个散点图可以判断2.,得散点图图10),…,1,2=i)(iv,iu(有观测数据A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关.80,当施肥量为250+x 5=y ^归方程为的线性回(kg)y 与水稻产量(kg)x .若施肥量3kg 时,预计水稻产量约为________kg..650(kg)=250+5×80=y ^代入回归方程可得其预测值80=x 解析:把 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8y 30 40 60 50 70若已求得它们的回直线的方程为______________________.,5=2+4+5+6+85=x 解析:由题意可知 y50.=30+40+60+50+705=即样本中心为(5,50).,a ^+x 6.5=y ^设回归直线方程为 ,)y ,x (回归直线过样本中心∵ ,7.51=a ^,即a ^+6.5×5=50∴ 17.5+x 6.5=y ^回归直线方程为∴ 17.5+x 6.5=y ^答案:相关关系的判断[典例] (1) ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. (2)某个男孩的年龄与身高的统计数据如下表所示.年龄x (岁)123456身高y (cm)78 87 98 108 115 120①画出散点图;②判断y 与x 是否具有线性相关关系.[解析] (1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;在③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y 与x 具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④求回归方程[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985①画出散点图;②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:秒/转14,所以机器的运转速度应控制在≤14.9x ,解得≤1067-x 5170得≤10y 由③内.求回归直线方程的步骤.)数据一般由题目给出)(n ,…,1,2=i )(i y ,i x (收集样本数据,设为(1) (2)作出散点图,确定x ,y 具有线性相关关系..i y i x ,2i x ,i y ,i x 把数据制成表格(3).iy i ∑i =1nx ,2i ∑i =1n x ,y ,x 计算(4) ⎩⎪⎨⎪⎧b ^=∑i =1nxiyi -n x y ∑i =1n x2i -n x 2,a ^=y -b ^ x .,公式为a ^,b ^代入公式计算(5).a ^+x b ^=y ^写出回归直线方程(6) [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.,52=1+2+3+44=x (2) y ,134=1+3+4+54=∑i=14x 39.=20+12+6+1=i y i ∑i =14x 2i ,30=16+9+4+1= b^,1310=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=a^,0=52×1310-134= .为所求的回归直线方程x 1310=y ^所以 利用线性回归方程对总体进行估计[典例x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:,3.5=2.5+3+4+4.54=y ,4.5=3+4+5+64=x (2) ∑i=14x ,66.5=6×4.5+5×4+4×3+3×2.5=i y i ∑i=14x 2i ,86=26+25+24+23= ∑i =14xiyi -4xy∑i =14x2i -4x 2=b ^所以 ,0.7=66.5-4×4.5×3.586-4×4.52=a ^0.35.=0.7×4.5-3.5=x b ^-y = 0.35.+x 0.7=y ^所以所求的线性回归方程为 ,)吨标准煤70.35(=0.35+0.7×100=y ^时,100=x 当(3) 90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:it iy it 2it i y i1 1 5 1 52 2 6 4 123 3 7 9 214 4 8 16 325 5 10 25 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1n y i =365=7.2.又∑i =1nt2i -n t -2=55-5×32=10,i =1n t i y i -n t-y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( )A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C.2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为2+x 1.5=y ^A. 2+x 1.5=-y ^B. 2-x 1.5=y ^C. 2-x 1.5=-y ^D. 之间负相关,回归直线y ,x ,由散点图可知变量a ^+x b ^=y ^设回归方程为 B 解析:选 2.+x 1.5=-y ^,因此方程可能为>0a ^,<0b ^轴上的截距为正数,所以y 在 个样本点,n 的y 和x 是变量)n y ,n x (,…,)2y ,2x (,)1y ,1x (设3.直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( ))y ,x (过点l .直线A B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误. 4.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的,x 0.006 2+9.5=y ^的回归方程为x 关于吨位y 人,船员人数32~5人数 (1)若两艘船的吨位相差1 000,求船员平均相差的人数;(2)估计吨位最大的船和最小的船的船员人数.,则2x ,1x 设两艘船的吨位分别为(1)解: y^)2x 6 20.00+(9.5-1x 0.006 2+9.5=2y ^-1 =0.006 2×1 000≈6, 即船员平均相差6人.,0.006 2×192≈11+9.5=y ^时,192=x 当(2) 0.006 2×3 246≈30.+9.5=y ^时,3 246=x 当 即估计吨位最大和最小的船的船员数分别为30人和11人.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( ) A .确定性关系 B .相关关系 C .函数关系D .无任何关系 解析:选 B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.,下x 80+50=y ^变化的回归直线方程为)千元(x 依劳动生产率)元(y .农民工月工资2列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元的单x ,但要注意80增加y ,1每增加x 知,x 80+50=y ^由回归直线方程 B 解析:选位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:则y 对x 的线性回归方程为( )A .y =x -1B .y =x +1x 12+88=y .C176=y .D =y ,176=174+176+176+176+1785=x 计算得, C 解析:选符合.C 检验知,)y ,x (,根据回归直线经过样本中心176=175+175+176+177+17754.已知x 与y 之间的几组数据如下表:,若某同学根据上表中的前两组a ^+x b ^=y ^假设根据上表数据所得线性回归直线方程为数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )′a <a ^,′b >y ^′ B.a >a ^,′b >b ^A. ′a <a ^,′b <y ^′ D.a >a ^,′b <b ^C. 解析:选C 由(1,0),(2,2)求b ′,a ′.2.=-2×1-0=′a ,2=2-02-1=′b ,58=24+15+12+3+4+0=i y i ∑i =16x 时,a ^,b ^求 x ,136=y ,3.5= ∑i=16x 2i ,91=36+25+16+9+4+1= ,57=58-6×3.5×13691-6×3.52=b ^∴ a^,13=-52-136=×3.557-136= ′.a >a ^,′b <b ^∴ =y ^的回归方程为(cm)x 对身高(kg)y 岁的人,体重38岁到18.正常情况下,年龄在50.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右. =y ^时,178=x 的人的体重进行预测,当178 cm 解析:用回归方程对身高为0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:________.=a ,则a +x 4=-y 由表中数据,求得线性回归方程为 ,132=4+5+6+7+8+96=x 解析: y,80=92+82+80+80+78+686=)y ,x (由回归方程过样本中心点 .a ^+1324×=-80得 106.=1324×+80=a ^即 答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y ,估计该台机器最为划算的使用年限为x 1.3-10.47=y ^具备线性相关关系,回归方程为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:;y ,x 求(1) (2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件?3 487)=i y i ∑i =17x ,45 309=2i ∑i =17y ,280=2i ∑i =17x 提示:( ,6=3+4+5+6+7+8+97=x (1)解: y≈79.86.66+69+73+81+89+90+917= ,≈4.753 487-7×6×79.86280-7×62=b ^∵(2) a^,51.36=4.75×6-79.86= .x 4.75+51.36=y ^之间的回归直线方程为x 纯利与每天销售件数∴ ≈31.29.x ,所以651.3+x 4.75=200时,200=y ^当(3) 因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.9.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元)2 4 4 6 6 6 7 7 8 10年饮食 支出y(万元)0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3(2)若某家庭年收入为9万元,预测其年饮食支出.406)=2i ∑i =110x ,117.7=i y i ∑i =110x 参考数据:( 解:依题意可计算得:x,10.98=y x ,36=2x ,1.83=y ,6= ,406=2i ∑i =110x ,117.7=i y i ∑i =110x ∵又,≈0.17∑i=110xiyi -10x y ∑i =110x2i -10x 2=b ^∴ a^0.81.+x 0.17=y ^∴,0.81=x b ^-y = 1.0.8+x 0.17=y ^所求的回归方程为∴ .)万元2.34(=0.81+0.17×9=y ^时,9=x 当(2) 可估计年收入为9万元的家庭每年饮食支出约为2.34万元.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选 C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20 解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190 192.=n ,求得80=n200+1 200+1 0001 000× B 解析:选 4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )200+x 10=y ^200 B.+x 10=-y ^A. 200-x 10=y ^200 D.-x 10=-y ^C. 解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.,则y 和x ,它们的平均数分别是n y ,…,2y ,1y 与n x ,…,2x ,1x .设有两组数据5)(的平均数是1+n y 3-n x 2,…,1+2y 3-2x 1,2+1y 3-1x 2新的一组数据 y 3-x 2.A 1+y 3-x 2.By 9-x 4.C1+y 9-x 4.D ,)n ,…,1,2=i 1(+i y 3-i x 2=i z 设 B 解析:选 =⎝ ⎛⎭⎪⎫1+1+…+1n +)n y +…+2y +1y (3n -)n x +…+2x +1x (2n =)n z +…+2z +1z (1n =z 则 1.+y 3-x 2 6.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12[35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( )211A.13B. 12C.23D. 解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7.13=2266的数据约占31.5,故总体中大于或等于22=3+ 7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90 解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,87.=75)+80+85×4+90×2+95+(100110平均数为 8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3 1.8.=5×0+20×1+10×2+10×3+5×450B 解析:选 9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4用水量y 4.5 4 3 2.5的a ,则a +x 0.7=-y 之间具有线性相关关系,其线性回归方程为x 与月份y 用水量值为( )A .5.25B .5C .2.5D .3.5 解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4 +5+6+3+(515+80,平均数为77,去掉一个最低分95去掉一个最高分 C 解析:选,因此1.2=]286)-(85+285)-(85+286)-(85+283)-(85+285)-[(8515,方差为85=6)选C.,…,2+2x 2,3+1x 3,则2s ,方差是x 的平均数是n x ,…,3x ,2x ,1x .如果数据11)(的平均数和方差分别是2+n x 32s 和x A.2s 9和x 3.B2s 9和2+x 3.C4+2s 12和2+x 3.D nx …,2x ,1x ,由于数据2+x 3的平均数是2+n x 3,…,2+2x 2,3+1x 3 C 解析:选.2s 9的方差为2+n x 3,…,2+2x 2,3+1x 3,所以2s 的方差为 12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( ) A .x =9 B .y =8C .乙的成绩的中位数为26D .乙的成绩的方差小于甲的成绩的方差解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x =9;因为乙的成绩的平均值为24,所以y =24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小. 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.∴,2;又方差为20=y +x ,则10=159)×+11+10+y +x (,得10解析:由平均数为=xy 208,2=2y +2x ,得2=15]×210)-(9+210)-(11+210)-(10+210)-y (+210)-x [( 4.=x2+y2-2xy =x -y 2=|y -x |∴,192 答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.12.=×482148+36解析:抽取的男运动员的人数为 答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)59408 66368 36016 26247 25965 49487 26968 86021 77681 83458 21540 62651 69424 78197 20643 67297 76413 66306 51671 54964 87683 30372 39469 97434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1,∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,10.=z ,20=y 同理,30.=x ,解得0.030×10=x100则3.=×181030+20+10的学生中选取的人数为[140,150]故从 答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) ,应如何110名学生中抽取50为调查某班学生的平均身高,从)分10本小题满分(.17抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样? 抽签法或随机数(人,采用简单随机抽样法5,即抽取110名学生中抽取50解:从法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?22.=1326=17+19+20+21+25+306样本均值为1)(解: 4=1312×名工人中有12,故推断该车间13=26知样本中优秀工人所占比例为(1)由(2)名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人);四川籍的有15+10+5+5+5=40(人).2,即四川籍的应抽取2=x ,解得x40=5100人,依题意得x 设四川籍的驾驶人员应抽取人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样.,100=99)+98+103+98+99+101+(10217=甲x (2) x,100=110)+115+75+85+90+115+(11017=乙 ,1)≈3.43+4+9+4+1+1+(417=2甲s ,228.57=100)+225+625+225+100+225+(10017=2乙s ,故甲车间产品比较稳定.2乙s <2甲s ∴ 21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数 频率[10,15) 10 0.25[15,20) 25n [20,25) mp[25,30] 20.05 合计M1(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 40.=M ,所以0.25=10M知,0.25频率是 因为频数之和为40,所以10+25+m +2=40,解得m =3.0.075.=340=p 故 因为a 是对应分组[15,20)的频率与组距的商,125.0.=2540×5=a 所以 (2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入iy i ∑i =110x ,20=i ∑i =110y ,80=i ∑i =110x 的数据资料,算得)单位:千元(i y 与月储蓄)单位:千元(i x 720.=2i ∑i =110x ,184= ;a ^+xb ^=y ^的线性回归方程x 对月收入y 求家庭的月储蓄(1) (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.,8=8010=i ∑i =1n x 1n =x ,10=n 由题意知(1)解: y ,2=2010=i ∑i =1n y 1n = ,80=210×8-720=2x 10-2i ∑i =110x 又 ∑i=110x ,24=10×8×2-184=y x 10-i y i ,0.3=2480=∑i =110xiyi -10x y∑i =110x2i -10x 2=b ^由此得 a^,0.4=-0.3×8-2=x b ^-y = 0.4.-x 0.3=y ^故所求回归方程为 (2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。
高一数学必修3课件:2-3-1、2变量之间的相关关系和两个变量的线性相关
人教A版 ·必修3
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修3
第二章
统 计
第二章
统计
成才之路 ·数学 ·人教A版 · 必修3
第二章
2.3 变量间的相关关系
第二章
统计
成才之路 ·数学 ·人教A版 · 必修3
第二章
2.3.1 2.3.2 变量之间的相关关系 两个变量的线性相关
由图可见,具有线性相关关系.
第二章
2.3
2.3.1 2.3.2
成才之路 ·数学 ·人教A版 · 必修3
对变量x,y有观测数据(xi,yi)(i=1,2,„,10),得散点 图(1);对变量u,v有观测数据(ui,vi)(i=1,2,„,10),得散 点图(2).由这两个散点图可以判断( )
第二章
2.3
)
D.①④
[答案] D
第二章
2.3
2.3.1 2.3.2
成才之路 ·数学 ·人教A版 · 必修3
^ [解析] ^=bx+a表示y与x之间的函数关系,而不是y与x y ^ ^ 之间的函数关系.但它所反映的关系最接近y与x之间的真实 关系.故选D.
第二章
2.3
2.3.1 2.3.2
成才之路 ·数学 ·人教A版 · 必修3
[答案] ①④
第二章
2.3
2.3.1 2.3.2
成才之路 ·数学 ·人教A版 · 必修3
[解析]
①是确定的函数关系;②中的点大都分布在一
条曲线周围;③中的点大都分布在一条直线周围;④中点的 分布没有任何规律可言,x,y不具有相关关系.
第二章
2.3
2.3.1 2.3.2
【创新设计14-2015学年高中数学 2.3.1 变量之间的相关关系;2.3.2 两个变量的线性相关课件 新人教A版必修3
^
(
)
C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kg D.若该大学某女生身高为170 cm,则可断定其体重必为 58.79 kg
答案 D ^ 解析 当 x=170 时,y =0.85×170-85.71=58.79,
体重的估计值为 58.79 kg.
5.正常情况下,年龄在 18 岁到 38 岁的人,体重 y(kg)对身高 x(cm)的回归方程为y=0.72x-58.2,张红同学(20 岁)身高 178 cm,她的体重应该在________kg 左右.
跟踪演练1
下列两个变量之间的关系,哪个不是函数关系 ( )
A.正方体的棱长和体积 B.圆半径和圆的面积 C.正n边形的边数和内角度数之和 D.人的年龄和身高 答案 D
解析
A、B、C都是函数关系,对于A,V=a3;对于B,S=
πr2;对于C,g(n)=(n-2)π.而对于年龄确定的不同的人可以 有不同的身高,∴选D.
(2)正相关与负相关:
右上角 的 左下角 到_______ ①正相关:散点图中的点散布在从_______ 区域.
左上角 到_______ 右下角 的 ②负相关:散点图中的点散布在从_______
区域.
2.回归直线的方程 (1)回归直线:如果散点图中点的分布从整体上看大致在 一条直线 附近,就称这两个变量之间具有_________ 线性相关 关 _________
^
A.y平均增加1.5个单位
B.y平均增加2个单位
C.y平均减少1.5个单位
答案 解析 C
D.y平均减少2个单位
∵两个变量线性负相关,∴变量x增加一个单位,y
平均减少1.5个单位.
4.(2013· 滨州高一检测)设某大学的女生体重 y(单位:kg)与身高 x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i = 1,2,…,n),用最小二乘法建立的回归方程为y = 0.85x - 85.71,则下列结论中不正确的是 A. y 与 x 具有正的线性相关关系 B.回归直线过样本点的中心(x, y)
高中数学人教A版必修3课件:2-3-2《线性回归方程》
二倍角的正弦、余弦、 正切公式
2.3 变量间的相关关系
2.3.2 线性回归方程
3.1.3
二倍角的正弦、余弦、 正切公式
本课主要学习变量间的相关关系的相关内容,具体 包括线性回归方程的求解。 本课开始回顾了上节课所学变量间的相关关系与散 点图的相关内容,紧接着引入回归直线的定义及特征, 回归直线方程的定义及求法(最小二乘法),并且通过 例题和习题进行讲解。最后通过习题进行加深巩固。
y
500 450 400 350
水稻产量
300 10
(施化肥量)
20
30
40
50
x
3.1.3
二倍角的正弦、余弦、 正切公式
3、最小二乘法 假设我们已经得到两个具有线性相关的变量的一组数 据(x1,y1),(x2,y2),…(xn,yn).
n n ( xi x)( yi y ) xi yi nxy i 1 i 1 b n n 2 2 2 ( xi x) xi nx i 1 i 1 a y bx
注意:求回归直线方程的关键是如何用数学的方法来刻画“从整 体上看各点与此直线的距离最小”,即最贴近已知的数据点,最 能代表变量x与y之间的关系.
3.1.3
二倍角的正弦、余弦、 正切公式
在7块并排、形状大小相同的试验田上进行施化肥量对水稻产 量影响的试验,得到如下表所示的一组数据(单位:kg):
施化肥量x 水稻产量y 15 330 20 345 25 365 30 405 35 445 40 450 45 455
第四步:写出直线方程.
二倍角的正弦、余弦、 正切公式 解:1、列表
3.1.3
2、代入公式计算
2017学年数学必修三:2.3.1-变量之间的相关关系~2.3.2 两个变量的线性相关2
(2)问题2中,从表里数据能得出小麦的产量y与施肥量x之间的 函数关系式吗? 提示:从表格里我们很容易发现施肥量越大 ,小麦的产量就越高. 但是,施肥量并不是影响小麦产量的唯一因素 ,小麦的产量还受 土壤的质量、降雨量、田间管理等诸多因素影响 ,这时两个变
量之间就不是确定性的函数关系,因此不能得到y和x的函数关
1.两个变量的线性相关 左下角 到_______. 右上角 (1)正相关:点散布的方向:从_______ 左上角 到_______. 右下角 (2)负相关:点散布的方向:从_______ (3)回归直线:如果散点图中点的分布从整体上看在一条直线附
线性相关 关系,这条直线叫做 近,就称这两个变量之间具有_________
【解析】(1)作出散点图如图所示,
(2)由散点图可知,各点并不在一条直线附近,所以两个变量是
非线性相关关系.
类型二
求回归方程
1.(2013·锦州高一检测)已知一组观测值具有线性相关关系,
bx a ,求得 b =0.51, x =61.75, y =38.14, 则回归方 若对于 y
【探究总结】
1.散点图的作用
(1)判断两个变量之间有无相关关系,一种常用的简便可行的方
法是绘制散点图.
(2)根据散点图很容易看出两个变量之间是否具有相关关系,是
不是线性相关关系,是正相关还是负相关,相关关系强还是弱.
2.利用散点图判断变量间的关系的方法 (1)如果所有的样本点都落在某一函数的曲线上,就用该函数来 描述变量间的关系,即变量具有函数关系. (2)如果所有的样本点都落在某一函数曲线附近,变量之间就有 相关关系. (3)如果所有的样本点都落在某一条直线附近,变量之间就有线 性相关关系.
2020版人教A数学必修3 课件:2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关
x (0.01%)
104
180 190 177
147
134
150
191
204
121
学霸经验分享区 (1)回归分析是对具有相关关系的两个变量进行统计分析的方法,两 个变量具有相关关系是回归分析的前提. (2)散点图是定义在具有相关关系的两个变量基础上的,对于关系不 明确的两组数据,可先作散点图,在图上看它们有无相关关系,然后再 进行相关回归分析. (3)通过对散点图的观察,一般地,若图中数据大致分布在一条直线附 近,那么这两个变量近似成线性相关关系. (4)求线性回归方程,应注意到,只有大部分点分布在某条直线附近, 求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无 意义.
名师点津 对回归直线方程的几点说明 (1)a,b的上方加“^ ”,表示是由观察值按最小二乘法求得的估计值.
(2)(xi,yi)(i=1,2,…,n)的( x , y )在回归直线上.
(3)由回归直线方程知 x 处的估计值为 yˆ = aˆ + bˆ x.
(4)回归直线使得样本数据中的点到它的距离的平方和最小. (5)求回归直线方程,计算量大,一般应学会使用计算器求解. (6)利用回归直线方程可以对总体进行估计.
解:散点图分别如图(1)(2)所示.
从图中可以看出两图中的点各自分布在一条直线附近,因此两对变量 都具有相关关系. 图(1)中A的值由小变大时,B的值却是由大变小,即A和B成负相关; 图(2)中C的值由小变大时,D的值也是由小变大,即C和D成正相关.
2.3.2 两个变量的线性相关
§2.3.2 两个变量的线性相关一、学习目标:1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2.了解最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 3.在两个变量具有线性相关关系时,会在散点图中作出线性回归直线,会用线性回归方程进行预测.二、学习重点与难点:学习重点:回归直线方程的求解方法. 学习难点:回归直线方程的求解方法.三、课堂过程:1.创设情境,揭示课题的点在坐标系内标出,得到散点图.从散点图可以看出.这些点大致分布在通过散点图中心的一条直线的附近.如果散点图中点的分布从整体看大致分布在一条直线的附近,我们称这两个变量之间具有线性相关关系,这条直线叫回归直线.如果能够求出这条回归直线的方程,我们就可以比较清楚的了解热茶销量与气温之间的关系.2.最小二乘法选择怎样的直线近似地表示热茶销量与气温之间的关系? 我们有多种思考方案:(1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线; (2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同;(3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距;怎样的直线最好呢? ------从整体上看,各点与此直线的距离最小.即:用方程为ˆybx a =+的直线拟合散点图中的点,应使得该直线与散点图中的点最接近.那么,怎样衡量直线ˆybx a =+与图中六个点的接近程度呢? 我们将表中给出的自变量x 的六个值带入直线方程,得到相应的六个ˆy 的值: 26,18,13,10,4,b a b a b a b a b a b a +++++-+.这六个值与表中相应的实际值应该越接近越好.所以,我们用类似于估计平均数时的思想,考虑离差的平方和:22222222(,)(2620)(1824)(1334)(1038)(450)(64)12866140382046010172Q a b b a b a b a b a b a b a b a ab b a =+-++-++-++-++-+-+-=++--+(,)Q a b 是直线ˆybx a =+与各散点在垂直方向(纵轴方向)上的距离的平方和,可以用来衡量直线ˆy bx a =+与图中六个点的接近程度,所以,设法取,a b 的值,使(,)Q a b 达到最小值.这种方法叫做最小平方法(又称最小二乘法) .先把a 看作常数,那么Q 是关于b 的二次函数.易知,当140382021286a b -=-⨯时, Q 取得最小值.同理, 把b 看作常数,那么Q 是关于a 的二次函数.当14046012b a -=-时, Q 取得最小值.因此,当14038202128614046012a b b a -⎧=-⎪⎪⨯⎨-⎪=-⎪⎩时,Q 取得最小值,由此解得 1.6477,57.5568b a ≈-≈.所求直线方程为ˆ 1.647757.5568y x =-+.当5x =-时,ˆ66y≈,故当气温为5-0C 时,热茶销量约为66杯. 3.线性回归方程的求解方法一般地,设有n 个观察数据如下:当,a b 使1122n n 取得最小值时,就称ybx a =+为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线.上述式子展开后,是一个关于,a b 的二次多项式,应用配方法,可求出使Q 为最小值时的,a b 的值.即⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=---=--==-=--∑∑∑∑x b y a x n x yx n y x x x y y x x b n i i n i i i n i i n i i i 212111)())((,(*) ∑==n i i x n x 11, ∑==n i i y n y 11 线性回归方程是ˆybx a =+,其中b 是回归方程的斜率,a 是截距.系数 4.求线性回归方程的步骤: (1)计算平均数y x ,;(2)计算i i y x 与的积,求∑i i y x ;(3)计算∑2i x ;(4)将结果代入公式∑∑=---=--=ni in i i i xn xyx n y x b 1221,求b ;(5)用 x b y a -=,求a ; (6)写出回归方程5. 线性回归方程的应用(2)求出回归直线方程 解:(1)散点图(略).(2)表中的数据进行具体计算,列成以下表格故可得到2573075.43.399, 75 .430770002≈⨯-=≈⨯-=ab从而得回归直线方程是^ 4.75257y x=+.6.小结:对一组数据进行线性回归分析时,应先画出其散点图,看其是否呈直线形,再依系数,a b的计算公式,算出,a b.写出回归方程7.课后作业:P92练习.。
两个变量的线性相关 (11)
2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关1.变量间的相关关系 (1)相关关系的定义变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.(2)散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形叫做散点图.(3)正相关与负相关①正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.②负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.2.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程. (3)最小二乘法:求线性回归方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.其中,b ^是线性回归方程的斜率,a ^是线性回归方程在y 轴上的截距.1.下列两个变量具有相关关系的是( ) A .角度和它的余弦值 B .圆的半径和该圆的面积 C .正n 边形的边数和它的内角和 D .居民的收入与存款D [A 、B 、C 中两变量是确定的函数关系.]2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为( )A .y ^=1.5x +2 B .y ^=-1.5x +2 C .y ^=1.5x -2 D .y ^=-1.5x -2B [由散点图知,变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,故只有B 选项符合.]3.5位学生的数学成绩和物理成绩如下表:A .是函数关系B .是相关关系,但相关性很弱C .具有较好的相关关系,且是正相关D .具有较好的相关关系,且是负相关C [数学成绩x 和物理成绩y 的散点图如图所示.从图上可以看出数学成绩和物理成绩具有较好的相关关系,且成正相关.] 4.设有一个回归方程为y ^=2-1.5x ,则变量x 每增加1个单位时,y 平均减少________个单位.1.5 [因为y ^=2-1.5x ,所以变量x 每增加1个单位时,y 1-y 2=[2-1.5(x +1)]-(2-1.5x )=-1.5,所以y 平均减少1.5个单位.](2)判断y与x是否具有线性相关关系.[解](1)散点图如图所示.(2)由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.相关关系的判断方法(1)两个变量x和y具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断;③经验法:借助积累的经验进行分析判断.(2)判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.1.下列关系中,属于相关关系的是________(填序号).①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.②④[在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.]1.任意两个统计数据是否均可以作出散点图? [提示] 任意两个统计数据均可以作出散点图. 2.任何一组数据都可以由最小二乘法得出回归方程吗?[提示] 用最小二乘法求回归方程的前提是先判断所给数据具有线性相关关系,否则求回归方程是无意义的.3.回归系数b ^的含义是什么?[提示] (1)b ^代表x 每增加一个单位,y 的平均增加单位数,而不是增加单位数.(2)当b ^>0时,两个变量呈正相关关系,含义为:x 每增加一个单位,y 平均增加b ^个单位数;当b ^<0时,两个变量呈负相关关系,含义为:x 每增加一个单位,y 平均减少b ^个单位数.【例2】 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下: 零件数x (个) 10 20 30 40 50 60 70 80 90 100 加工时间y (分)626875818995102108115122(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程.思路点拨:画散点图→确定相关关系→求回归直线系数→写回归直线方程. [解] (1)画散点图如下:由上图可知y与x具有线性相关关系.(2)列表、计算:i 1 2 3 4 5 6 7 8 9 10 x i10 20 30 40 50 60 70 80 90 100 y i62 68 75 81 89 95 102 108 115 122x i y i620 1 360 2 250 3 240 4 450 5 700 7 140 8 6401035012200 a^=y-b^x=91.7-0.668×55=54.96.即所求的回归直线方程为:y^=0.668x+54.96.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)(5)代入公式计算b ^,a ^,公式为(6)写出回归直线方程y ^=b ^x +a ^.2.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y30 40 60 50 70(1)画出散点图;(2)求回归方程.[解](1)散点图如图所示.(2)列出下表,并用科学计算器进行有关计算.i 1 2 3 4 5x i 2 4 5 6 8y i30 40 60 50 70x i y i 60 160 300 300 560 x 2i416253664x =5,y =50,∑5i =1 x 2i =145,∑5i =1i i y i =1 380于是可得,b ^===6.5,a ^=y -b ^x =50-6.5×5=17.5. 于是所求的回归方程是y ^=6.5x +17.5.回归方程的应用学生 A B C D E 总成绩x 428 383 421 364 362 数学成绩y 7865716461(2)求y 对x 的线性回归方程(结果保留到小数点后3位数字); (3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩. [解] (1)散点图如图所示:(2)由题中数据计算可得 x =391.6,y=67.8,∑5i =1x 2i =770654,∑5i =1x i y i =133 548.代入公式得b ^=133 548-5×391.6×67.8770 654-5×391.62≈0.204,a ^=67.8-0.204×391.6≈-12.086,所以y 对x 的线性回归方程为y ^=-12.086+0.204x .(3)由(2)得当总成绩为450分时,y ^=-12.086+0.204×450≈80,即这个学生的数学成绩大约为80分.利用线性回归方程解题的常见思路及注意点(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据.(2)利用回归方程中系数b ^的意义,分析实际问题.(3)利用回归直线进行预测,此时需关注两点;①所得的值只是一个估计值,不是精确值;②变量x 与y 成线性相关关系时,线性回归方程才有意义,否则即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.3.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720.(1)求月储蓄y (千元)关于月收入x (千元)的线性回归方程; (2)若该居民区某家庭的月收入为7千元,预测该家庭的月储蓄. [解] (1)由题意知n =10,x =1n ∑10i =1x i =110×80=8,y =1n ∑n i =1y i =110×20=2,又∑ni =1x 2i -n x 2=720-10×82=80,∑10i =1x i y i -n x y =184-10×8×2=24,由此得b ^=2480=0.3,a ^=y -b ^y =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)将x =7代入线性回归方程,可以得到该家庭的月储蓄约为y ^=0.3×7-0.4=1.7(千元).1.判断变量之间有无相关关系,简便可行的方法就是绘制散点图.根据散点图,可看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关.2.求回归直线的方程时应注意的问题(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验.如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a ^,b ^的值时,要先算出b ^,然后才能算出a ^.3.利用回归方程,我们可以进行估计和预测.若回归方程为y ^=b ^x +a ^,则x=x 0处的估计值为y ^0=b ^x 0+a ^.1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)相关关系是两个变量之间的一种确定的关系. ( ) (2)回归直线方程一定过样本中心点.( )(3)选取一组数据的部分点得到的回归方程与由整组数据得到的回归方程一定相同.( )[★答案★] (1)× (2)√ (3)×2.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( )A .不能小于0B .不能大于0C .不能等于0D .只能小于0C [当b ^=0时,不具有相关关系,b ^可以大于0,也可以小于0.]3.若施化肥量x (千克/亩)与水稻产量y (千克/亩)的回归方程为y ^=5x +250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右.650 [当x =80时,y ^=400+250=650.]4.2019年元旦前夕,某市统计局统计了该市2018年10户家庭的年收入和年饮食支出的统计资料如下表:年饮食支出y (万元) 0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3如果已知y 与x 是线性相关的,求回归方程.(参考数据:∑10i =1x i y i =117.7,∑10i =1x 2i =406)[解] 依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98, 又∵∑10i =1x i y i =117.7,∑10i =1x 2i =406,∴b ^=≈0.17,a ^=y -b ^ x =0.81,∴y ^=0.17x +0.81. ∴所求的回归方程为y ^=0.17x +0.81.。
新高考数学一轮教师用书:第9章 第3节 成对数据的统计分析
气象预报某天的最高气温为 34 ℃,则可以预测该天这种饮料的销售量为
__________杯.
128 [由题意 x=34 时,该小卖部大约能卖出热饮的杯数^y=2×34+60=128 杯.]
(对应学生用书第 180 ⻚) 考点 1 相关关系的判断
判定两个变量正、负相关的方法 (1)画散点图:点的分布从左下⻆到右上⻆,两个变量正相关;点的分布从左 上⻆到右下⻆,两个变量负相关. (2)相关系数:r>0 时,正相关;r<0 时,负相关. (3)线性回归直线方程中:b^>0 时,正相关;b^<0 时,负相关.
(2)回归方程:方程^y=b^x+a^是两个具有线性相关关系的变量的一组数据(x1,y1),
(x2,y2),…,(xn,yn)的回归方程,其中a^,b^是待定参数.
n
∑ (xi- x )(yi- y )
n
∑
xiyi-n-x -y
b^=i=1
=i=1
n
n
∑ (xi- x )2
i=1
∑ x2i -nx2
i=1
a^= y -b^ x .
3.回归分析
(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(-x ,-y )
称为样本点的中心.
(3)相关系数
当 r>0 时,表明两个变量正相关;
为样本容量.
[常用结论]
1.回归直线必过样本点的中心( x , y ). 2.当两个变量的相关系数|r|=1 时,两个变量呈函数关系.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.
人教版高中数学-两个变量的线性相关
《2.3.2两个变量的线性相关》一、内容和内容解析本节课是人教A版高中数学必修三2.3.2两个变量的线性相关的第二课时。
上节课通过大量的生活实例,学生已经初步认识两个变量间的相关关系,并可以借助散点图呈现收集的数据。
通过对单变量样本数据中“平均数的几何意义”(切合学生的认知需要)的介绍,为本节课的内容做了铺垫。
本节课的主要内容是用最小二乘法求线性回归方程,基础知识是回归直线的概念,也是本节课的核心概念;基本思想是“最小二乘法”思想;根据线性回归方程的系数公式求回归直线是本节课的基本技能.就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽,而后者是统计学学科研究的另一重要领域了解“最小二乘法”思想,比较各种“估算方法”,体会它的科学性,既是统计学教学发展的需要,又在体会此思想的过程中促进学生对核心概念的进一步理解.“样本估计总体”是本节课的上位思想也是整个第二章的核心思想,而“最小二乘法思想”作为本节课的核心思想,由此得以体现.回归思想和贯穿统计学科中的随机思想,也在本节课中有所渗透.本节课通过引导学生经历“收集数据一一整理数据(作散点图)一一探究并确定回归直线的数学意义一一求回归直线方程一一应用”完整的回归分析的过程,鼓励学生独立思考、自主探究、合作交流和计算机操作等方式展开学习,从而发挥本节课的育人价值。
整个学习过程渗透了数据分析和数学建模的核心素养。
通过引导学生对散点图中的点大致分布在一条直线附近的观察,渗透直观想象的核心素养;通过尝试提出找回归直线的想法、用自己的语言描述对这条直线的初步认识到探究从数学的角度定义回归直线的过程,渗透数学抽象和逻辑推理的核心素养;最后,根据回归直线方程的系数公式,引导学生先求出公式中的基本统计量,再代入公式的过程和指导学生利用Excel电子表格求回归方程的过程,提升数学运算的核心素养。
基于上述内容分析,本节课的教学重点为:了解最小二乘法思想,并能根据给出的线性回归方程的系数公式,建立线性回归方程二、目标和目标设置基于对本节课教学内容的解析,结合《普通高中数学课程标准(2017年版)》的要求,制定本节课的教学目标如下:1.了解一元线性回归模型的含义:(1)能根据散点图解释两个相关变量的线性相关关系;(2)能用自己的语言解释回归直线的统计意义;2. 了解最小二乘原理:(1)经历用不同方法确定回归直线的过程,能认识到回归直线是“从整体上看,各点与此直线上的点的距离最小”的直线;(2)能用数学符号刻画“从整体上看,各点与此直线上的点的距离最小”的表达方式;(3)通过对表达方式的转化(距离最小到偏差平方和最小),体会最小二乘法原理,并能用自己的语言表述;3.针对实际应用问题,能根据给出的线性回归方程系数公式建立线性回归方程;4.在经历完整的线性回归分析的过程中,重点提升数据分析和数学建模核心素养;5.针对实际应用问题,会用一元线性回归模型进行预测.第1页(共6页)三、学生学情分析在经历用不同估算方法描述两个变量线性相关的过程后,在学生现有知识能力范围内,如何选择一个最优方法,成为知识发展的逻辑必然而上节课的“从平均数的几何意义说起”符合学生的认知需要和支撑点,同时引起了学生的兴趣,为这节课的最小二乘法思想的产生做了重要的铺垫.“最小二乘法”作为经典的回归方程估算方法,通过用数学方法刻画“从整体上看,各点与此直线的距离最小”这一直观的几何描述,采取合适的数学处理方法,最终获得回归直线,对学生认可统计估算的科学性有很大帮助.其中对于数形结合发现距离与偏差的等价性,二元二次函数的特征辨识等都是这节课学生所要具备的认知基础.基于此,如何把“从整体上看,各点与此直线的距离最小”用合适的代数符号刻画并化简,化几何问题为代数问题,是学生顺利了解解“最小二乘法”思想的前提;而如何化简复杂的代数表达式,学生缺乏处理的经验,在计算能力的要求上也较高,这里就造成了已有认知与现需认知的差异,而且是学生不能独立突破的要了解“最小二乘法思想”,接受“由系数公式得到的线性方程”为回归方程,理解此方程可作为“两个具有线性相关关系的变量的代表”这一回归直线概念的本质,并体现相对于其他估算方法法的优越性,又必须要求对给出的系数公式来源进行一定的说理,这里的认知差异也是学生无法自己消除的,需要老师的引导和帮忙.知识发展的要求与学生能力和经验的欠缺成为本节课将会遇到的最大矛盾.教学中,要防止两种倾向:一是直接套用回归系数公式求解回归方程而回避说理过程;二是过多纠缠于数学刻画过程,甚至在课堂上花大量时间对回归系数公式进行证明说理.这两种倾向,都脱离了实际情况,前者忽略了“最小二乘法思想”迷失了本节课的教学目标后者人为拔高教材要求,脱离了本节课教学要求.所以,本节课的教学难点是:如何通过数学方法刻画“从整体上看,各点与此直线的距离最小”,并在此过程中了解最小二乘法思想对于该教学难点,教师通过精准问题串层层分解学生认知的难点,不断寻找学生的认知原点,关键处动画展示,直观形象,突破教学难点. 本节课涉及大量数据计算,形成操作上的一个难点,通过小组合作,教师培训模式突破难点.四、教学策略分析本节课在课前让学生收集身高与体重的数据,一方面对前面学过的知识有一个巩固,同时让本节课进行线性回归分析的过程更加完整;二是从学生身边的真实数据出发,更容易促进学习动机,而且给学生带来的体验也更为真实。
高中数学必修三第二章《随机抽样》2.3.1变量之间的相关关系-2.3.2两个变量的线性相关
跟踪训练1 下表是某地的年降雨量与年平均气温的统计表,判断两者是 否具有相关关系,求线性回归方程有意义吗? 解答
年平均气温(℃) 12.51 12.74 12.64 13.69 13.33 12.84 13.05 年降雨量(mm) 748 542 507 813 574 701 432
命题角度2 函数关系与相关关系的区别与联系 例2 下列关系中,是相关关系的是__②__④____. 答案 解析 ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③人的身高与年龄之间的关系; ④降雪量与交通事故的发生率之间的关系.
命题角度1 判断两个变量的相关性 例1 为了研究质量对弹簧长度的影响,对6根相同的弹簧进行测量,所 得数据如下:
质量(g)
5
10
15
20
25
30
弹簧长度(cm) 7.25 8.12 8.95 9.90 10.90 11.80
判断它们是否有相关关系,若有,判断是正相关还是负相关. 解答
反思与感悟
在研究两个变量之间是否存在某种关系时,必须从散点图入手,对于散 点图,可以作出如下判断: (1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变 量之间的关系,即变量之间具有函数关系; (2)如果所有的样本点都落在某一直线附近,那么变量之间就有线性相关 关系; (3)如果散点图中的点的分布几乎没有什么规律,那么这两个变量之间不 具有相关关系,即两个变量之间是相互独立的.
梳理 回归直线的方程
(1)回归直线:如果散点图中点的分布从整体上看大致在 一条直附线近 , 就 称 这两个变量之间具有 线性相关关系,这条直线叫做回归直线. (2)线性回归方程:对回应归的直方线程叫做回归直线的方程,简称回归方程.
2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关
2.3 变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关考点 学习目标核心素养 相关关系的概念理解两个变量的相关关系的概念 数学抽象 散点图 会作散点图,并利用散点图判断两个变量之间是否具有相关关系逻辑推理、数学建模回归直线方程会求回归直线方程数学运算问题导学(1)相关关系分为哪两种? (2)什么叫散点图?(3)什么叫回归直线?求回归直线的方法及步骤是什么?1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关①正相关:散点图中的点散布在从左下角到右上角的区域; ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程. (3)最小二乘法求回归直线方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.其中b ^是回归方程的斜率,a ^是回归方程在y 轴上的截距. ■名师点拨 (1)散点图的作用散点图形象地反映了各对数据的密切程度.根据散点图中点的分布趋势分析两个变量之间的关系,可直观地判断并得出结论.(2)回归直线的性质由a ^=y --b ^x -可知回归直线一定经过点(x -,y -),因此点(x -,y -)通常称为样本点的中心,其中,x -,y -分别是变量x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数.(3)线性相关关系强弱的定性分析线性相关关系的强弱体现在散点图中就是样本点越集中在某条直线附近,两变量的线性相关关系越强;样本点在某条直线附近越分散,两变量的线性相关关系越弱.判断正误(对的打“√”,错的打“×”) (1)线性回归方程必经过点(x -,y -).( )(2)对于方程y ^=b ^x +a ^,x 增加一个单位时,y 平均增加b ^个单位.( ) (3)样本数据中x =0时,可能有y =a ^.( ) (4)样本数据中x =0时,一定有y =a ^.( )解析:根据回归直线方程的意义知,(1)(2)都正确,而(3)(4)中,样本数据x =0时,y 的值可能为a ^,也可能不是a ^,故(3)正确.答案:(1)√ (2)√ (3)√ (4)×下列各图中所示的两个变量具有相关关系的是( )A .(1)(2)B .(1)(3)C .(2)(4)D .(2)(3)解析:选D.(1)为函数关系;(2)(3)为相关关系;(4)中,因为点分布得比较分散,两者之间无相关关系.5位学生的数学成绩和物理成绩如下表: 学科 A B C D E 数学 80 75 70 65 60 物理7066686462A .是函数关系B .是相关关系,但相关性很弱C .具有较好的相关关系,且是正相关D .具有较好的相关关系,且是负相关解析:选C.数学成绩x 和物理成绩y 的散点图如图所示.从图上可以看出数学成绩和物理成绩具有较好的相关关系,且成正相关. 设有一个回归方程为y ^=2-1.5x ,则变量x 每增加1个单位时,y 平均减少____________个单位.,解析:因为y ^=2-1.5x ,所以变量x 每增加1个单位时,y 1-y 2=[2-1.5(x +1)]-(2-1.5x )=-1.5,所以y 平均减少1.5个单位.答案:1.5相关关系的判断以下是在某地搜集到的不同楼盘新房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:房屋面积x(m2)11511080135105销售价格y(万元)24.821.619.429.222(2)判断新房屋的销售价格和房屋面积之间是否具有相关关系?如果有相关关系,是正相关还是负相关?【解】(1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以判断,新房屋的销售价格和房屋的面积之间具有相关关系,且是正相关.相关关系的判断方法(1)两个变量x和y具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断;③经验法:借助积累的经验进行分析判断.(2)判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.[易错警示]在解答本题过程中,易出现如下错误:虽然五点中有四点大致分布在一条直线附近,但第二个点离这条直线太远,所以两个变量不相关,导致错误的原因是没有看主流点,而过分关注了不影响大局的个别点.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图所示.由这个散点图可以判断()A.变量x与y正相关B.变量x与y不相关C.变量x与y负相关D.变量x与y是函数关系解析:选C.由这个散点图可以判断,变量x与y负相关,故选C.线性回归方程的求法下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 345 6y 2.534 4.5 (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^. 【解】(1)散点图如图.(2)x-=3+4+5+64=4.5,y-=2.5+3+4+4.54=3.5,∑i=14x i y i=3×2.5+4×3+5×4+6×4.5=66.5,∑i=14x2i=32+42+52+62=86,所以b ^=∑4i =1x i y i -4x -y-∑4i =1x 2i -4x-2=66.5-4×4.5×3.586-4×4.52=0.7, a ^=y --b ^x -=3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.如果把例题中的y 的值2.5及4.5分别改为2和5,如何求回归直线方程? 解:散点坐标分别为(3,2),(4,3),(5,4),(6,5). 可验证这四点共线, 斜率k =3-24-3=1,所以直线方程为y -2=x -3, 即回归直线方程为y ^=x -1.求线性回归方程的步骤(1)计算平均数x -,y -.(5)用a ^=y --b ^x -,求a ^. (6)写出回归方程.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量x之间的相关关系,现取了8对观测值,计算得:则y 关于x 的回归直线方程是( )A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x解析:选A.利用题目中的已知条件可以求出x -=6.5,y -=28.5,然后利用回归直线方程的计算公式得b ^=∑8i =1x i y i -8x -y-∑8i =1x 2i -8x-2=1 849-8×6.5×28.5478-8×6.52≈2.62, a ^=y --b ^x -=11.47,因此回归直线方程为y ^=11.47+2.62x .线性回归方程的应用(2020·黑龙江省大庆铁人中学期末考试)某班主任为了对本班学生的月考成绩进行分析,从全班40名同学中随机抽取一个容量为6的样本进行分析.随机抽取6位同学的数学、物理分数对应如表:学生编号 1 2 3 4 5 6 数学分数x 60 70 80 85 90 95 物理分数y728088908595(1) (2)如果具有线性相关性,求出线性回归方程(系数精确到0.1);如果不具有线性相关性,请说明理由;(3)如果班里的某位同学数学成绩为50,请预测这位同学的物理成绩.【解】 (1)画出散点图:通过图象可以看出物理成绩y 与数学成绩x 之间具有线性相关性. (2)x -=16×(60+70+80+85+90+95)=80,y -=16×(72+80+88+90+85+95)=85,故b ^=0.6,a ^=37.故回归方程是y =0.6x +37. (3)当x =50时,解得y =67.故数学成绩为50,预测这位同学的物理成绩是67.利用线性回归方程解题的常见思路及注意点(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据.(2)利用回归方程中系数b ^的意义,分析实际问题.(3)利用回归直线进行预测,此时需关注两点:①所得的值只是一个估计值,不是精确值;②变量x 与y 成线性相关关系时,线性回归方程才有意义,否则即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.(2020·江西省临川第一中学期末考试)我国西部某贫困地区2011年至2017年农村居民家庭人均年收入y (千元)的数据如下表:年份 2011 2012 2013 2014 2015 2016 2017 年份代号x 1 2 3 4 5 6 7 人均年收入y2.93.33.64.44.85.25.9(2)利用(1)中的回归方程,预测该地区2019年农村居民家庭人均年收入将达到多少千元.解:(1)依题意x -=4,y -=4.3,从而b ^=0.5,a ^=y --b ^x -=4.3-0.5×4=2.3, 故所求线性回归方程为y ^=0.5x +2.3. (2)令x =9,得y ^=0.5×9+2.3=6.8.预测该地区在2019年农村居民家庭人均年收入为6.8千元.1.我们常说“吸烟有害健康”,吸烟与健康之间的关系是( ) A .正相关 B .负相关 C .无相关D .不确定解析:选B.烟吸得越多,则健康程度越差.2.关于回归直线方程y ^=a ^+b ^x 的叙述正确的是( ) ①反映y ^与x 之间的函数关系; ②反映y 与x 之间的函数关系; ③表示y ^与x 之间的不确定关系;④表示最接近y 与x 之间真实关系的一条直线. A .①② B .②③ C .③④ D .①④解析:选D.y ^=a ^+b ^x 表示y ^与x 之间的函数关系,而不是y 与x 之间的函数关系,它反映的关系最接近y 与x 之间的真实关系.故①④正确.3.在最小二乘法中,用来刻画各个样本点到直线y =a ^+b ^x 的“距离”的量是( ) A .|y i -y -| B .(y i -y -)2 C .|y i -(a ^+b ^x i )|D .[y i -(a ^+b ^x i )]2解析:选D.最小二乘法的定义明确给出,用[y i -(a ^+b ^x i )]2来刻画各个样本点与这条直线之间的“距离”(即二者之间的接近程度),用它们的和表示所有样本点与这条直线的接近程度.4.已知工厂加工零件的个数x 与花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工200个零件大约需要________小时.解析:将200代入线性回归方程y ^=0.01x +0.5, 得y ^=2.5. 答案:2.5[A 基础达标]1.如图所示是具有相关关系的两个变量的一组数据的散点图,去掉哪个点后,两个变量的相关关系更明显( )A .DB .EC .FD .A解析:选C.A 、B 、C 、D 、E 五点分布在一条直线附近且贴近该直线,而F 点离得远,故去掉点F .2.(2020·江西省上饶市期末统考)某车间为了规定工时定额,需要确定加工零件所花费用的时间,为此进行了5次实验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程为y ^=7.8x +40.2.零件数x (个) 1 23 4 5 加工时间y (min)50677179A .55B .55.8C .59D .51解析:选 D.设表中模糊的数据为m .由表中的数据可得x -=1+2+3+4+55=3,y -=50+m +67+71+795=267+m5,又由回归直线的方程为y ^=7.8x +40.2,所以267+m 5=7.8×3+40.2,解得m =51.即表中模糊的数据为51.故选D.3.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关解析:选C.因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′解析:选C.由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,从而b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑6i =1x i y i -6x -·y-∑6i =1x 2i -6x-2=58-6×72×13691-6×⎝⎛⎭⎫722=57,a ^=y --b ^x -=136-57×72=-13,所以b ^<b ′,a ^>a ′. 5.(2020·广西钦州市期末考试)若回归直线y ^=b ^x +a ^的斜率估值为1.23,样本中心点为(4,5),当x =2时,估计y 的值为____________.解析:因为回归直线y ^=b ^x +a ^的斜率估值为1.23,所以b ^=1.23,y ^=1.23x +a ^. 因为样本中心点为(4,5),所以5=1.23×4+a ^,a ^=0.08,y ^=1.23x +0.08, 代入x =2,y =1.23×2+0.08=2.54. 答案:2.546.(2020·湖北省宜昌市葛洲坝中学期末考试)某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与利润额y (单位:百万元)进行了初步统计,得到下列表格中的数据:x 2 4 5 6 8 y304060p70经计算,月微信推广费用x 与月利润额y 满足线性回归方程y ^=6.5x +17.5,则p 的值为____________.解析:由题中数据可得x -=2+4+5+6+85=5,y -=30+40+60+p +705=200+p5.由线性回归方程y ^=6.5x +17.5经过样本中心(x -,y -), 有200+p 5=6.5×5+17.5,解得p =50.答案:507.对某台机器购置后的运营年限x (x =1,2,3,…)与当年利润y 的统计分析知具备线性相关关系,线性回归方程为y ^=10.47-1.3x ,估计该台机器使用________年最合算.解析:只要预计利润不为负数,使用该机器就算合算,即y ^≥0,所以10.47-1.3x ≥0,解得x ≤8.05,所以该台机器使用8年最合算.答案:88.(2020·湖南省张家界市期末联考)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如表:x 1 2 3 4 5 y86542(1)求x -,y -;(2)求y 关于x 的线性回归方程y ^=b ^x +a ^; (3)若年产量为4.5吨,试预测该农产品的价格.解:(1)计算可得x -=1+2+3+4+55=3,y -=8+6+5+4+25=5.(2)b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5x-2=61-5×3×555-5×32=-1.4, 因为线性回归直线过(x -,y -),则a ^=y --b ^x -=5-(-1.4×3)=9.2, 故y 关于x 的线性回归方程是y ^=-1.4x +9.2. (3)当x =4.5时,y ^=-1.4×4.5+9.2=2.9(千元/吨).9.(2020·河北省石家庄市期末考试)在一段时间内,分5次测得某种商品的价格x (万元)和需求量y (吨)之间的一组数据为(1)根据上表数据,求出回归直线方程y =b x +a ;(2)试根据(1)中求出的回归方程预估当价格为1.9万元时,需求量大约是多少吨?(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n (x )-2,a ^=y --b ^x -)解:(1)因为x -=15×9=1.8,y -=15×37=7.4,∑i =15 x i y i =62,∑i =15x 2i =16.6,所以 b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5(x )-2=62-5×1.8×7.416.6-5×1.82=-11.5, a ^=y --b ^x -=7.4+11.5×1.8=28.1, 故y 对x 的线性回归方程为y ^=28.1-11.5x . (2)y =28.1-11.5×1.9=6.25(吨).所以如果价格为1.9万元,则需求量大约是6.25吨.[B 能力提升]10.对两个变量的四组数据进行统计,获得以下散点图,关于两个变量相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3解析:选A.由相关系数的定义以及散点图的含义,可知r 2<r 4<0<r 3<r 1.11.期中考试后,某校高三(9)班班主任对全班65名学生的成绩(单位:分)进行分析,得到数学成绩y 关于总成绩x 的回归直线方程为y ^=6+0.4x .由此可以估计:若2名同学的总成绩相差50分,则他们的数学成绩大约相差________分.解析:设两名同学的总成绩分别为x 1,x 2,则对应的数学成绩估计为y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20.答案:2012.(2020·湖北省宜昌县域高中协同发展共同体期末考试)为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料:组号 1 2 3 4 5 温差x (℃) 10 11 13 12 8 发芽数y (颗)2325302616组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n x-2,a ^=y --b ^x -)解:(1)由题意:x -=11+13+123=12,y -=25+30+263=27,b ^=∑3i =1 (x i -x -)(y i -y -)∑3i =1 (x i -x -)2=(x 1-x -)(y 1-y -)+(x 2-x -)(y 2-y -)+(x 3-x -)(y 3-y -)(x 1-x -)2+(x 2-x -)2+(x 3-x -)2=(11-12)×(25-27)+(13-12)×(30-27)+(12-12)×(26-27)(11-12)2+(13-12)2+(12-12)2=52, a ^=y --b ^x -=27-52×12=-3,故回归直线方程为y ^=52x -3.(2)当x =10时,y =52×10-3=22,|22-23|=1<2,当x =8时,y =52×8-3=17,|17-16|=1<2,所以(1)中所得的回归直线方程是可靠的.13.(选做题)(2019·黑龙江省牡丹江市第一高级中学期末考试)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i=xi,w-=18i=18w i.(1)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为解:(1)由散点图可以判断,y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.由于d=108.81.6=68,c^=y--d^w-=563-68×6.8=100.6,所以y关于w的线性回归方程为y^=100.6+68w,因此y关于x的回归方程为y^=100.6+68x.(3)(ⅰ)由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6,年利润z的预报值z^=576.6×0.2-49=66.32.(ⅱ)根据(2)的结果知,年利润z的预报值z^=0.2(100.6+68x)-x=-x+13.6x+20.12.所以当x=13.62=6.8,即x=46.24时,z^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。
高中数学精品课件 2.3.1 变量之间的相关关系--2.3.2 两个变量的线性相关
①画出数据对应的散点图; ②判断房屋的销售价格和房屋面积之间是否具有相关关系,如果 有相关关系,是正相关还是负相关?
解 ①数据对应的散点图如图所示.
②通过以上数据对应的散点图可以判断,房屋的销售价格和房屋 面积之间具有相关关系,并且是正相关.
x0123 y1357 则 y 与 x 的线性回归方程为y^=b^ x+a^ 必过点( )
A.(2,2)
B.(1,2)
C.(1.5,0)
D.(1.5,4)
解析 易得-x=1.5,-y=4,由于回归直线过样本点的中心(-x,
-y),故选 D. 答案 D
4.小学生身高 y 与年龄 x 之间的线性回归直线方程为y^=8.8x+65, 预测一名 10 岁的小学生的身高为________. 解析 当 x=10 时,y^=8.8×10+65=153. 答案 153
题型三 利用回归方程对总体进行估计 【例3】 某地最近十年粮食需求量逐年上升,下表是部分统计数
据:
年份
2008 2010 2012 2014 2016
需求量/万吨 236 246 257 276 286
(1)利用所给数据求年需求量与年份之间的回归直线方程y^=b^ x+ a^ ; (2)利用(1)中所求出的直线方程预测该地 2018 年的粮食需求量.
函数关系
变量之间的关系可以用函数表示
相关关系 变量之间有一定的联系,但不能完全用函数表示
2.相关关系与函数关系的区别与联系
类别
区别
联系
函 ①函数关系中两个变量间是一种确定性 ①在一定的条件下可以相
高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教
A .1 B .1 C .1 D .1 1 6 8 4 2
35
【思路导引】利用回归直线方程必过样本点的中心求解.
【解析】选B.依题意可知样本点的中心为 ( 3 , ,3 )
48
则3
8
= 1×
3
+3
4
,a 解得
=a .
1 8Βιβλιοθήκη 36【拓展延伸】相关关系的强弱
(1)若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),称r=
6
(2)你能举例说明你对正相关与负相关的理解吗? 提示:随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性 的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少 变多. 随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关 关系,我们称为负相关.例如,汽车越重,每消耗1 L汽油所行驶的平均路程就 越短.
n
n
x i2,
xi y,i
i1
i1
30
(5)代入公式计算
b ,a,公式为
n
x iyi n x y
b
i1
n
x
2 i
n
x
2
i1
,
a y b x .
(6)写出回归直线方程 = x+ .
yb a
31
【跟踪训练】 已知变量x,y有如下对应数据:
x1234 y1345
(1)作出散点图. (2)用最小二乘法求关于x,y的回归直线方程.
42
【思路导引】(1)以产量为横坐标,以生产能耗对应的测量值为纵坐标, 在平面直角坐标系内画散点图. (2)应用计算公式求得线性相关系数 bˆ , aˆ 的值. (3)实际上就是求当x=100时,对应的 yˆ 的值.
高一数学必修3同步练习:2-3-1、2变量之间的相关关系和两个变量的线性相关
2-3-1变量之间的相关关系2-3-2 两个变量的线性相关一、选择题1.对于给定的两个变量的统计数据,下列说法正确的是() A.都可以分析出两个变量的关系B.都可以用一条直线近似地表示两者的关系C.都可以作出散点图D.都可以用确定的表达式表示两者的关系[答案] C[解析]给出一组样本数据,总可以作出相应的散点图,但不一定分析出两个变量的关系,更不一定符合线性相关或有函数关系.2.下列两个变量之间的关系,哪个不是函数关系()A.正方体的棱长和体积B.圆半径和圆的面积C.正n边形的边数和内角度数之和D.人的年龄和身高[答案] D[解析]A、B、C都是函数关系,对于A,V=a3;对于B,S=πr2;对于C,g(n)=(n-2)π.而对于年龄确定的不同的人可以有不同的身高,∴选D.3.下列变量之间的关系是函数关系的是()A.一次函数y=ax+b,其中a,b是已知常数,取b为自变量,因变量是b2-4aB.施肥量和小麦亩产量C .降雨量和交通事故发生率D .学习时间和学习成绩 [答案] A[解析] 一般地说,在一定范围内,在其它条件相同的情况下,施肥量加大,小麦亩产量会增加,它们正相关,但不具有函数关系;同理C 、D 也没函数关系,而A 中,∵a ,b 为已知常数,当b 确定时,b 2-4a 也随之确定且有唯一值与之对应,∴A 为函数关系.4.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^=bx +a ,那么下面说法不正确的是( )A .直线y ^=bx +a 必经过点(x -,y -)B .直线y ^=bx +a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线y ^=bx +a 的斜率为∑i =1nx i y i -n x - y-∑i =1nx 2i -n x-2D .直线y ^=bx +a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑i =1n[y i -(bx i +a )]2是该坐标平面上所有直线与这些点的偏差中最小的直线.[答案] B[解析] 由a =y -b x 知y ^=y -b x +bx ,∴必定过(x ,y )点.回归直线方程对应的直线是与样本数据距离最小的,但不一定过原始数据点,只须和这些点很接近即可.5.设有一个回归方程为y^=2-1.5x,则变量x增加一个单位时()A.y平均增加1.5个单位B.y平均增加2个单位C.y平均减少1.5个单位D.y平均减少2个单位[答案] C[解析]y^2-y^1=2-1.5(x+1)-2+1.5x=-1.5.6.如图是具有相关关系的两个变量的一组数据的散点图和回归直线,去掉哪个点后,剩下的5个点数据的相关系数最大?()A.D B.E C.F D.A[答案] C[解析]第F组数据距回归直线最远,所以去掉第F组后剩下的相关系数最大.7.以下关于线性回归的判断,正确的有________个.()①若散点图中所有点都在一条直线附近,则这条直线为回归直线②散点图中的绝大多数点都线性相关,个别特殊点不影响线性回归,如图中的A,B,C点.③已知回归直线方程为y^=0.50x-0.81,则x=25时,y的估计值为11.69④回归直线方程的意义是它反映了样本整体的变化趋势A.0个B.1个C.2个D.3个[答案] D[解析]能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法求得回归系数a,b得到的直线y^=ax+b才是回归直线,∴①不对;②正确;将x=25代入y^=0.50x-0.81,解得y^=11.69,∴③正确;④正确,∴选D.8.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是()A.直线l1和l2有交点(s,t)B.直线l1和l2相交,但是交点未必是点(s,t)C.直线l1和l2由于斜率相等,所以必定平行D.直线l1和l2必定重合[答案] A[解析]由题意,结合回归直线易知只有选项A符合已知条件.9.下表是某同学记录的某地方在3月1日~3月12日的体检中的发烧人数,并给出了散点图.下列说法:①根据此散点图,可以判断日期与发烧人数具有线性相关关系.②根据此散点图,可以判断日期与发烧人数具有一次函数关系.其中正确的是()A.②B.①C.①②D.都不正确[答案] B[解析]由散点图可以判断日期与发烧人数具有正相关关系,但不是函数关系,更不是一次函数关系,因为所有点不在一条直线上,而是在一条直线附近.10.过(3,10),(7,20),(11,24)三点的回归直线方程是()A.y^=1.75+5.75xB.y^=-1.75+5.75xC.y^=5.75+1.75xD.y^=5.75-1.75x[答案] C[解析]求过三点的回归直线方程,目的在于训练求解回归系数的方法,这样既可以训练计算,又可以体会解题思路,关键是能套用公式.代入系数公式得b^=1.75,a^=5.75.代入直线方程,求得y^=5.75+1.75x.故选C.二、填空题11.下列关系:(1)炼钢时钢水的含碳量与冶炼时间的关系;(2)曲线上的点与该点的坐标之间的关系;(3)柑橘的产量与气温之间的关系;(4)森林的同一种树木,其横断面直径与高度之间的关系.其中具有相关关系的是________.[答案](1)(3)(4)[解析](1)炼钢的过程就是一个降低含碳量进行氧化还原的过程,除了与冶炼时间有关外,还要受冶炼温度等其他因素的影响,故具有相关关系.(2)曲线上的点与该点的坐标之间的关系是一一对应的,即是一种确定性关系.(3)柑橘的产量除了受气温影响以外,还要受肥量以及水分等因素的影响,故具有相关关系.(4)森林的同一种树木,其横断面直径随高度的增加而增加,但是还受树木的疏松及光照等因素的影响,故具有相关关系.12.(2011·辽宁高考)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y 具有线性相关关系,并由调查数据得到y对x的回归直线方程:y^=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.[答案]0.254[解析]由于y^=0.254x+0.321知,当x增加1万元时,年饮食支出y增加0.254万元.14.改革开放30年以来,我国高等教育事业迅速发展,对某省1990~2000年考大学升学百分比按城市、县镇、农村进行统计,将1990~2000年依次编号为0~10,回归分析之后得到每年考入大学的百分比y与年份x的关系为:城市:y^=2.84x+9.50;县镇:y^=2.32x+6.67;农村:y^=0.42x+1.80.根据以上回归直线方程,城市、县镇、农村三个组中,________的大学入学率增长最快.按同样的增长速度,可预测2010年,农村考入大学的百分比为________%.[答案]城市10.2[分析]增长速度可根据回归直线的斜率来判断,斜率大的增长速度快,斜率小的增长速度慢.[解析]通过题目中所提供的回归方程可判断,城市的大学入学率增长最快;2010年农村考入大学的百分比为0.42×20+1.80=10.2.三、解答题15.某种产品的广告费支出x 与销售额y 之间有如下对应数据(单位:百万元)(1)(2)从散点图中判断销售金额与广告费支出成什么样的关系? [解析] (1)以x 对应的数据为横坐标,以y 对应的数据为纵坐标,所作的散点图如下图所示:(2)从图中可以发现广告费支出与销售金额之间具有相关关系,并且当广告费支出由小变大时,销售金额也大多由小变大,图中的数据大致分布在某条直线的附近,即x 与y 成正相关关系.16.某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表已知∑i =17x 2i =280,∑i =17y 2i =45209,∑i =17x i y i =3487.(1)求x -,y -;(2)求回归方程.[解析] (1)x -=17×(3+4+5+6+7+8+9)=6, y -=17×(66+69+73+81+89+90+91)=5597. (2)b ^=3487-7×6×5597280-7×36=194∴a ^=5597-194×6=71914,∴所求回归方程为y ^=194x +71914.17.某工厂对某产品的产量与成本的资料分析后有如下数据:(2)求成本y 与产量x 之间的线性回归方程. [解析] (1)散点图如下:(2)设成本y 与产量x 的线性回归方程为y ^=b ^x +a ^, x -=2+3+5+64=4,y -=7+8+9+124=9.b^=∑i=1nx i y i-n x-y-∑i=1nx2i-n x-2=1110=1.1,a^=y--b^x-=9-1.1×4=4.6.所以,回归方程为y^=1.1x+4.6.18.下面是世界上10名男网球选手的身高(x)与体重(y)的情况.(1)(2)你能从散点图中发现身高与体重近似成什么关系吗?(3)若近似成线性关系,请画出一条直线来近似地表示这种线性关系;(4)若某名男网球运动员的身高是172 cm,请预测他的体重.[解析](1)散点图如图:(2)由图可见,图中的数据点大致分布在一条直线附近,当身高数据由小到大变化时,体重数据也由小变大,因此身高与体重近似成线性相关关系.(3)直线如图所示.(4)根据所画直线可预测当身高是172 cm时,其体重约为61 kg.[点评]第(3)问中的直线不是唯一的,当然不同的近似直线将直线影响第(4)问的预测结果.。
2.3.2 两个变量的线性相关
Q a bx1 y1 a bx2 y2 a bx3 y3
2
a 2b 1 a 4b 1.2 a 6b 2
2 2
2
3a 56b 24ab 8. 8.4 4a 37.6b M 2 2 3a 24b 8.4 a 56b 37.6b M 2 2 2 3 a 4b 1.4 56b 37.6b M 3 4b 1.4
3 3 3 3 3
…
…
…
…
…
yn yn n a bxn n
思考:如何化几何问题为代数问题。
退出
两个变量的线性相关(第一课时)
复习
探究 探究
原理
例题
练习
小结
作业
yi 的符号有正有负,直接相加可能会相互抵消。 ∵偏差 yi
怎么办?
Q yi a bxi
同学们不妨尝试着寻找一下,看看什 么样的直线是最优的拟合直线?
帮助
退出
两个变量的线性相关(第一课时)
复习
探究 探究
原理
例题
练习
小结
作业
想法一
连接最左侧点和最右侧点 让画出的直线上方的点和下方的 点数目相等。
想法二
想法三
求众多过两点的直线的斜率和截 距,再求它们的平均值,得到回 归直线的斜率和截距。
复习
探究
原理
例题
练习
小结
作业
1um(1微米)=0.001mm(0.001毫米)
退出
两个变量的线性相关(第一课时)
复习
y.5 x 4 43 2. 5 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计意图
为本节课学生能够 更好的建构新的知识 23 27 39 41 45 49 50 年龄 做好充分的准备, 做好充分的准备,对 9.5 17.8 21.2 25.9 27.5 26.3 28.2 脂肪 旧的知识进行简要的 53 54 56 57 58 60 61 年龄 提问复习, 提问复习,为能够顺 29.6 30.2 31.4 30.8 33.5 35.2 34.6 脂肪 利的完成本节课的内 问题1:利用电子表格作出散点图,并指出上 容提供必要的基础。 利用电子表格作出散点图, 问题 容提供必要的基础。
设计意图
设计该问题, 设计该问题,引导学生自 己发现问题, 己发现问题,鼓励学生大 胆表达自己的看法。 胆表达自己的看法。 通过讨论比较,调动学生 通过讨论比较, 的学习积极性和兴趣,活 的学习积极性和兴趣, 跃课堂气氛。 跃课堂气氛。
1000 800 600 400 200
图
1
0 0 50 100 150
教学过程
(二)思考交流,新知探究 思考交流,
问题4 怎样用数学的方法刻画“ 问题4:怎样用数学的方法刻画“从整体上看各 点与此直线距离最小” 点与此直线距离最小”呢? 教师提问,学生回答) (教师提问,学生回答) y
设计意图
这样设疑符合 学生的认知规 (xi,yi) 律,增强了学 Rt△ABC中按照 在Rt△ABC中按照 (x2,y2) (xn,yn) 生的求知欲。 一对一的关系, 一对一的关系,直 生的求知欲。 C
教法
基于本节课的内容特点和学生的年龄特征, 基于本节课的内容特点和学生的年龄特征,首 先采用探究式教学方法创设情境, 先采用探究式教学方法创设情境,然后教师作为 引导者和帮助者, 引导者和帮助者,采用启发式教学方法与学生共 同经历回归分析的过程来完成教学。 同经历回归分析的过程来完成教学。
学法
学生通过合作学习,自主学习和探究式学习的 学生通过合作学习, 方式完成一个完整的数学学习过程。 方式完成一个完整的数学学习过程。
10
(x4,y4)
8
(xi,yi) yi-y^i
ˆ 设所求的直线的回归方程为 y = bx + a, ˆ 其中 a,b 为待定系数,则 yi = bxi + a , ˆ 于是得到各个偏差 yi − yi = yi −(bxi + a)(i =1,2,3~ n)
Q = ( y1 − bx1 − a ) 2 + ( y2 − bx2 − a ) 2 + K + ( yn − bxn − a ) 2 我们可以用 来表示 n 个点与回归直线在整体上的接近程度。这样,
目 标 分 析
3、情感态度与价值观 、 让学生理解两个变量的线性相关关系, 让学生理解两个变量的线性相关关系,增强应用回归直线方 程对实际问题进行分析和预测的意识。 程对实际问题进行分析和预测的意识。利用计算机让学生动手操 合作交流激发学生的学习兴趣。 作,合作交流激发学生的学习兴趣。
教学的重点和难点
教学目标
1、知识与技能 、 (1)知道最小二乘法和回归分析的思想; )知道最小二乘法和回归分析的思想; (2)能根据线性回归方程系数公式建立回归方程。 )能根据线性回归方程系数公式建立回归方程。 2、过程与方法 、 方法及最小二乘法的数学思想 (1)通过自主探究体会数形结合的方法及最小二乘法的数学思想。 )通过自主探究体会数形结合的方法及最小二乘法的数学思想。 (2)通过动手操作培养学生观察、分析、比较和归纳能力,引出 )通过动手操作培养学生观察、分析、比较和归纳能力, 利用计算机等现代化教学工具的必要性。 利用计算机等现代化教学工具的必要性。
教学过程
(二)思考交流,新知探究 思考交流,
问题5:下面列出的三个方案,哪个方案比较可行? 问题 :下面列出的三个方案,哪个方案比较可行?
设计意图
体会如何选取恰当 的计算方法建立回 归方程的过程, 归方程的过程,提 高学生分析问题的 能力; 能力;培养学生的 动手操作能力。 动手操作能力。 循序渐进, 循序渐进,符合学 生的认知规律。 生的认知规律。
设计意图
通过思考教材中 的三个方案体会 回归直线的特征。 回归直线的特征。
培养自学能力和 问题3:请同学们阅读教材87页的其余内容 页的其余内容, 问题 :请同学们阅读教材 页的其余内容,并思考教材 数学阅读能力。 数学阅读能力。
中的这些设计求回归直线方程的方案是不是真的可行? 中的这些设计求回归直线方程的方案是不是真的可行? 若不可行,为什么不行 为什么不行? 教师提问,学生回答) 若不可行 为什么不行?(教师提问,学生回答)
培养自学能力和 数学阅读能力。 数学阅读能力。 建立回归思想是 本节课的教学难 点,先让学生动 手操作画回归直 线,教师动画演 示,进一步演绎 推理来分解难点、 推理来分解难点、 突破难点。 突破难点。
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
教学媒体设计
本节课涉及大量数据计算及分析, 本节课涉及大量数据计算及分析,用传统方法 很难突破,故我主要采用多媒体教学手段, 很难突破,故我主要采用多媒体教学手段,通过 学生动手操作、教师动画演示、 学生动手操作、教师动画演示、师生合作交流来 突出重点、突破难点。 突出重点、突破难点。
教学过程分析
6
(x1,y1)
4
(x2,y2)
问题就转化为当 a, b 取什么值时 Q 最小。
2
n n ( xi − x)( yi − y ) ∑ xi yi − nx y ∑ b = i=1 = i=1n n 2 2 2 进一步得出回归直线的系数公式和最 ∑ ( xi − x) ∑ xi − nx i =1 i =1 小二乘法的定义, 小二乘法的定义,强调最小二乘法的 思想在统计学中具有非常重要的地位。 思想在统计学中具有非常重要的地位。 a = y − bx
教学过程
(一)创设情境,引入新课 创设情境,
发现: 呈上升趋势, 呈下降趋势。 发现:图1呈上升趋势,图2呈下降趋势。 呈上升趋势 呈下降趋势 这两个图中点的分布呈条状,后面两个图很乱。 这两个图中点的分布呈条状,后面两个图很乱。
设计意图
循序渐进, 循序渐进,符合学生 的认知规律. 的认知规律.
引导学生归纳出图1、 引导学生归纳出图 、图2散点图中数据点的分 散点图中数据点的分 布规律---散点图中点从整体上看大致分布在一 布规律---散点图中点从整体上看大致分布在一 条直线的附近 (自然地引出线性相关、回归直线的概念, 自然地引出线性相关、回归直线的概念, 同时引入课题) 同时引入课题)
学情分析
学生已经具备了对样本数据进行初步分析的能力, 学生已经具备了对样本数据进行初步分析的能力, 且掌握了一定的计算机基础, 且掌握了一定的计算机基础,能够根据两个相关变量的 数据作出散点图;学生思维活泼,积极性高, 数据作出散点图;学生思维活泼,积极性高,已初步形 成对数学问题的合作探究能力. 成对数学问题的合作探究能力
B
A (x1, y1) o x
角边AB越小, 角边AB越小,斜边 AB越小 AC也越小 也越小。 AC也越小。
(引导学生以等效性和简化计算为目标,将点到直线的 引导学生以等效性和简化计算为目标, 距离转化为自变量x取值一定时 取值一定时, 距离转化为自变量 以提高, 自然引出下面 求回归方程的 方法。 方法。
(教师总结)回归直线的特征:整体上看散点图中的点 教师总结)回归直线的特征: 到此直线的距离最小。 到此直线的距离最小。
教学过程
(二)思考交流,新知探究 思考交流,
口述:如果能够求出回归方程,那么我们就可以比较清 口述:如果能够求出回归方程, 楚的了解年龄与体内脂肪含量的相关性,这条直线可以 楚的了解年龄与体内脂肪含量的相关性, 作为两个变量具有线性相关关系的代表。我们应当如何 作为两个变量具有线性相关关系的代表 我们应当如何 具体求出这个回归方程呢? 具体求出这个回归方程呢? 启发式问题,不要求学生回答) (启发式问题,不要求学生回答) 师生共同探讨: 师生共同探讨:用待定系数法求回归直线方程
目 标 分 析
重点: 重点:
(1)了解最小二乘法和回归分析的思想 。 ) (2)根据给出的线性回归方程的系数公式建立回归方程。 )根据给出的线性回归方程的系数公式建立回归方程。
难点: 难点:
建立回归思想,理解回归直线与观测数据的关系。 建立回归思想,理解回归直线与观测数据的关系。
教 法 学 法 分 析
ˆ 方案一: 方案一: ∑ ( yi − yi ) 最小
i =1
n
方案二: 方案二:∑ yi − yi ˆ
i =1 n
n
最小
方案三: 方案三:∑ ( yi − y)2 最小 ˆ
i =1
(提问,学生讨论,教师动画演示) 提问,学生讨论,教师动画演示)
教学过程
(二)思考交流,新知探究 思考交流,
最小二乘法求回归直线:
面的两个变量是正相关还是负相关? 面的两个变量是正相关还是负相关?
(学生动手操作得出散点图回答) 学生动手操作得出散点图回答)
教学过程
(一)创设情境,引入新课 创设情境,
问题2:观察下面这4幅图 看有什么特点? 幅图, 问题 :观察下面这 幅图,看有什么特点?
脂肪含量 40 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 年龄
教学过程
验证结论, (三)验证结论,理解思想
师生共同完成
设计意图
回归方程的求法是 本节课的教学重点, 本节课的教学重点, 2.验证得出的回归直线是否与教材一致? 验证得出的回归直线是否与教材一致? 验证得出的回归直线是否与教材一致 利用电子表格计算繁 所得到的直线解析式与教材一致,还更精确, 是(所得到的直线解析式与教材一致,还更精确, 杂数据, 杂数据,激发学生的 数与形的结合让结果更有说服力) 数与形的结合让结果更有说服力) 兴趣,通过教师演示, 兴趣,通过教师演示, 3.利用程序功能验证回归直线系数公式是否正确 利用程序功能验证回归直线系数公式是否正确 学生动手操作突出重 4.推测某人 岁时体内脂肪含量百分比可能是多少?点,引出利用现代技 推测某人50岁时体内脂肪含量百分比可能是多少 推测某人 岁时体内脂肪含量百分比可能是多少? 术工具解决问题的必 看看得出的数据与真实数值之间的关系。 看看得出的数据与真实数值之间的关系。 要性。 有偏差,为什么) (估计值是29.272 与实际值 28.2 有偏差,为什么)要性。 , 问题6.求出回归直线方程有什么用呢? 问题 求出回归直线方程有什么用呢?