综合法和分析法(3)

合集下载

综合法与分析法知识点总结

综合法与分析法知识点总结

综合法与分析法知识点总结综合法与分析法是在研究认知过程和解决问题过程中的两种基本方法。

它们在科学研究、管理决策、问题解决等领域中都有着广泛的应用。

在本文中,我们将从综合法和分析法的基本概念、特点、适用范围、主要方法与应用技巧等方面进行综合分析,并结合具体例子进行具体说明。

一、综合法综合法是指在进行研究分析时,采用多个角度、多种方法进行综合比较,综合研究问题的方法。

综合法的主要特点有:1. 多因素综合:综合法强调多方面、多因素的综合研究。

它可以从不同的角度、不同的层面分析问题,得出综合、全面的结论。

2. 积极开放:综合法强调对各种可能性的积极开放,不固步自封,能够克服单一因素分析的片面性。

3. 统筹兼顾:综合法要求在研究中综合各种看法,避免偏听片信,充分尊重每个因素,统筹兼顾。

综合法的主要方法包括层层分析法、交叉综合法、数字与模型综合等。

在实际应用中,可以通过案例分析、数学模型分析等方法进行具体操作。

例如,在管理决策中,如果要分析一个市场是否具有潜在的发展前景,可以采用综合法。

首先,可以从市场规模、人口结构、经济发展情况等多个角度综合考虑;其次,可以采用数字模型进行综合分析,将不同因素的影响定量化,最终形成综合判断。

二、分析法分析法是通过对现象的分解、逐一研究,从而对复杂问题的本质和规律进行探讨的方法。

分析法的主要特点有:1. 逐一分解:分析法要求对问题进行逐层逐一的分解,从整体到局部,从细微到粗大地深入研究每个问题。

2. 重点着眼:分析法要求对问题的各个方面着重研究,找到问题的关键和症结所在,从而能够深刻理解问题。

3. 系统性:分析法在进行研究时需要具有系统性,从不同的角度对问题进行分析,形成全面、系统的认识。

分析法主要包括逐步分析法、归纳分析法、因果分析法等。

在实际应用中可以通过对数据的分解、对问题的逐步归纳等方法进行具体操作。

举例而言,在生产管理中,如果要分析一个生产环节中出现的问题,可以采用分析法。

高中数学知识点精讲精析 综合法与分析法

高中数学知识点精讲精析 综合法与分析法

4.3.2综合法与分析法1.综合法利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出定理1 如果a,b R,那么a2+b2≥2ab(当且仅当a=b 时取"="号) 证明:a2+b2-2ab=(a-b)2≥0 当且仅当a=b 时取等号.所以 a2+b2≥2ab(当且仅当a=b 时取等号).定理2 如果a,b,c R+,那么a3+b3+c3≥3abc(当且仅当a=b=c 时取"="号) 证明:∵a3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b+c)(a2+b2+c2-ab-bc-ac) =(a+b+c)[(a-b)2+(b-c)2+(a-c)2]≥0 ∴ a3+b3+c3≥3abc,很明显,当且仅当a=b=c 时取等号.用综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,2.分析法从要证明的不等式出发,寻找使这个不等式成立的某一"充分的"条件,为此逐步往前追溯(执果索因),一直追溯到已知条件或一些真命题为止.例如要证a2+b2≥2ab 我们通过分析知道,使a2+b2≥2ab 成立的某一"充分的"条件是a2-2ab+b2≥0,即(a-b)2≥0就行了.由于是真命题,所以a2+b2≥2ab 成立.分析法的证明过程表现为一连串的"要证……,只要证……",最后推至已知条件或真命题证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定用分析法证明不等式的逻辑关系是:12n B B B B A ⇐⇐⇐⇐⇐分析法的书写格式: 要证明命题B 为真,只需要证明命题1B 为真,从而有…… 这只需要证明命题2B 为真,从而又有…… ……这只需要证明命题A 而已知A 为真,故命题B 1.已知a 、b 、c 都是正数,求证:+>证明:观察原不等式中含有a 2+ab +b 2即a 2+b 2+ab 的形式,联想到余弦定理:c 2=a 2+b 2-2ab •CosC ,为了得到a 2+b 2+ab 的形式,只要C =120°,这样:可以看成a 、b 为邻边,夹角为120°的的三角形的第三边可以看成b 、c 为邻边,夹角为120°的的三角形的第三边 可以看成a 、c 为邻边,夹角为120°的的三角形的第三边构造图形如下,AB =, BC =, AC =显然AB +BC >AC ,故原不等式成立。

不等式的证明

不等式的证明

不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。

综合法和分析法

综合法和分析法

综合法和分析法
一、综合法
1、一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。

2、综合法的思维方向是”,即由已知条件出发,逐步推出其必要条件(由因导果),最后推导出所要证明的结论成立,故综合法又叫顺推证法或由因导果法.综合法的依据:已知条件以及逻辑推理的基本理论,在推理时要注意:作为依据和出发点的命题一定要正确.
二、分析法
1、 1、一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

2、分析法的思维特点是:执果索因;分析法的书写格式:要证明命题B为真,只需要证明命题为真,从而有……,这只需要证明命题为真,从而又有……这只需要证明命题A为真,而已知A为真,故命题B必为真。

3、用分析法证明的模式:
用分析法证:为了证明命题B为真,这只需证明命题B,为真,从而有……这只需证明命题B:为真,从而有……这只需证明命题A为真.而已知A为真,故B必真.可见分析法是”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法。

特别提醒:当命题不知从何人手时,有时可以运用分析法来解决,特别是对
于条件简单而结论复杂的题目,往往更是行之有效.用分析法证明时,往往在最后加上一句步可逆,这无形中就出现了两个问题:①分析法证明过程的每一步不一定”,也没有必要要求”,因为这时仅需寻找充分条件,而不是充要条件;②如果非要”,则限制了分析法解决问题的范围,使得分析法只适用于证明等价命题了,但是,只要我们搞清了用分析法证明问题的逻辑结构,明确四种命题之间的关系,那么用分析法证明不等式还是比较方便的。

高中数学综合法和分析法 (3)

高中数学综合法和分析法 (3)

Q2 Q3

Qn Q
综合法是由一个个推理组成的
二、讲授新课——分析法(逆推证法或执果索因法)
一般地,从要证明的结论出发,逐步寻求推证过程中,使 每一步结论成立的充分条件,直至最后,把要证明的结论归结为 判定一个明显成立的条件(已知条件、定理、定义、公理等)为 止,这种证明的方法叫做分析法。其特点是:执果索因,即
P
P1
P1
P2 …
Pn-1 Qm-1
Pn Qm
… Q1
Q2 Q
Q1
例6.已知 , k

2 sin cos 2 sin , sin cos sin 2
(k z ), 且
1 tan 2 1 tan 2 求证: = 2 1 tan 2(1 tan 2 )
a+b 所以 2
因为;( a b )2 0 成立
ab成立
思考:上述两种证法有什么异同?
相同
不同
都是直接证明 证法1 从已知条件出发,以已知的定义、公理、 定理为依据,逐步下推,直到推出要证明的结论 为止 综合法 证法2 从问题的结论出发,追溯导致结论成立的 条件,逐步上溯,直到使结论成立的条件和已知 条件吻合为止 分析法
一、回顾复习——综合法(顺推证法或由因导果法)
利用已知条件和某些数学定义、公理、定理等, 经过一系列的推理论证,最后推导出所要证明的结论 成立,这种证明方法叫做综合法。其特点是:“由因导 果” 用P表示已知条件、已有的定义、公理、定理 等,Q表示所要证明的结论.
则综合法用框图表示为:
P Q1
Q1 Q 2
2

2
cos2β-sin2β

不等式证明的常用基本方法(自己整理)

不等式证明的常用基本方法(自己整理)

证明不等式的基本方法导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式.[自主梳理]1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立.2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n≥na 1·a 2·…·a n ,当且仅当__________________时等号成立.3.证明不等式的常用五种方法(1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小.(2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法.(3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法①反证法的定义先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.②思路:分析观察证明式的特点,适当放大或缩小是证题关键.题型一 用比差法与比商法证明不等式1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) A.s≥t B.s>t C.s≤t D.s<t【解析】∵s -t =b 2-2b +1=(b -1)2≥0,∴s≥t.【答案】A2.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( D ) A .a >b B .a <b C .a ≤b D .a ≥b解析:∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n)2≥0,∴a ≥b.答案:D 3.设a,b ∈R,给出下列不等式:①lg(1+a 2)>0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所有恒成立的不等式序号是 ② .②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.题型二 用综合法与分析法证明不等式 4.(1)已知x ,y 均为正数,且x>y ,求证:2x +1x 2-2xy +y2≥2y+3;(2)设a ,b ,c>0且ab +bc +ca =1,求证:a +b +c≥ 3. 证明 (1)因为x>0,y>0,x -y>0,2x +1x 2-2xy +y 2-2y =2(x -y)+1 x-y 2=(x -y)+(x -y)+1x-y2≥33 x-y21 x-y 2=3,所以2x +1x 2-2xy +y2≥2y+3.(2)因为a ,b ,c>0,所以要证a +b +c≥3,只需证明(a +b +c)2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca)≥3,而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca)≥3(ab+bc +ca).即证:a 2+b 2+c 2≥ab+bc +ca.而ab +bc +ca≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)成立.所以原不等式成立.5.已知a 、b 都是正实数,且ab =2.求证:(1+2a)(1+b)≥9.证明:法一 因为a 、b 都是正实数,且ab =2,所以2a +b≥22ab =4. 所以(1+2a)(1+b)=1+2a +b +2ab≥9.法二 因为ab =2,所以(1+2a)(1+b)=(1+2a)⎝ ⎛⎭⎪⎫1+2a =5+2⎝ ⎛⎭⎪⎫a +1a . 因为a 为正实数,所以a +1a≥2a·1a=2.所以(1+2a)(1+b)≥9. 法三 因为a 、b 都是正实数,所以(1+2a)(1+b)=(1+a +a)·⎝ ⎛⎭⎪⎫1+b 2+b 2≥3·3a 2·3·3b 24=9·3a 2b 24.又ab =2,所以(1+2a)(1+b)≥9.思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野. 题型三 放缩法证明不等式6.已知0<a<1b ,且M =11+a +11+b ,N =a 1+a +b1+b,则M 、N 的大小关系是( A )A. M>NB. M<NC. M =ND.不能确定解析:∵0<a<1b,∴1+a>0,1+b>0,1-ab>0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.答案:A7.若a ,b∈R,求证:|a +b|1+|a +b|≤|a|1+|a|+|b|1+|b|.证明 当|a +b|=0时,不等式显然成立.当|a +b|≠0时,由0<|a +b|≤|a|+|b|⇒1|a +b|≥1|a|+|b|,所以|a +b|1+|a +b|=11|a +b|+1≤11+1|a|+|b|=|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|. 思维升华 (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有:①变换分式的分子和分母,如1k 2<1k k-1 ,1k 2>1k k+1 ,1k <2k +k -1,1k >2k +k +1.上面不等式中k∈N *,k>1; ②利用函数的单调性;③真分数性质“若0<a<b ,m>0,则a b <a +mb +m”.(2)在用放缩法证明不等式时,“放”和“缩”均需把握一个度.8.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明 由2n≥n+k>n(k =1,2,…,n),得 12n ≤1n +k <1n. 当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…,当k =n 时,12n ≤1n +n <1n,∴12=n 2n ≤1n +1+1n +2+…+12n <n n =1.∴原不等式成立. 题型四 用反证法证明不等式 9.设a>0,b>0,且a+b=.证明:(1)a+b≥2; (2)a 2+a<2与b 2+b<2不可能同时成立. 【解析】由a+b=,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2=2,即a+b≥2.(2)假设a 2+a<2与b 2+b<2同时成立,则由a 2+a<2及a>0得0<a<1;同理得0<b<1,从而ab<1, 这与ab=1矛盾.故a 2+a<2与b 2+b<2不可能同时成立.10.若a>0,b>0,且1a +1b=ab.(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.【解】(1)由ab =1a +1b ≥2ab,得ab≥2.当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.1.证明不等式的常用方法有五种,即比较法、分析法、综合法、反证法、放缩法.2.应用反证法证明数学命题,一般有下面几个步骤:(1)分清命题的条件和结论;(2)作出与命题结论相矛盾的假设;(3)由条件和假设出发,应用正确的推理方法,推出矛盾结果;(4)断定产生矛盾结果的原因在于开始所作的假设不真,于是原结论成立,从而间接地证明了命题为真.3.放缩法证明不等式时,常见的放缩法依据或技巧主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(母)异分母(子)的两个分式大小的比较.缩小分母、扩大分子,分式值增大;缩小分子、扩大分母,分式值减小;全量不少于部分;每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩有时需便于求和.4.放缩法的常用措施:(1)舍去或加上一些项,如⎝⎛⎭⎫a+122+34>⎝⎛⎭⎫a+122;(2)将分子或分母放大(缩小),如1k2<1k(k-1),1k2>1k(k+1),1k<2k+k-1,1k>2k+k+1(k∈N*且k>1)等.1.设a、b是正实数,给出以下不等式:①ab>2aba+b;②a>|a-b|-b;③a2+b2>4ab-3b2;④ab+2ab>2,其中恒成立的序号为( D )A.①③B.①④C.②③D.②④[答案]D[解析]∵a、b∈R+时,a+b≥2ab,∴2aba+b≤1,∴2aba+b≤ab,∴①不恒成立,排除A、B;∵ab+2ab≥22>2恒成立,故选D.2.设M=1210+1210+1+1210+2+…+1211-1,则( B )A.M=1 B.M<1 C.M>1 D.M与1大小关系不定【解析】∵210+1>210,210+2>210,…,211-1>210,∴M=1210+1210+1+1210+2+…+1211-1<1210+1210+…+1210210个=1.【答案】B3.若不等式tt2+9≤a≤t+2t2在t∈(0,2]上恒成立,则a的取值范围是( B )A.⎣⎢⎡⎦⎥⎤16,1 B.⎣⎢⎡⎦⎥⎤213,1 C.⎣⎢⎡⎦⎥⎤16,413D.⎣⎢⎡⎦⎥⎤16,22【解析】由已知⎩⎪⎨⎪⎧a≥1t+9t,a≤1t+2⎝⎛⎭⎪⎫1t2,对任意t∈(0,2]恒成立,于是只要当t∈(0,2]时,⎩⎨⎧a≥⎝⎛⎭⎪⎪⎫1t+9tmax,a≤⎣⎢⎡⎦⎥⎤1t+2⎝⎛⎭⎪⎫1t2min,记f(t)=t+9t,g(t)=1t+2⎝⎛⎭⎪⎫1t2,可知两者都在(0,2]上单调递减,f(t)min=f(2)=132,g(t)min=g(2)=1,所以a∈⎣⎢⎡⎦⎥⎤213,1. 【答案】B4.已知a,b为实数,且a>0,b>0.则⎝⎛⎭⎪⎫a+b+1a⎝⎛⎭⎪⎫a2+1b+1a2的最小值为( C )A.7 B.8 C.9 D.10【解析】因为a>0,b>0,所以a+b+1a≥33a×b×1a=33b>0,①同理可证:a 2+1b +1a ≥33a 2×1b ×1a 2=331b>0.②由①②及不等式的性质得⎝ ⎛⎭⎪⎫a +b +1a ⎝ ⎛⎭⎪⎫a 2+1b +1a 2≥33b ×331b =9.【答案】C5.下列结论正确的是( B )A .当x >0且x≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x≥2时,x +1x 的最小值为2D .当0<x≤2时,x -1x无最大值解析:当0<x <1时,lg x +1lg x <0,∴A 错误;当x >0时,x +1x≥2x ·1x=2,∴B 正确; 当x≥2时,x +1x 的最小值为52,∴C 错误.当0<x≤2时,x -1x是增函数,最大值在x =2时取得,∴D 错误.答案:B6.若P =x 1+x +y 1+y +z1+z(x>0,y>0,z>0),则P 与3的大小关系为____ P<3____.【解析】∵1+x>0,1+y>0,1+z>0,∴x 1+x +y 1+y +z 1+z <1+x 1+x +1+y 1+y +1+z1+z=3.即P<3.【答案】P<37.某品牌彩电厂家为了打开市场,促进销售,准备对其生产的某种型号的彩电降价销售,现有四种降价方案:(1)先降价a%,再降价b%;(2)先降价b%,再降价a%;(3)先降价a +b 2%,再降价a +b2%;(4)一次性降价(a +b)%.其中a>0,b>0,a≠b,上述四个方案中,降价幅度最小的是__ x 3>x 1=x 2>x 4___.解析:设降价前彩电的价格为1,降价后彩电价格依次为x 1、x 2、x 3、x 4. 则x 1=(1-a%)(1-b%)=1-(a +b)%+a%·b% x 2=(1-b%)(1-a%)=x 1,x 3=⎝ ⎛⎭⎪⎫1-a +b 2%⎝ ⎛⎭⎪⎫1-a +b 2%=1-(a +b)%+14[(a +b)%]2, x 4=1-(a +b)%<1-(a +b)%+a%·b%=x 1=x 2,x 3-x 1=⎝ ⎛⎭⎪⎫a%+b%22-a%·b%>0,∴x 3>x 1=x 2>x 4.8.已知两正数x ,y 满足x +y =1,则z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y 的最小值为____254____. 【解析】z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y =xy +1xy +y x +x y =xy +1xy +(x +y )2-2xy xy =2xy +xy -2,令t =xy ,则0<t =xy≤⎝ ⎛⎭⎪⎫x +y 22=14. 由f(t)=t +2t 在⎝ ⎛⎦⎥⎤0,14上单调递减,故当t =14时f(t)=t +2t 有最小值334,所以当x =y =12时,z 有最小值254.【答案】2549.求证:112+122+…+1n 2<2(n∈R *).证明 ∵1k 2<1k (k -1)=1k -1-1k ,∴112+122+…+1 n 2<1+(1-12)+(12-13)+…+(1n -1-1n )=1+(1-1n )=2-1n<2. 10.设a 、b 、c 均为正实数,求证:1a +1b +1c ≥1ab +1bc +1ac ≥2b +c +2c +a +2a +b .【证明】 ∵a ,b ,c 均为正实数,∴1a +1b ≥2ab ≥4a +b 当a =b 时等号成立 1b +1c ≥2bc ≥4b +c 当b =c 时等号成立 1a +1c ≥2ac ≥4a +c当a =c 时等号成立 三个不等式相加即得 2a +2b +2c ≥2ab +2bc +2ac ≥4a +b +4b +c +4a +c 当且仅当a =b =c 时等号成立 即1a +1b +1c ≥1ab +1bc +1ac ≥2a +b +2b +c +2a +c . 11.已知函数f(x)=m -|x -2|,m ∈R ,且f(x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c 大于0,且1a +12b +13c=m ,求证:a +2b +3c≥9.【解】(1)∵f(x +2)=m -|x|,∴f(x +2)≥0等价于|x|≤m. 由|x|≤m 有解,得m≥0且其解集为{x|-m≤x≤m}. 又f(x +2)≥0的解集为[-1,1],故m =1.(2)证明:由(1)知1a +12b +13c=1,且a ,b ,c 大于0,a +2b +3c =(a +2b +3c)⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥3+22b a ·a2b+23c a ·a 3c+23c 2b ·2b3c=9. 当且仅当a =2b =3c =13时,等号成立.因此a +2b +3c≥9.12.设a ,b ,c ∈R +且a +b +c =1,试求:12a +1+12b +1+12c +1的最小值.解:∵a +b +c =1,a ,b ,c 为正数,∴⎝ ⎛⎭⎪⎫12a +1+12b +1+12c +1(2a +1+2b +1+2c +1)≥(1+1+1)2,∴12a +1+12b +1+12c +1≥95.当且仅当2a +1=2b +1=2c +1,即a =b =c 时等号成立,∴当a =b =c =13时,12a +1+12b +1+12c +1取最小值95.答案:方案(3)13.设a >0,b >0,a +b =1,(1)求证:ab +1ab ≥414 ;(2)探索猜想,并将结果填在以下括号内:a 2b 2+1a 2b 2 ≥( );a 3b 3+1a 3b3 ≥( );(3)由(1)(2)归纳出更一般的结论,并加以证明.解析:(1)证法一:ab +1ab ≥414⇔4a 2b 2-17ab +4≥0⇔(4ab -1)(ab -4)≥0.∵ab =(ab)2≤⎝⎛⎭⎫a +b 2 2=14,∴4ab ≤1,而又知ab ≤14<4,因此(4ab -1)(ab -4)≥0成立,故ab +1ab ≥414.证法二:ab +1ab =ab +142·ab +1542·ab ,∵ab ≤⎝⎛⎭⎫a +b 22=14,∴1ab ≥4,∴1542·ab ≥154 .当且仅当a =b =12时取等号.又ab +142·ab ≥2 ab·142·ab =12,当且仅当ab =142·ab ,即1ab =4,a =b =12 时取等号.故ab +1ab ≥24 +154=414 (当且仅当a =b =12时,等号成立).证法三:∵a>0,b>0, ∴1=a +b ≥2ab ,∴ab ≤14,令ab =t ⎝⎛⎭⎫t ≤14. 令y =ab +1ab =t +1t ⎝⎛⎭⎫0<t ≤14, y ′=1-1t 2,t ≤14,1t2≥16.∴y ′<0,∴y =t +1t 在(0,14]单调减.∴y ≥14+4=414,即ab +1ab ≥414.(2)猜想:当a =b =12 时,不等式a 2b 2+1a 2b 2 ≥( )与a 3b 3+1a 3b 3 ≥( )取等号,故在括号内分别填16116与64164.(3)由此得到更一般性的结论:a nb n +1a n b n ≥4n +14n .∵ab ≤⎝⎛⎭⎫a +b 2 2=14,∴1ab ≥4.证法一:∴a n b n +1a n b n =a n b n +142n ·a n b n +42n -142n ·a n b n ≥2 a n b n·142n ·a n b n +42n -142n ×4n=24n +42n-14n =4n +14n ,当且仅当ab =14 ,即a =b =12时取等号. 证法二:令ab =t ,由(1)知0<t ≤14,令y =1a n b n +a n b n =t n +1t n ,y ′=nt n -1-n tn +1=n ⎝⎛⎭⎫t n -1-1t n +1∵0<t ≤14,∴t n -1≤14n -1,1tn +1≥4n +1.∴y ′<0,∴y=t n+1t n在(0,14]单调减,∴y≥4n+14n,即an b n+1a nb n≥4n+14n.。

数学:不等式证明四法比较法综合法分析法反证法与放缩法

数学:不等式证明四法比较法综合法分析法反证法与放缩法

不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。

比较法分为:作差法和作商法 一、 作差法若a ,b ∈R ,则: a —b >0⇔a >b ;a —b =0⇔a =b ;a —b <0⇔a <b 它的三个步骤:作差——变形——判断符号(与零的大小)——结论. 作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左—右的符号,从而降低了问题的难度。

作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x 2 + 3 > 3x 证:∵(x 2 + 3) 3x = 043)23(3)23()23(32222>+-=+-+-x x x ∴x 2 + 3 > 3x例2、 (课本P 22例2)已知a, b, m 都是正数,并且a < b ,求证:bam b m a >++ 证:)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a,b,m 都是正数,并且a<b ,∴b + m > 0 , b a > 0 ∴0)()(>+-m b b a b m 即:bam b m a >++变式:若a > b ,结果会怎样?若没有“a < b ”这个条件,应如何判断?例3、 已知a, b 都是正数,并且a b ,求证:a 5 + b 5 > a 2b 3 + a 3b 2 证:(a 5 + b 5 )(a 2b 3 + a 3b 2) = ( a 5 a 3b 2) + (b 5 a2b 3)= a 3 (a 2b 2 )b 3 (a 2b 2) = (a 2b 2 )(a 3 b 3)= (a + b )(a b )2(a 2 + ab + b 2)∵a, b 都是正数,∴a + b, a 2 + ab + b 2 > 0又∵a b ,∴(a b )2 > 0 ∴(a + b )(a b )2(a 2 + ab + b2) > 0即:a 5 + b 5 > a 2b 3 + a 3b 2例4、 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果m n ,问:甲乙两人谁先到达指定地点?解:设从出发地到指定地点的路程为S ,甲乙两人走完全程所需时间分别是t 1, t 2,则:21122,22t n S m S S n t m t=+=+可得:mnn m S t n m S t 2)(,221+=+= ∴)(2)()(2])(4[2)(22221n m mn n m S mn n m n m mn S mn n m S n m S t t +--=++-=+-+=- ∵S, m, n 都是正数,且m n ,∴t 1 t 2 < 0 即:t 1 < t 2从而:甲先到到达指定地点。

1-2-3-3综合法与分析法导学案

1-2-3-3综合法与分析法导学案

第三章 推理与证明 §3综合法与分析法基础自主预习1.综合法:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近证明的结论,直到完成命题的证明,这样的思维方法称为综合法。

若P 表明命题的条件,已有的定义、定理、公理等,Q 表示所要证明的结论,则综合法可以用以下的框图表示:它是从“已知”看“可知”,逐步推向“未知”,由因导果,其逐步推理实际上是寻找它的必要条件。

2.分析法:从求证的结论出发,一步一步地探索保证前个结论成立的充分条件。

直到归结为这个命题的条件,或者归结为定义、公理、定理等,这样的思维方法称为分析法。

若用Q 表示要证明的结论,则分析法可以用以下的框图表示:它是综合法的逆过程,即从“未知”看“需知”。

执果索因,逐步靠拢“已知”。

3.综合法与分析法的区别与联系:①综合法证明是“由因索果”,分析法证明是“执果索因”;②分析法便于寻找解题思路,而综合法便于叙述;③分析法的缺点是表述易错(注意分析法独特的表述!)综合法缺点是探路艰难,易生枝节;④对于难题,常把二者交互使用,互补优缺,形成了分析综合法.练习:设R b a ∈,,且b a >,则( )A.22b a >B.1<a bC.0)lg(>-b aD.ba⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛2121 【答案】D练习: ) A.综合法 B.分析法 C.间接证法 D.合情推理法 【答案】Btan(A分析法由要证明的结论Q思考,一步步知能达标训练1.命题“如果数列}{n a 的前n 项和n n S n -=2,那么数列}{n a 一定是等差数列”是否成立( )A.不成立B.成立C.不能判定 D 能判定. 【答案】B【解析】当2≥n 时,221-=-=-n S S a n n n ,当1=n 时,011211=-==S a 也满足上式,故)1(21≥=--n a a n n ,所以}{n a 是等差数列.2.(2010—2011学年度上学期中山市镇区高中高三联考文,3)已知a R ∈,则“2a >”是“22a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】a a a 222>⇒> ,但222>⇒>a a a 或0<a .∴“2a >”是“22a a >”的充分不必要条件.3.已知函数xxx f +-=11lg )(,若b a f =)(,则)(a f -等于( ) A.a B.b - C.b 1 D. b1-【答案】B【解析】易证xxx f +-=11lg)(为奇函数,.)()(b a f a f -=-=-∴ 4.已知平面αβ,和直线m ,给出条件:①m α∥;②m α⊥;③m α⊂;④αβ⊥;⑤αβ∥.(1)当满足条件_____时,有m β∥,(2)当满足条件_____时,有m β⊥.(填所选条件的序号) 【答案】③⑤,②⑤ 【解析】对于(1),是据面面平行来证线面平行而得出的;对于(2),是据“一条直线垂直于两个平行平面中的一个,则其与另一个平面也垂直”这个结论来得的. 5.已知a b c +∈R ,,,且1a b c ++=,求证:.8)11)(11)(11(≥---cb a 证明过程如下:∵a b c +∈R ,,,且1a b c ++=,110b c a a +-=>∴,110a c b b +-=>,110a bc c+-=>,.)11)(11)(11(ac b c b a +=---8a c a b b c ++=·, 当且仅当a b c ==时取等号,∴不等式成立.这种证法是_________.(综合法、分析法或反证法) 【答案】综合法【解析】据综合法的证明思路便可得出.智能提升作业1.设a b c d ,,,,m n +∈R ,,P =Q = ) A.P Q ≥ B.P Q ≤ C.P Q > D.P Q < 【答案】B 【解析】cd ab abcd cd ab nadm m ncb cd ab n d m b nc ma Q +=++≥+++=+⋅+=22.若π04αβ<<<,sin cos a αα+=,sin cos b ββ+=,则( ) A.a b < B.a b > C.1ab < D.2ab > 【答案】A【解析】)4sin(2cos sin ),4sin(2cos sin πβββπααα+=+=+=+=b a且结合已知,有2444ππβπαπ<+<+<,故有a b <.3.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,a b +∈R ,,2a b A f +⎛⎫= ⎪⎝⎭,B f =,ab C f a b ⎛⎫= ⎪+⎝⎭,则A B C ,,的大小关系( )A.A B C ≤≤ B.A C B ≤≤ C.B C A ≤≤ D.C B A ≤≤【答案】A【解析】据不等式的性质知b a ab ab b a +≥≥+2,又1()2xf x ⎛⎫= ⎪⎝⎭为单调递减函数,故有 A B C ≤≤.4.在ABC ∆中,有:①;BC AC AB =- ②;0=++CA BC AB ③若0)()(=-⋅+AC AB AC AB ,则A B C ∆为等腰三角形;④若,0>⋅AC AB 则ABC ∆为锐角三角形.上述说法正确的是( )A. ①②B. ①④C. ②③D. ②③④ 【答案】C【解析】=-,故①错;若,0>⋅则只能说明A 为锐角,ABC ∆不一定为锐角三角形,因为其它角可能不是锐角,故④错;据向量的运算规律与性质易知②③正确. 5.012<-+ax ax 恒成立,则a 的取值范围是( )A.0≤aB.4-<aC.04<<-aD. 04≤<-a 【答案】D【解析】需讨论:当0=a 时,有01<-,显然成立;当0≠a 时,只能0<a ,且042<+=∆a a 才成立,综合知04≤<-a .6.(昆明一中2011届高三年级第二次月考理,4)已知向量且)1,(sin ),2,(cos αα=-=∥4tan(πα-则)等( )A .3B .-3C .31D .-31【答案】B【解析】3tan 11tan )4tan(,21tan 0sin 21cos //-=+-=--=⇒=+⋅⇒ααπαααα. 7.三次函数3()1f x ax =-在),(+∞-∞内是减函数,则a 的取值范围是_______. 【答案】0a <【解析】因为3()1f x ax =-是减函数,只能3ax 是递减的,而3x y =是一个递增函数,故只能是0a <才行.8.若抛物线2y mx =与椭圆22195x y +=有一个共同的焦点,则m =_______.【答案】8±【解析】因为椭圆22195x y +=的焦点是)0,2(),0,2(-,故抛物线2y mx =中应有24±=m ,故8±=m .9.设函数()f x 对任意∈R ,x y ,都有()()()f x y f x f y +=+,且0x >时,()0f x <. (1)证明()f x 为奇函数;(2)证明()f x 在R 上为减函数.【证明】(1),,R y x ∈ ()()()f x y f x f y +=+,∴令0x y ==,(0)(0)(0)f f f =+,(0)0f =∴,令y x =-,代入()()()f x y f x f y +=+,得(0)()()f f x f x =+-, 而(0)0f =,()()()f x f x x -=-∈R ∴, ()f x ∴是奇函数;(2)任取12x x ∈R ,,且12x x <, 则210x x x ∆=->,21()()0f x f x x ∆=-<∴.又2121()()()f x x f x f x -=+-,()f x ∵为奇函数,11()()f x f x -=-∴,21()()()0f x f x f x ∆=-<∴,即21()()0f x f x -<, ()f x ∴在R 上是减函数.10.已知:a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1. 证法1:用综合法.∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤a 2+b 2+x 2+y 2. 又a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2, ∴ax +by ≤1. 证法2:用分析法.要证ax +by ≤1成立,只要证1-(ax +by )≥0. 只要证2-2ax -2by ≥0. 又∵a 2+b 2=1,x 2+y 2=1,∴只要证:a 2+b 2+x 2+y 2-2ax -2by ≥0. 即证:(a -x )2+(b -y )2≥0, 上式显然成立. ∴ax +by ≤1成立.教学参考本节主要学习证明问题的两种直接证法:综合法与分析法,从而为同学们熟练证明数学问题提供方向,所以同学们必须熟练掌握这两种证题方式,以能灵活运用. 一、教学内容分析通过本节内容的学习,结合已学过的数学实例,正确认识综合法和分析法在证明过程中的重要作用,针对具体问题选择合适的证明方法,养成勤于观察、善于思考的数学品质,实现自己数学学习的又一次飞跃. 二、教学重点难点教学重点:结合已学过的数学实例,了解直接证明的两种基本方法:综合法与分析法,以及其各自的思考过程、特点.教学难点:根据问题的特点,对照综合法与分析法各自的思考过程、特点,选择适当的方法来证明,或将两种不同的方法结合起来使用. 三、教学建议学生们对综合法与分析法在平时的证明问题中并不陌生,因为经常会用到它们来证明问题,但他们对这些证明方法的基本内涵和特点不一定非常清楚,为了帮助同学们理清证题思路,现归纳如下:分析法是从求证的结论出发,一步一步地探索保证前个结论成立的充分条件,此法解题 方向较为明确,利于寻找解题思路;综合法是从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近证明的结论,直到完成命题的证明,综合法形式简捷,条理清晰,宜于表述.因此,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.为了让学生们认识和理解两种方法的相似之处和内在联系以及用它们来熟练解决问题的方式,必须充分动用学生已有的数学活动和生活经验,在此基础上进行概括和总结,在理解证明方法的基础上,对证明的规范要有严格的要求,要重视证明的表述.作为重要的思维方法,综合法和分析法也是两种重要的探索方法,在教学中要注意解题思路的探索过程,要重视方法的运用,并相信学生会在今后的运用过程中,会深化对方法的认识,并提高能力.。

应用题的解题步骤与方法

应用题的解题步骤与方法

应用题的解题步骤与方法一、解答应用题的一般步骤1、审题,也就是理解题意。

要反复读题,弄清已知条件和所求问题。

2、分析数量之间的关系,也就是分析题目中已知量,未知量及所求问题之间的相互关系。

有时可以通过画简单的线段关系图,使数量关系更加简单明了。

3、确定运算顺序,即先算什么、再算什么、最后算什么,并列出算式,算出结果。

4、验算并写出答案。

二、列方程解应用题的一般步骤1、弄清题意,明确已知量和未知量,用字母X表示未知量。

2、找出题目中已知量和未知量之间的等量关系。

3、根据等量关系,列出方程,并解方程。

4、检验并写出答案。

三、列方程解答应用题跟算术方法解答应用题的联系与区别。

联系:列方程解答应用题,需要应用算术里学习的四则运算的相互关系,以及常见的数量关系,因此算术解法是基础,而列方程解应用题是它的发展。

区别:1、两种解答应用题的方法表达方式不同。

列方程是用代数式表示数量关系,关系式中包括未知数X;算术解法则是用算术式子表示数量关系,计算过程不含未知数。

2、解题思路不同。

列方程解应用题是把未知量设为X,与其它已知量一起参加列式,而算术解法只能从已知与已知,已知与未知之间多层次分析思考,需要逆向思维。

3、解题步骤的不同(见解应用题的步骤)四、解答应用题的基本思路1、综合法思路。

从已知条件出发,根据数量关系先选择两个已知条件,提出可以解答的问题,然后把所求出的数量作为新的已知条件,与其它已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出题目中所要求的结果为止。

2、分析法思路。

从所求问题入手,根据数量关系,找出解答最后结果所需要的条件,把其中一个(或2个)未知条件作为新问题,再寻找解决这个新问题所需要的条件,这样逐步逆推,直到所找条件在应用题中都是已知的为止。

其实在运用分析法的逆推过程中,就是把复杂的应用题分解成几个简单的应用题。

3、综合法解题思路和分析法解题思路是相反的,但在思考过程中,分析和综合的运用并不是孤立的,而是互相联系的,综合中有分析,交叉运用。

综合法、分析法、反证法

综合法、分析法、反证法
一、复习: 推 理
合情推理
演绎推理
归纳
类比
三段论
(特殊到一般) (特殊到特殊)(一般到特殊)
演绎推理是证明数学结论、建立数学体系的 重要思维过程.
数学结论、证明思路的发现,主要靠合情推理.
直接证明
2.2.1 综合法
例1.已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc 证明:因为b2+c2 ≥2bc,a>0 所以a(b2+c2)≥2abc. 又因为c2+b2 ≥2bc,b>0 所以b(c2+a2)≥ 2abc. 因此a(b2+c2)+b(c2+a2)≥4abc.
b ac 由a,b,c成等比数列可得什么?
2
怎样把边,角联系起来?
点评:解决数学问题时,
文字语言
学会语言转换;还要细
致,找出隐含条件。
图形语言
符号语言
例3.在锐角三角形ABC中, 求证sinA+sinB+sinC>cosA+cosB+cosC
课堂练习:
1.已知a,b,c > 0,且不全等,求证: a(b2 + c2)+ b(c2 + a2)+ c(a2 + b2)> 6abc
只需证:AE⊥BC 只需证:BC⊥平面SAB 只需证:BC⊥SA 只需证:SA⊥平面ABC
F E
A
C
B
因为:SA⊥平面ABC成立 所以. AF⊥SC成立
思考:请对综合法与分析法进行比
较,说出它们各自的特点。回顾以往 的数学学习,说说你对这两种证明方 法的新认识。

2.2.1综合法和分析法

2.2.1综合法和分析法





分析法 又叫逆推证法或执果索 . , 因法
用Q表示要证明的结论 则分析法可用框图表示 : , 为
Q P1
P1 P2
P2 P3

得到一个明显 成立的条件
例 2 如图 2.2 1 所示 , SA 平面ABC, AB BC, 过A作SB 的垂线, 垂足为E , 过E作SC的 垂线, 垂足为F.求证 AF SC.
a,b, c成等比数列转化为符号语言就是 ac. , b 此时,如果能把角和边统一起 ,那么就可以进一 来 步寻找角和边之间的关 , 进而判断三角形的形 系 状, 余弦定理正好满足要求 .于是,可以用余弦定理 为工具进行证明 .
2
证明 由A,B, C成等差数列有2B A C. , 因为A,B, C为ΔABC的内角 所以A B C π. , π 由 ① ②, 得B . 3 2 由a,b, c成等比数列有b ac. ,


1 即证 cos α sin α cos2 β sin2 β , 2 1 2 即证1 2 sin α 1 2 sin2 β , 2 即证4 sin2 α 2 sin2 β 1.
2 2




由于上式与③ 相同,于是问题得证.
用P表示已知条件定义、定 理、公理 等 , 用Q 表示要证明的结论 则上述过 , 程可用框图表示为:
π 例3 已知α, β kπ k Z , 且 2 sin θ cos θ 2 sin α , ① sin θ cos θ sin β ,
2 2 2

1 tan α 1 tan β 求证 : . 2 2 1 tan α 2 1 tan β

综合法分析法

综合法分析法

授益教育综合法与分析法做任何事情都要讲究方法。

方法对头,事半功倍;方法不当,事倍功半。

解答数学问题,关键也在于掌握思考问题的方法,少走弯路,以尽快获得满意的答案(1)综合法运用综合法解决问题时,我们的思路是:分析题中给出的已知条件,考虑根据这些条件能求得出什么,再根据这些求出的条件考虑还能求得什么。

这样逐步推导,直到推出题目要求的物理量,完成题目的求解。

这样一个从已知推到未知的科学思维方法叫综合法。

综合法的思维过程的流程图:已知量经验`规律`定理中间待求量待求量用途:①读题。

使心态变从容。

②没有思路时,面对“卡壳”时,“走一步,算一步”。

用来寻找思路。

注意:题目中出现的数据99%都是有用的,如果题目中还有一个条件没有用,那这个条件就是本题的突破口。

(2)分析法分析题目要求的问题,考虑要解决这些问题,需要哪些量,又需要求得什么。

就这样逐步向前推导,直到最后求出我们需要的量。

然后将推导的步骤反过来写,就完成了题目的求解。

这样一个将未知推演还原为已知的科学思维方法就叫分析法。

分析法的思维过程的流程图:待求量中间待求量已知量用途:用来寻找思路。

总结:综合法是我们在已经储存了大量的知识,积累了丰富的经验的基础上所用的一种方法,其优点是叙述起来简洁、直观、条理、清楚,综合法可使我们从已知的知识中进一步获得新知识分析法是一种从未知到已知的逻辑推理方法.在探求问题的证明时,它可以帮助我们构思,因而在一般分析问题时,较多地采用分析法,只是找到思路后,往往用综合法加以叙述,正如恩格斯所说“没有分析就没有综合”。

两种方法同时运用,前后夹击,攻克题目。

分析法、综合法

分析法、综合法

分析法和综合法分析与综合都是思维的基本方法,无论是研究和解决一般问题,还是数学问题,分析和综合都是最基本的具有逻辑性的方法。

分析与综合本是两种思想方法,但因二者具有十分密切的联系,因此把二者结合起来阐述。

1. 分析法和综合法的概念。

分析是把研究对象的整体分解为若干部分、方面和因素,分别加以考察,找出各自的本质属性及彼此之间的联系。

综合是把研究对象的各个部分、方面和因素的认识结合起来,形成一个整体性认识的思维方法。

分析是综合的基础,综合是分析的整合,综合是与分析相反的思维过程。

在研究数学概念和性质时,往往先把研究对象分解成几个部分、方面和要素进行考察,再进行整合从整体上认识研究对象,形成理性认识。

实际上教师和学生都在经常有意识和无意识地运用了分析和综合的思维方法。

如认识等腰梯形时,可以从它的边和角等几个要素进行分析:它有几条边?几个角?四条边有什么关系?四个角有什么关系?再从整体上概括等腰梯形的性质。

数学中的分析法一般被理解为:在证明和解决问题时,从结论出发,一步一步地追溯到产生这一结论的条件是已知的为止,是一种“执果索因”的分析法。

综合法一般被理解为:在证明和解决问题时,从已知条件和某些定义、定理等出发,经过一系列的运算或推理,最终证明结论或解决问题,是一种“由因导果”的综合法。

如小学数学中的问题解决,可以由问题出发逐步逆推到已知条件,这是分析法;从已知条件出发,逐步求出所需答案,这是综合法。

再如分析法和综合法在中学数学作为直接证明的基本方法,应用比较普遍。

因此,分析法和综合法是数学学习中应用较为普遍的相互依赖、相互渗透的思想方法。

2. 分析法和综合法的重要意义。

大纲时代的小学数学教育,比较重视逻辑思维能力的培养,在教学过程中重视培养学生的分析、综合、抽象、概括、判断和推理能力,其中培养学生分析和综合的能力、推理能力是很重要的方面,如在解答应用题时重视分析法和综合法的运用,也就是说可以先从应用题的问题出发,找出解决问题需要的条件中哪些是已知的、哪些是未知的,未知的条件又需要什么条件解决,这样一步一步倒推,直到利用最原始的已知条件解决。

分析法和综合法在解物理题中的应用

分析法和综合法在解物理题中的应用
解答习题是学 习物理的一个重要 环节 , 是 种创造性活动。 通过解题不仅 可以巩 固、 加深 所学 的理论 , 系统地掌握有关知识 , 还可以发展 逻辑思维和综合思考 的能力 ,培养分析问题和 解决问题的能力。教学 中,经常遇到这样的反 映: 理论好懂 , 习题难做 。 怎样解答习题? 解题有 些什么技巧 ?这些问题具有很大的普遍性 。 解题 的关键是要寻找适合的物理规律 。解 题过程是一个逻辑思维过程 ,要善于分析和综 合。 分析 为综合提供基础 , 综合又为深入分 析创 造条件 , 两者相辅相成。只有通过分析 和综合 , 才能找出解 题 的正确途径 和相关 的物理 规律 , 建立起未知量和已知量的关系。我们应该重 视 在解题 中逐步锻炼分析和综合的能力。 解答物理习题 ,分析法 和综合法是两种重
X x Biblioteka × X X


×

×


×

×


图 2 例 2图
图 3 例 3图 。 。
图 4 例 4图
所谓分析法 , 就是从整体到局部 的逻辑思 维方法 , 也就是把 问题化整 为零 , 逐步引向待求 的未知量的思考方法 。 具体地说 , 就是在认真审 题、 分析题 意的基础上 , 首先找 出能直接回答题 目问题的物理规律及公式 。这个能够直接表达 待求量 的公式 , 我们称它为原始公式。 原始公 式 往往都是基本 的物理公式 。 一般说来 , 找出原始 公式 , 了正确 的解题方 向。 就有 接下去要观察原 始公式 中包含哪几个未知量 ,再列 出表达 这几 个未知量 的物理公式 。如果这几个 式子中仍 含 有新 的未知量 , 就再列出相应的表达式 , 按这样 的逻辑思维顺序逐步分析 、 推演下 去, 直到待求 物 理量 完 全 可 用 已知 量 表 达 为 止 。 下面举例说明分析法 的应用 。 例 1冲击摆 的质量 为 M, 摆长为 1一质量 , 为 1 的子弹 以水平速度 V射入摆内。 1 ' / 0 求摆的最 大偏转角度 0( 1) 图 。 要求摆 的最大偏转角 0, 应求出摆的上升 高度 h 由图可见 , f h

高中数学—综合法与分析法

高中数学—综合法与分析法

∵∴即a2>(aab->-1bcb),(+b-bc-1)c(c+-ca)-1<a0, 0 成立.
5. 已知 m, nR+,
求证
m
+ 2
n
m+n
mnnm
.
证明: ∵ m, nR+,
要证
m+ 2
n
m+n
mnnm
,
只需证
(
m+ 2
n
)m+n
mnnm
,
(
m+ 2
n
)m+n
(
mn )m+n ,
∴只需证 ( mn)m+n mnnm,
b3+c3=(b+c)(b2-bc+c2) ≥(b+c)bc, c3+a3=(c+a)(c2-ca+a2) ≥(c+a)ca, ∴2(a3+b3+c3)≥(a+b)ab+(b+c)bc+(c+a)ca
=a2b+ab2+b2c+bc2+c2a+ca2 =a2(b+c)+b2(a+c)+c2(a+b).
配方计算得 (a-b)2+(b-c)2+(c-a)2>0,
∵a, b, c互不相等, ∴(a-b)2+(b-c)2+(c-a)2>0 成立, ∴原不等式成立.
4. 已知 a>b>c,
求证
1 a-b
+
1 b-c
+
1 c-a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究任务一:综合法和分析法的综合运用
问题:已知 ,且
求证: .
变式:已知 ,求证:
.
反思:在解决一些复杂、技巧性强的题目时,我们可以把综合法和分析法结合使用.
※典型例题
例1已知 都是锐角,且 , ,求证:
变式:已知 ,求证: .
小结:牢固掌握基础知识是灵活应用两种方法证明问题的前提,本例中,三角公式发挥着重要作用.
例2在四面体 中, , , 是 的中点,求证: .
变式:如果 ,则 .
例3.设实数 成等比数列,非零实数 分别为 与 , 与 的等差中项,求证 .
※学习小结
综合法是“由因导果”,而分析法是“执果索因”,它们是截然相反的两种证明方法,分析法便于我们去寻找思路,而综合法便于过程的叙述,两种方法各有所长,在解决问题的问题中,综合运用,效果会更好,综合法与分析法因其在解决问题中的作用巨大而受命题者的青睐,在历年的高考中均有体现,成为高考的重点和热点之一.
D.
4.设α、β、r是互不重合的平面,m,n是互不重合的直线,给出四个命题:
①若m⊥α,m⊥β,则α∥β
②若α⊥r,β⊥r,则α∥β
③若m⊥α,m∥β,则α⊥β
④若m∥α,n⊥α,则m⊥n
其中真命题是.
课后作业:
1.已知 , 互不相等且 .求证: .
2.已知是正实数,求证: .
当堂检测:
1.给出下列函数① ,② ③ ④ 其中是偶函数的有().
A.1个B.2个C.3个D.4个
2.m、n是不同的直线, 是不同的平面,有以下四个命题().
① ;②
③ ;④
其中为真命题的是()
A.①④B.①③C.②③D.②④
3.下列结论中,错用基本不等式做依据的是().
A.a,b均为负数,则
B.
C.
§2.2.1综合法和分析法(3)
【学习目标】
1.能结合已经学过的数学示例,了解综合法和分析法的思考过程和特点;
2.学会用综合法和分析法证明实际问题,并理解分析法和综合法之间的内在联系;
【重点难点】掌握综合法和分析法的思考过程和特点;
【知识链接】
1Hale Waihona Puke 综合法是由导。2:分析法是由索.【学习过程】
※学习探究
相关文档
最新文档