2018届高考数学第二章函数课时规范练13函数模型及其应用文 新人教A版 Word版 含答案
2018高考数学(理)(全国通用) 第二章 函数 Word版含解析
第二章 函数第一节 函数的概念及其表示题型10 映射与函数的概念——暂无 题型11 同一函数的判断——暂无 题型12 函数解析式的求法 题型13 函数定义域的求解 题型14 函数值域的求解第二节 函数的基本性质——奇偶性、单调性、周期性题型15 函数的奇偶性 题型16 函数的单调性1.(2017山东理15)若函数()e x f x (e2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+解析 ①()e =e e 22xxxxy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e x x y f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+,则()()()22e2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.题型17 函数的奇偶性和单调性的综合1.(17江苏11)已知函数()312e exx f x x x =-+-, 其中e 是自然对数的底数.若()()2120f a f a -+…,则实数a 的取值范围是 .解析 易知()f x 的定义域为R . 因为()()()312e e xx f x x x ---=---+-()312e exx x x f x =-+-+=-, 所以()f x 是奇函数. 又()2213e 3e02x x f x x x +'=-+……,且()0f x '=不恒成立,所以()f x 在R 上单调递增.因为()()2120f a f a -+…,所以()()()22122f a f a f a --=-…,于是212a a --…,即2210a a +-…,解得11,2x ⎡⎤∈-⎢⎥⎣⎦.故填11,2⎡⎤-⎢⎥⎣⎦.2.(2017天津理6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ).A.a b c <<B.c b a <<C.b a c <<D.b c a <<解析 因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数.()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22l o g 5.13<<,所以0.8202log 5.13<<<,于是()()()0.822log 5.13g g g <<,即b a c <<.故选C.3.(2017北京理5)已知函数()133xxf x ⎛⎫=- ⎪⎝⎭,则()f x ( ). A.是奇函数,且在R 上是增函数 B.是偶函数,且在R 上是增函数 C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数解析由题知()133xx f x ⎛⎫=- ⎪⎝⎭,()()113333xx x x f x f x --⎛⎫-=-=-=- ⎪⎝⎭,所以()f x 为奇函数.又因为3x 是增函数,13x⎛⎫- ⎪⎝⎭也是增函数,所以()f x 在R 上是增函数.故选A. 4.(2017全国1理5)函数()f x 在(),-∞+∞单调递减,且为奇函数.若()11f =-,则满足()211x f --剟的x 的取值范围是( ). A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]解析 因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --剟等价于 ()()()121f f x f --剟,又()f x 在()-∞+∞,单调递减,所以121x --剟,所以3x 1剟.故选D.题型18 函数的周期性1.(2017江苏14)设()f x 是定义在R 且周期为1的函数,在区间[)0,1上,()2,,x x D f x x x D⎧∈=⎨∉⎩.其中集合*1,n D x x n n ⎧⎫-==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 .解析 由题意()[)0,1f x ∈,所以只需要研究[)1,10x ∈内的根的情况. 在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈N …,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈N …,且,m n 互质. 从而10n mq p =,则10mn q p ⎛⎫= ⎪⎝⎭,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,于是lg x 不可能与x D ∈内的部分对应相等,所以只需要考虑lg x 与每个周期内x D ∉部分的交点.如图所示,通过函数的草图分析,图中交点除()1,0外,其它交点均为x D ∉的部分. 且当1x =时,()1111lg 1ln10ln10x x x x =='==<,所以在1x =附近只有一个交点, 因而方程解的个数为8个.故填8.第三节 二次函数与幂函数题型19 二次函数图像及应用——暂无题型20 二次函数“动轴定区间”、“定轴动区间”问题1.(2017浙江理5)若函数()2f x x ax b =++在区间[]01,上的最大值是M ,最小值是m ,则M m -( ).A. 与a 有关,且与b 有关B. 与a 有关,但与b 无关C. 与a 无关,且与b 无关D. 与a 无关,但与b 有关解析 函数()2f x x ax b =++的图像是开口朝上且以直线2ax =-为对称轴的抛物线. ①当12a ->或02a-<,即2a <-,或0a >时,函数()f x 在区间[]0,1上单调,此时()()101M m f f a -=-=+,故M m -的值与a 有关,与b 无关;②当1122a -剟,即21a --剟时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在,12a ⎡⎤-⎢⎥⎣⎦上单调递增,且()()01f f >,此时()2024a aM m f f ⎛⎫-=--= ⎪⎝⎭,故M m -的值与a 有关,与b 无关; ③当1022a -<…,即10a -<…时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在,12a ⎡⎤-⎢⎥⎣⎦上单调递增,且()()01f f <),此时()21124a a M m f f a ⎛⎫-=--=++ ⎪⎝⎭,故M m -的值与a 有关,与b 无关.综上可得,M m -的值与a 有关,与b 无关.故选B .题型21 二次函数、一元二次方程、二次不等式的关系——暂无 题型22 二次函数恒成立问题1.(2017天津理8)已知函数,设a ∈R ,若关于x 的不等式()2xf x a+…在R 上恒成立,则a 的取值范围是( ).A.47,216⎡⎤-⎢⎥⎣⎦B.4739,1616⎡⎤-⎢⎥⎣⎦C.2⎡⎤-⎣⎦D.3916⎡⎤-⎢⎥⎣⎦解析 解法一:易知()0f x ≥,由不等式()2x f x a +…,得()()2xf x a f x -+剟, 即()()22x x f x a f x ---剟,只需要计算()()2x g x f x =--在R 上的最大值和()()2xh x f x =-在R 上的最小值即可,当1x …时,()g x =22147473241616x x x ⎛⎫-+-=---- ⎪⎝⎭…(当1=4x 时取等号),()h x =223339393241616x x x ⎛⎫-+=-+ ⎪⎝⎭…(当34x =时取等号),所以47391616a-剟;当1>x 时,()g x=323222x x x x ⎛⎫--=-+- ⎪⎝⎭…x =时取等号),()h x=222x x +…(当=2x 时取等号),所以2a -. 综上所述,得47216a -剟.故选A . 解法二:分别作出函数和2xy a =+的图像,如图所示. 若对于任意x ∈R ,()2xf x a +…恒成立,则满足()212x x a x x ++>…且()2312x x x a x -+--厔恒成立,即()212x a x x +>…,又222x x +=?,当且仅当22x x=时,即2x =时取等号,所以2a …. 且()2312xa x x --+剟,则2min473216x a x ⎛⎫--+= ⎪⎝⎭…,即4716a -?. 综上所述,a 的取值范围为47,216⎡⎤-⎢⎥⎣⎦.故选A. 2.(2017浙江理17)已知a ∈R ,函数()4f x x a a x=+-+在区间[]14,上的最大值是5,则a 的取值范围是 . 解析 设4t x x=+,则()f t t a a =-+,[]4,5t ∈. 解法一:可知()f t 的最大值为{}max (4),(5)f f ,即(4)45(5)55f a a f a a ⎧=-+=⎪⎨=-+⎪⎩…或(4)45(5)55f a a f a a ⎧=-+⎪⎨=-+=⎪⎩…, 解得 4.55a a =⎧⎨⎩…或 4.55a a ⎧⎨⎩……,所以 4.5a ….则a 的取值范围是(],4.5-∞. 解法二:如图所示,当0a <时,()5f t t a a t =-+=…成立;当0a t <…时,()05f t a t a t =-+-=…成立;当a t >时,()5f t t a a a t a =-+=-+…成立,即 4.5a …. 则a 的取值范围是(],4.5-∞.题型23 幂函数的图像与性质——暂无第四节 指数函数与对数函数题型24 指(对)数运算及指(对)数方程1.(2017北京理8)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010,则下列各数中与M N最接近的是( ).(参考数据:lg30.48≈)A.3310B.5310C.7310D.9310解析设36180310M x N ==,两边取对数36180lg lg3lg10361lg380x =-=⨯-,即93.28x =, 所以接近9310.故选D.2.(2017全国1理11)设x ,y ,z 为正数,且235x y z==,则( ).aA .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<解析 设235x y z t ===,两边取对数得ln 2ln 3ln 5ln x y z t ===,则2ln 2ln 2tx=3ln 3ln 3t y =,5ln 5ln 5t z =,ln 0t >.设()ln x f x x=,()()2ln 1ln x f x x -'=,当()0,e x ∈时, ()0f x '<,()f x 单调递减;当()e,x ∈+∞时,()0f x '>,()f x 单调递增.而()24ln x f t =,()33ln y f t =,()55ln z f t =.由e<3<4<5,得325y x z <<.故选D.题型25 指(对)数函数的图像及应用——暂无 题型26 指(对)数函数的性质及应用第五节 函数的图像及应用题型27 识图(知式选图、知图选式) 题型28 作函数的图像——暂无 题型29 函数图像的应用1.(2017全国3理15)设函数()1020x x x f x x +⎧=⎨>⎩,,…,则满足()112f x f x ⎛⎫+-> ⎪⎝⎭的x 的取值范围是_________.解析 因为()1,02 ,0x x x f x x +⎧=⎨>⎩≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭.由图像变换可作出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图像如图所示.由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解集为1,4⎛⎫-+∞ ⎪⎝⎭.1141)2-)2.(2017山东理10)已知当[]0,1x ∈时,函数()21y mx =-的图像与y m 的图像有且只有一个交点,则正实数m 的取值范围是( ). A.(])0,123,⎡+∞⎣B.(][)0,13,+∞C.()23,⎡+∞⎣D.([)3,+∞解析 解法一:()222121y mx m x mx =-=-+过点()0,1且对称轴为1x m=. 当01m <<时,11m>,从而2221y mx mx =-+在区间()0,1上单调递减,函数()21y m x =-与y m 的草图如图所示,此时有一个交点;当1m >时,11m <,所以2221y m x mx =-+在区间10m ⎛⎫ ⎪⎝⎭,上单调递减,在区间1,1m ⎛⎫ ⎪⎝⎭上单调递增.若函数()21ym x=-与y m 有一个交点,草图如图所示,则()211m m ⨯-?,解得3m …;当1m =时,函数()21y x =-与1y =显然在区间[]0,1有且只有一个交点为()0,1.综上所述,m 的取值范围是(][)0,13+∞,.故选B. 解法二:若m =则)[]21,0,1y x =-∈的值域为[]0,1;[]0,1y x =∈的值域为+,所以两个函数的图像无交点,故排除C 、D ;若3m =,则点()1,4是两个函数的公共点.故选B.。
2018届高三新课标数学理大一轮复习课时达标检测十三
课时达标检测(十三) 函数模型及应用[练基础小题——强化运算能力]1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )解析:选C 出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B.2.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升解析:选B 因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).3.已知某矩形广场的面积为4万平方米,则其周长至少为( )A .800米B .900米C .1 000米D .1 200米 解析:选A 设这个广场的长为x 米,则宽为40 000x 米,所以其周长为l =2⎝⎛⎭⎫x +40 000x ≥800,当且仅当x =40 000x,即x =200时取等号. 4.(2016·安阳一模)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )A .7B .8C .9D .10解析:选C 由题意,当生产第k 档次的产品时,每天可获得利润为y =[8+2(k -1)][60-3(k -1)]=-6k 2+108k +378(1≤k ≤10,k ∈N),配方可得y =-6(k -9)2+864,所以当k =9时,获得利润最大.选C.5.拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元.解析:∵m =6.5,∴[m ]=6,则f (6.5)=1.06×(0.5×6+1)=4.24.答案:4.24[练常考题点——检验高考能力]一、选择题1.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )解析:选B 选项B 中,Q 的值随t 的变化越来越快,即运输效率在逐步提高.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.(2017·四川德阳诊断)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a 4L ,则m 的值为( ) A .5 B .8 C .9 D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f (t )=a e nt 满足f (5)=a e 5n =12a , 可得n =15ln 12, 所以f (t )=a ·⎝⎛⎭⎫12t 5, 设k min 后甲桶中的水只有a 4L ,则f (k )=a ·⎝⎛⎭⎫12k 5=a 4, 所以⎝⎛⎭⎫12k 5=14,解得k =10,所以m =k -5=5(min).故选A.4.某电信公司推出两种手机收费方式:A 种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费S (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元 D.403元 解析:选A 依题意可设S A (t )=20+kt ,S B (t )=mt .又S A (100)=S B (100),∴100k +20=100m ,得k -m =-0.2,于是S A (150)-S B (150)=20+150k -150m =20+150(k -m )=20+150×(-0.2)=-10,即通话150分钟时,两种方式电话费相差10元,故选A.5.(2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A .2018年B .2019年C .2020年D .2021年解析:选B 设2015年后的第n 年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n >200,得1.12n >2013,两边取常用对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.6.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1x -2122+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.二、填空题7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析:设矩形花园的宽为y m ,则x 40=40-y 40,即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20 m 时,面积最大.答案:208.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A (t ≥0),则A =t 2,∴D =at -t 2=-t -12a 2+14a 2.∴当t =12a ,即A =14a 2时,D 取得最大值.答案:14a 2 9.(2017·湖北八校联考)某人根据经验绘制了2015年春节前后,从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909. 答案:190910.已知某房地产公司计划出租70套相同的公寓房.当每套公寓房月租金定为3 000元时,这70套公寓房能全部租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设已出租的每套房子每月需要公司花费100元的日常维修等费用(设没有出租的房子不需要花这些费用),则要使公司获得最大利润,每套房月租金应定为________元.解析:由题意,设利润为y 元,每套房月租金定为3 000+50x 元(0≤x ≤70,x ∈N).则y =(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤50⎝⎛⎭⎫58+x +70-x 22=204 800,当且仅当58+x =70-x ,即x =6时,等号成立,故当每套房月租金定为3 000+50×6=3 300元时,可使公司获得最大利润.答案:3 300三、解答题11.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值.解:(1)作PQ ⊥AF 于Q ,所以PQ =(8-y )米,EQ =(x -4)米.又△EPQ ∽△EDF ,所以EQ PQ =EF FD ,即x -48-y =42. 所以y =-12x +10, 定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S 平方米,则S (x )=xy =x ⎝⎛⎭⎫10-x 2=-12(x -10)2+50, S (x )是关于x 的二次函数,且其图象开口向下,对称轴为x =10,所以当x ∈[4,8]时,S (x )单调递增.所以当x =8时,矩形BNPM 的面积取得最大值,为48平方米.12.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销量价格P (元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?解:设该店月利润余额为L 元,则由题设得L =Q (P -14)×100-3 600-2 000,①由销量图易得Q =⎩⎪⎨⎪⎧ -2P +50,14≤P ≤20,-32P +40,20<P ≤26, 代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600,14≤P ≤20,⎝⎛⎭⎫-32P +40(P -14)×100-5 600,20<P ≤26, (1)当14≤P ≤20时,L max =450元,此时P =19.5元;当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.。
新教材高考数学一轮复习课时规范练13数学建模_函数模型及其应用含解析新人教A版
课时规范练13 数学建模——函数模型及其应用基础巩固组1.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1小时,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油2.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台3.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车t2米,那么,此人() 开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=12A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米5.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了(1.2x)%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.186.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使,至少应过滤次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)杂质含量减少137.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt cm3,经过8 min后发现容器内还有一半的沙子,则再经过 min,容器中的沙子只有开始时的八分之一.8.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效,求服药一次后治疗有效的时间.综合提升组9.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和am(0<a<12).不考虑树的粗细,现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图象大致是()10.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年11.如图,直角边长为2 cm的等腰直角三角形ABC,以2 cm/s 的速度沿直线l向右运动,则该三角形与矩形CDEF重合部分面积y(单位:cm2)与时间t(单位:s)的函数关系(设0≤t≤3)为,y的最大值为.12.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下预测该海鲜将在哪几个月内价格下跌.创新应用组13.声强级Y(单位:分贝)由公式Y=10lg I给出,其中I为声强(单位:W/m2).10-12(1)平常人交谈时的声强约为10-6 W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?参考答案课时规范练13 数学建模——函数模型及其应用1.D 从图中可以看出当乙车的行驶速度大于40km/h 时的燃油效率大于5km/L ,故乙车消耗1L 汽油的行驶路程可大于5km ,所以选项A 错误;由图可知以相同速度行驶相同路程甲车消耗汽油最少,所以选项B 错误;甲车以80km/h 的速度行驶时的燃油效率为10km/L ,故行驶1小时的路程为80km ,消耗8L 汽油,所以选项C 错误;当最高限速为80km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以选项D 正确.2.C 设利润为f (x )万元,则f (x )=25x-(3000+20x-0.1x 2)=0.1x 2+5x-3000(0<x<240,x ∈N *).令f (x )≥0,得x ≥150,故生产者不亏本时的最低产量是150台.故选C .3.B 由题意,设利润为y 元,租金定为(3000+50x )元(0≤x ≤70,x ∈N ),则y=(3000+50x )(70-x )-100(70-x )=(2900+50x )(70-x )=50(58+x )(70-x )≤5058+x+70-x 22=204800,当且仅当58+x=70-x ,即x=6时,等号成立,故每月租金定为3000+300=3300(元)时,公司获得最大利润,故选B . 4.D 已知s=12t 2,车与人的间距d=(s+25)-6t=12t 2-6t+25=12(t-6)2+7.当t=6时,d 取得最小值7.所以不能追上汽车,但期间最近距离为7米,故选D .5.B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x )[1+(1.2x )%]t ,则{0<x <100,x ∈N *,(100-x )[1+(1.2x )%]t ≥100t , 解得0<x ≤503.因为x ∈N *,所以x 的最大值为16,故选B . 6.8 设至少过滤n 次才能达到市场要求,则2%1-13n≤0.1%,即23n ≤120,所以n lg 23≤-1-lg2,解得n ≥7.39,所以n=8.7.16 当t=0时,y=a ,当t=8时,y=a e -8b =12a ,所以e -8b =12,容器中的沙子只有开始时的八分之一时,即y=a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t=24,所以再经过24-8=16(min),容器中的沙子只有开始时的八分之一.8.解(1)根据所给的曲线,可设y={kt ,0≤t ≤1,(12) t -a ,t >1.当t=1时,由y=4,得k=4,由121-a=4,得a=3.则y={4t ,0≤t ≤1,(12) t -3,t >1.(2)由y ≥0.25,得{0≤t ≤1,4t ≥0.25或{t >1,(12) t -3≥0.25,解得116≤t ≤5.因此服药一次后治疗有效的时间为5-116=7916(h).9.B 设AD 的长为x m ,则CD 的长为(16-x )m ,则矩形ABCD 的面积为x (16-x )m 2.因为要将点P 围在矩形ABCD 内,所以a ≤x ≤12.当0<a ≤8时,当且仅当x=8时,u=64;当8<a<12时,u=a (16-a ).画出函数图象可得其形状与B 选项接近,故选B .10.C 若2019年是第1年,则第n 年全年投入的科研经费为1300×1.12n 万元,由1300×1.12n >2000,可得lg1.3+n lg1.12>lg2,所以n ×0.05>0.19,得n>3.8,所以第4年,即2022年全年投入的科研经费开始超过2000万元,故选C .11.y={2t 2,0≤t <1,2,1≤t ≤2,2-12(2t -4)2,2<t ≤32 如题图,当0≤t<1时,重叠部分面积y=12×2t ×2t=2t 2;当1≤t ≤2时,重叠部分为直角三角形ABC ,重叠部分面积y=12×2×2=2(cm 2); 当2<t ≤3时,重叠部分为梯形,重叠部分面积y=S △ABC -12(2t-4)2=2-12(2t-4)2=-2t 2+8t-6.综上,y={2t 2,0≤t <1,2,1≤t ≤2,-2t 2+8t -6,2<t ≤3,故可得y 的最大值为2.12.解(1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x-q )2+p.(2)对于f (x )=x (x-q )2+p ,由f (0)=4,f (2)=6,可得p=4,(2-q )2=1,又q>1,所以q=3,所以f (x )=x 3-6x 2+9x+4(0≤x ≤5).(3)因为f (x )=x 3-6x 2+9x+4(0≤x ≤5),所以f'(x )=3x 2-12x+9, 令f'(x )<0,得1<x<3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月,10月两个月内价格下跌. 13.解(1)当声强为10-6W/m 2时,由公式Y=10lgI 10-12,得Y=10lg10-610-12=10lg106=60(分贝).(2)当Y=0时,由公式Y=10lgI 10-12,得10lg I 10-12=0.所以I10-12=1,即I=10-12W/m 2,则最低声强为10-12W/m 2.(3)当声强为5×10-7W/m2时,声强级为Y=10lg5×10-7=10lg(5×105)=50+10lg5(分贝),10-12因为50+10lg5>50,故这两位同学会影响其他同学休息.。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标12 函数模型及其应用 理
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标12函数模型及其应用 理[解密考纲]本考点考查函数在实际生活中的应用等.在近几年的高考中选择题、填空题、解答题都出现过.选择题、填空题通常排在中间位置,解答题往往与其他知识综合考查,题目难度中等.一、选择题1.(2017·湖南永州模拟)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( C )A .y =100xB .y =50x 2-50x +100 C .y =50×2xD .y =100log 2x +100解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,应选C .2.(2016·河北唐山检测)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少( B )A .9天B .10天C .11天D .12天解析:设该厂应每隔x 天购买一次面粉,则购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1), 设平均每天所支付的总费用为y 1元,则y 1=9xx ++900x +1 800×6=900x+9x +10 809≥2900x·9x +10 809=10 989,当且仅当9x =900x,即x =10时取等号.即该厂每隔10天购买一次面粉,才能使平均每天所支付的总费用最少,故选B . 3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( D )A .560万元B .420万元C .350万元D .320万元解析:设该公司的年收入为x 万元,纳税额为y 万元,则由题意,得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+x -p +,x >280,依题意有,280×p %+x -280p +x=(p +0.25)%,解之得x =320(万元).4.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( C )A .1.5%B .1.6%C .1.7%D .1.8%解析:设每年世界人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.5.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( A )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析:设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=mm +8a ,因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.6.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( B )A .3 000元B .3 300元C .3 500元D .4 000元解析:由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N ). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x )≤50⎝⎛⎭⎪⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .二、填空题7.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形面积的最大值为180.解析:依题意知:20-x x =y -824-y ,即x =54(24-y ),y ∈[8,24),∴阴影部分的面积S =xy =54(24-y )y =54(-y 2+24y ),∴当y =12时,S 有最大值为180.8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为2_500_m 2(围墙厚度不计).解析:设矩形场地的宽度为x m ,则矩形场地长(200-4x )m ,面积S =x (200-4x )=-4(x -25)2+ 2 500.故当x =25时,S 取得最大值2 500,即围成场地的最大面积为2 500 m 2.9.(2017·山东潍坊模拟)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据关系如下表:根据上表数据,Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是120. (2)最低种植成本是80(元/100 kg). 解析:根据表中数据可知函数不单调, 所以Q =at 2+bt +c 且开口向上,对称轴t =-b2a=60+1802=120. 代入数据⎩⎪⎨⎪⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,得⎩⎪⎨⎪⎧b =-2.4,c =224,a =0.01,所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80.三、解答题10.(2017·湖北鄂州月考)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域; (2)求矩形BNPM 面积的最大值.解析:(1)作PQ ⊥AF 于Q ,所以PQ =8-y ,EQ =x -4,在△EDF 中,EQ PQ =EFFD,所以x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝⎛⎭⎪⎫10-x 2=-12(x -10)2+50,所以S (x )是关于x 的二次函数,且其开口向下,对称轴为x =10,所以当x ∈[4,8],S (x )单调递增,所以当x =8米时,矩形BNPM 面积取得最大值48平方米.11.某产品原来的成本为1 000元/件,售价为1 200元/件,年销售量为1万件,由于市场饱和顾客要求提高,公司计划投入资金进行产品升级.据市场调查,若投入x 万元,每件产品的成本将降低34x 元,在售价不变的情况下,年销售量将减少2x 万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为f (x )(单位:万元).(1)求f (x )的函数解析式;(2)求f (x )的最大值,以及f (x )取得最大值时x 的值.解析:(1)依题意,产品升级后,每件的成本为1 000-3x 4元,利润为200+3x4元,年销售量为1-2x万件,纯利润为f (x )=⎝ ⎛⎭⎪⎫200+3x 4⎝ ⎛⎭⎪⎫1-2x -x =198.5-400x -x 4. (2)f (x )=198.5-400x -x4≤198.5-2×400x ×x 4=178.5,当且仅当400x =x4, 即x =40时等号成立.所以f (x )取最大值时的x 的值为40.12.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x 吨,3x 吨.(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 解析:(1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨时,即3x ≤4,且5x >4,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8.当乙的用水量超过4吨时,即3x >4,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧14.4x ⎝⎛⎭⎪⎫0≤x ≤45,20.4x -4.8⎝ ⎛⎭⎪⎫45<x ≤43,24x -9.6⎝ ⎛⎭⎪⎫x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<26.4;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<26.4; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -9.6=26.4,解得x =1.5. 所以甲户用水量为5x =7.5吨,付费S 1=4×1.8+3.5×3=17.70(元); 乙用户用水量为3x =4.5吨,付费S 2=4×1.8+0.5×3=8.70(元).。
(全国通用)近年高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示课时分层训练 文
(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第1节函数及其表示课时分层训练文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第2章函数、导数及其应用第1节函数及其表示课时分层训练文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第1节函数及其表示课时分层训练文新人教A版的全部内容。
课时分层训练(四) 函数及其表示A组基础达标(建议用时:30分钟)一、选择题1.下列各组函数中,表示同一函数的是()A.f(x)=x,g(x)=(错误!)2B.f(x)=x2,g(x)=(x+1)2C.f(x)=错误!,g(x)=|x|D.f(x)=0,g(x)=x-1+错误!C [在A中,定义域不同,在B中,解析式不同,在D中,定义域不同.]2.(2017·福建南安期末)设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是() 【导学号:31222021】A B C DB [A项,定义域为[-2,0],D项,值域不是[0,2],C项,当x=0时有两个y值与之对应.故选B.]3.(2017·安徽黄山质检)已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=()A.x+1 B.2x-1C.-x+1 D.x+1或-x-1A [设f(x)=kx+b,则由f[f(x)]=x+2,可得k(kx+b)+b=x+2,即k2x+kb+b =x+2,∴k2=1,kb+b=2,解得k=1,b=1,则f(x)=x+1.故选A。
2018版高考数学一轮总复习第2章函数导数及其应用2.9函数模型及其应用模拟演练文
2018版高考数学一轮总复习 第2章 函数、导数及其应用 2.9 函数模型及其应用模拟演练 文[A 级 基础达标](时间:40分钟)1.现有一组数据如下:( )A .v =log 2tB .v =log 12 tC .v =t 2-12D .v =2t -2答案 C解析 取t =1.99≈2(或t =5.1≈5),代入A 得v =log 22=1≠1.5;代入B ,得v =log 122=-1≠1.5;代入C ,得v =22-12=1.5;代入D ,得v =2×2-2=2≠1.5,故选C.2.[2017·河南模拟]根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 答案 D解析 (回顾检验法)∵c A=15,故A >4,则有c2=30,解得c =60,A =16,将c =60,A=16代入解析式检验知正确.故选D.3.某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A .100元B .110元C .150元D .190元 答案 D解析 设售价提高x 元,利润为y 元,则依题意得y =(1000-5x )×(20+x )=-5x 2+900x +20000=-5(x -90)2+60500.故当x =90时,y max =60500,此时售价为每件190元.4.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据lg 2≈0.3010)( )A .3B .4C .5D .6答案 B解析 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,∴x ≥1lg 2≈3.322,因此需4次,故选B.5.[2017·武汉模拟]国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为( )A .3000元B .3800元C .3818元D .5600元 答案 B解析 由题意可建立纳税额y 关于稿费x 的函数解析式为y =⎩⎪⎨⎪⎧0,x ≤800x -,800<x ≤4000,0.11x ,x >4000显然由0.14(x -800)=420,可得x =3800.6.某生产厂商更新设备,已知在未来x (x >0)年内,此设备所花费的各种费用总和y (万元)与x 满足函数关系y =4x 2+64,欲使此设备的年平均花费最低,则此设备的使用年限x 为________.答案 4解析 y x=4x +64x≥24x ·64x =32,当且仅当4x =64x,即x =4时等号成立.7.若某商场将彩电价格由原价(2250元/台)提高40%,然后在广告上写出“大酬宾八折优惠”,则商场每台彩电比原价多卖________元.答案 270解析 由题意可得每台彩电比原价多卖2250×(1+40%)×80%-2250=270(元). 8.[2017·盐城模拟]某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.答案 180解析 依题意,知20-x x =y -824-y ,即x =54(24-y ),∴阴影部分的面积S =xy =54(24-y )y =54(-y 2+24y )(8<y <24),∴当y =12时,S 有最大值为180.9.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解 (1)根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3000,整理得5x -14-3x≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10. (2)设利润为y 元,则y =900x·100⎝ ⎛⎭⎪⎫5x +1-3x =9×104⎝ ⎛⎭⎪⎫5+1x -3x 2=9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛⎭⎪⎫1x -162+6112,故x =6时,y max =457500元.10.一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?解 (1)设每年降低的百分比为x (0<x <1).[B 级 知能提升](时间:20分钟)11.[2017·云南联考]某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升,故选A.12.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt.假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8,则m 的值为________.答案 10解析 根据题意12=e 5n ,令18a =a e nt ,即18=e nt,因为12=e 5n ,故18=e 15n,则t =15,m =15-5=10.13.[2017·金版创新]“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2,∴当t =12a ,即A =14a 2时,D 取得最大值.14.[2017·佛山模拟]某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S=⎩⎪⎨⎪⎧3x +k x -8+x ,x ,已知每日的利润L =S -C ,且当x =2时,L =3.(1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.解 (1)由题意,得L =⎩⎪⎨⎪⎧2x +k x -8+x,11-x x,因为x =2时,L =3,所以3=2×2+k2-8+2.解得k =18.(2)当0<x <6时,L =2x +18x -8+2, 所以L =2(x -8)+18x -8+18=-[ 2(8-x )+188-x]+18≤-2-x188-x+18=6.当且仅当2(8-x )=188-x,即x =5时取得等号. 当x ≥6时,L =11-x ≤5. 所以当x =5时,L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元.。
2020版高考数学一轮复习第二章函数课时规范练13函数模型及其应用文
基础巩固组1.如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图像表示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个B.2个C.3个D.4个2.在某个物理实验中,测得变量x和变量y的几组数据,如下表:则对x,y最适合的拟合函数是()A.y=2xB.y=x2-1C.y=2x-2D.y=log2x3.某产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N+),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在t秒的路程为s=t2米,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米5.企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业年后需要更新设备.6.如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是30 m.(1)用宽x(单位:m)表示所建造的两间熊猫居室的面积y(单位:m2);(2)怎么设计才能使所建造的熊猫居室面积最大?并求出每间熊猫居室的最大面积?7.某村计划建造一个室内面积为800 m2的矩形蔬菜温室,在矩形温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?综合提升组8.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子租不出去.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出去的房子不需要花这些费用).要使公司获得最大利润,每套公寓月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元9.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是()A.40万元B.60万元C.120万元D.140万元10.某商人购货,进价已按原价a扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式为.11.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效.求服药一次后治疗有效的时间.12.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B 产品的利润与投资的算术平方根成正比,其关系如图②(注:利润和投资单位:万元).图①图②(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部资金投入到A,B两种产品的生产中.①若平均投入生产两种产品,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?创新应用组13.(2018江苏苏北四市模拟,17)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O及其内接等腰三角形ABC绕底边BC上的高所在直线AO旋转180°而成,如图2.已知圆O的半径为10 cm,设∠BAO=θ,0<θ<,圆锥的侧面积为S cm2.(1)求S关于θ的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积S最大.求S取得最大值时腰AB的长度.答案1.A水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来,图①应该是匀速的,故下面的图像不正确,②中的变化率是越来越慢的,正确;③中的变化规律是逐渐变慢再变快,正确;④中的变化规律是逐渐变快再变慢,也正确,故只有①是错误的.故选A.2.D根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意.故选D.3.C设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x-3 000(0<x<240,x∈N+).令f(x)≥0,得x≥150,∴生产者不亏本时的最低产量是150台.4.D已知s=t2,车与人的间距d=(s+25)-6t=t2-6t+25= (t-6)2+7.当t=6时,d取得最小值7.5.10由题意可知x年的维护费用为2+4+…+2x=x(x+1),所以x年的平均费用y==x++1.5,由基本不等式得y=x++1.5≥2+1.5=21.5,当且仅当x=,即x=10时取等号,所以该企业10年后需要更新设备.6.解 (1)设熊猫居室的宽为x(单位:m),由于可供建造围墙的材料总长是30 m,两间熊猫居室的长为30-3x(单位:m),所以两间熊猫居室的面积y=x(30-3x),又得0<x<10,于是y=-3x2+30x(0<x<10)为所求.(2)由(1)知,y=-3x2+30x=-3(x-5)2+75,二次函数图像开口向下,对称轴x=5,且x∈(0,10),当x=5时,所建造的熊猫居室面积最大,其中每间熊猫居室的最大面积为 m2.7.解设矩形温室的左侧边长为x m,则后侧边长为 m,所以蔬菜种植面积y=(x-4)=808-2(4<x<400).因为x+≥2=80,所以y≤808-2×80=648.当且仅当x=,即x=40时取等号,此时=20,y max=648 m2.即当矩形温室的边长各为40 m,20 m时,蔬菜的种植面积最大,最大面积是648 m2.8.B由题意,设利润为y元,租金定为(3 000+50x)元(0≤x≤70,x∈N),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)≤50=204 800,当且仅当58+x=70-x,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.9.C甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t2时刻全部卖出,此时获利20×2=40(万元),乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t4时刻全部卖出,此时获利40×2=80(万元),共获利40+80=120(万元),故选C.10.y=x(x∈N+)设新价为b,依题意,有b(1-20%)-a(1-25%)=b(1-20%)·25%,化简得b=a.∴y=b·20%·x=a·20%·x,即y=x(x∈N+).11.解 (1)根据所给的曲线,可设y=当t=1时,由y=4,得k=4,由=4,得a=3.则y=(2)由y≥0.25,得解得≤t≤5.因此服药一次后治疗有效的时间为5-(h).12.解 (1)设A,B两种产品都投资x万元(x≥0),所获利润分别为f(x)万元、g(x)万元,由题意可设f(x)=k1x,g(x)=k2,根据题图可得f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)①由(1)得f(9)=2.25,g(9)=2=6,故总利润y=8.25(万元).②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元,则y=(18-x)+2,0≤x≤18.令=t,t∈,则y=(-t2+8t+18)=-(t-4)2+.故当t=4时,y max==8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.13.解 (1)设AO交BC于点D,过O作OE⊥AB,垂足为E,如下图.在△AOE中,AE=10cos θ,AB=2AE=20cos θ,在△ABD中,BD=AB·sin θ=20cos θ·sin θ,所以S=π·20sin θcos θ·20cos θ=400πsin θcos2θ,0<θ<.(2)要使侧面积最大,由(1)得,S=400πsin θcos2θ=400π(sin θ-sin3θ),设f(x)=x-x3(0<x<1),则f'(x)=1-3x2,由f'(x)=1-3x2=0,得x=,当x∈时,f'(x)>0,当x∈时,f'(x)<0,所以f(x)在区间上递增,在区间上递减,所以f(x)在x=时取得极大值,也是最大值,所以当sin θ=时,侧面积S取得最大值,此时等腰三角形的腰长AB=20cos θ=20=20.即侧面积S取得最大值时,等腰三角形的腰AB的长度为 cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范练13 函数模型及其应用基础巩固组1.某产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台2.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子租不出去.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出去的房子不需要花这些费用).要使公司获得最大利润,每套公寓月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元3.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=t2米,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米4.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②(注:利润和投资单位:万元).图①图②(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部资金投入到A,B两种产品的生产中.①若平均投入生产两种产品,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?〚导学号24190728〛5.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效.求服药一次后治疗有效的时间.6.A,B两城相距100 km,在两城之间距A城x km处建一核电站给A,B两城供电,为保证城市安全,核电站与城市距离不得小于10 km.已知供电费用等于供电距离(单位:km)的平方与供电量(单位:亿千瓦时)之积的0.25倍,若A城供电量为每月20亿千瓦时,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?〚导学号24190729〛综合提升组7.某市明年计划投入600万元加强民族文化基础设施改造.据调查,改造后预计该市在一个月内(以30天计),民族文化旅游人数f(x)(单位:万人)与时间x(单位:天)的函数关系近似满足f(x)=4,人均消费g(x)(单位:元)与时间x(单位:天)的函数关系近似满足g(x)=104-|x-23|.(1)求该市旅游日收益p(x)(单位:万元)与时间x(1≤x≤30,x∈N*)的函数关系式;(2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的税率来收回投资,按此预计两年内能否收回全部投资.8.(2017江苏无锡模拟)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.〚导学号24190730〛9.现需要设计一个仓库,它由上下两部分组成,上部的形状是底面为正方形的四棱锥P-A1B1C1D1,下部的形状是正四棱柱(底面为正方形的直棱柱)ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是四棱锥的高PO1的4倍,O1,O分别为底面中心.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?创新应用组10.(2017江苏南京、盐城二模)在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形的边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.(1)当a=90时,求纸盒侧面积的最大值;(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.〚导学号24190731〛课时规范练13函数模型及其应用1.C设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x-3 000(0<x<240,x∈N*).令f(x)≥0,得x≥150,∴生产者不亏本时的最低产量是150台.2.B由题意,设利润为y元,租金定为(3 000+50x)元(0≤x≤70,x∈N),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)≤50=204 800,当且仅当58+x=70-x,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.3.D已知s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7.当t=6时,d取得最小值7.4.解 (1)设A,B两种产品都投资x万元(x≥0),所获利润分别为f(x)万元、g(x)万元,由题意可设f(x)=k1x,g(x)=k2,根据题图可得f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)①由(1)得f(9)=2.25,g(9)=2=6,故总利润y=8.25(万元).②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元,则y=(18-x)+2,0≤x≤18.令=t,t∈[0,3 ],则y=(-t2+8t+18)=-(t-4)2+.故当t=4时,y max==8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元. 5.解 (1)根据所给的曲线,可设y=当t=1时,由y=4,得k=4,由=4,得a=3.则y=(2)由y≥0.25,得解得≤t≤5.因此服药一次后治疗有效的时间为5-(h).6.解 (1)由题意可知x的取值范围为10≤x≤90.(2)y=5x2+(100-x)2(10≤x≤90).(3)因为y=5x2+(100-x)2=x2-500x+25 000=,所以当x=时,y min=.故核电站建在距A城 km处,才能使供电总费用y最少.7.解 (1)由题意知p(x)=f(x)g(x)=4(104-|x-23|)(1≤x≤30,x∈N*).(2)由p(x)=①当1≤x≤23时,p(x)=4(81+x)=4≥482+2=400,当且仅当x=,即x=9时,p(x)取得最小值400.②当23<x≤30时,p(x)=4(127-x)=4.设h(x)=-x,则有h'(x)=--1<0,故h(x)在(23,30]上为减函数,则p(x)在(23,30]上也是减函数,所以当x=30时,p(x)min=4=400>400.所以当x=9时,p(x)取得最小值400万元.因为两年内的税收为400×15%×30×12×2×1.5%=648>600,所以600万元的投资可以在两年内收回.8.解 (1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在给出的函数中应选模拟函数f(x)=x(x-q)2+p.(2)对于f(x)=x(x-q)2+p,由f(0)=4,f(2)=6,可得p=4,(2-q)2=1,又q>1,所以q=3,所以f(x)=x3-6x2+9x+4(0≤x≤5).(3)因为f(x)=x3-6x2+9x+4(0≤x≤5),所以f'(x)=3x2-12x+9,令f'(x)<0,得1<x<3.所以函数f(x)在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.9.解 (1)由PO1=2 m知O1O=4PO1=8 m.因为A1B1=AB=6 m,所以四棱锥P-A1B1C1D1的体积V锥=·A1·PO1=×62×2=24(m3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3).所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a m,PO1=h m,则0<h<6,O1O=4h.连接O1B1.因为在Rt△PO1B1中,O1+P=P,所以+h2=36,即a2=2(36-h2).于是仓库的容积V=V柱+V锥=a2·4h+a2·h=a2h=(36h-h3),0<h<6,从而V'=(36-3h2)=26(12-h2).令V'=0,得h=2或h=-2(舍).当0<h<2时,V'>0,V是单调增函数;当2<h<6时,V'<0,V是单调减函数.故h=2时,V取得极大值,也是最大值.因此,当PO1=2 m时,仓库的容积最大.10.解 (1)因为矩形纸板ABCD的面积为3 600平方厘米,故当a=90时,b=40,所以纸盒的侧面积S=2×x(90-2x)+2×x(40-2x)=-8x2+260x,x∈(0,20).因为S=-8x2+260x=-8,故当x=时,侧面积最大,最大值为平方厘米.(2)纸盒的体积V=(a-2x)(b-2x)x=x[ab-2(a+b)x+4x2],x∈,b≤60.V=x[ab-2(a+b)x+4x2]≤x(ab-4x+4x2)=x(3 600-240x+4x2)=4x3-240x2+3 600x.当且仅当a=b=60时等号成立.设f (x)=4x3-240x2+3 600x,x∈(0,30).则f'(x)=12(x-10)(x-30).于是当0<x<10时,f'(x)>0,所以f(x)在(0,10)内单调递增;当10<x<30时,f'(x)<0,所以f(x)在(10,30)内单调递减.因此当x=10时,f(x)有最大值f(10)=16 000,此时a=b=60,x=10.故当a=b=60,x=10时纸盒的体积最大,最大值为16 000立方厘米.。