实数复习培优

合集下载

昆明市第一中学七年级数学下册第六章【实数】知识点复习(培优练)

昆明市第一中学七年级数学下册第六章【实数】知识点复习(培优练)

1.下列说法正确的是( )A .2的平方根是2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D .无理数21的整数部分是52.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 3.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2 B .28.72 C .13.33 D .133.3 4.下列各式中,正确的是( )A .16=±4B .±16=4C .3273-=-D .2(4)4-=- 5.85-的整数部分是( )A .4B .5C .6D .76.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个7.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-688.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a >-> C .1a a a >>- D .1a a a->>930A .5和6B .6和7C .7和8D .8和910.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 11.在0,3π,5,227,9-,6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ).A .1个B .2个C .3个D .4个二、填空题12.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.13.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;32253 14.解方程:(1)2810x -=;(2)38(1)27x +=. 15.(1)解方程组;25342x y x y -=⎧⎨+=⎩(2)解不等式组:352(2)22x x x x -≥-⎧⎪⎨>-⎪⎩①②,并写出它的所有整数解. (3)解方程:2(x 2)100-=(4)计算:201723(1)|7|9(5)27---++--.16.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.17.比较大小:|5|-________25-.(填“>”“=”或“<”)18.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.19.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000… 整数集合:{_____________…};分数集合:{_____________…};无理数集合:{_____________…};非负有理数集合{_____________…}.20.(1)求x 的值:2490x -=;2232522721.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______三、解答题22.(1)计算:22314(3)8+--; (2)求 (x -1)2-36=0中x 的值. 23.计算下列各题(1)38-+16﹣3﹣2;(2)23+52﹣100.04(结果保留2位有效数字). 24.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.25523314(1)求,b,的值;-+的平方根.(2)求3a b c1.16的算术平方根是( )A .2B .4C .2±D .-4 2.-18的平方的立方根是( ) A .4 B .14 C .18 D .1643.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .64.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S581 )A .3B .﹣3C .±3D .66.下列选项中,属于无理数的是( )A .πB .227-C 4D .0764 )A .8B .8-C .22D .22±8.在 -1.414216π,3 3.212212221…,227,3.14这些数中,无理数的个数为( )A .2B .3C .4D .59.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;563A .1个B .2个C .3个D .4个10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字). 13.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立?(21-的值.14.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.15.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.17.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 18.定义一种新运算;观察下列各式;13143731341115454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ; (2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.19.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +求23c d -的平方根.20.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.21.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎣=8→82⎡=⎣→2⎤⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接: 1.5-380,134-23.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=24.求下列各式中x 的值(1)21(1)64x +-=;2312525.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .42.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有( )A .0个B .1个C .2个D .3个3.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 4.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A .0个B .1个C .2个D .3个5.下列各数中比( )A .2-B .1-C .12-D .06.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .97.下列说法正确的是( )A .2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位215 8.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个9.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3±10.下列各数中是无理数的是( )A .227B .1.2012001C .2πD .8111.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π,2;C .2,6,π;D .0.1010101……101,π,3 二、填空题12.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|12|1232⎛⎫-+--⨯- ⎪⎝⎭ 13.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.40.5 35 它们的大小. 14.解方程:(1)24(1)90--=x(2)31(1)7x +-=-15.计算:(1)223168(2)(3)-----(2)22(2)8x -=16.已知mn 、是两个连续的整数,且410m n <+<,则m n +=_______________________.17.计算:(1)37|2|27--+- (2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭18.如果3x -+(y +2)2=0,那么xy 的值为___________.19.25的平方根是______;34-的相反数是_____,1-12π的绝对值是 __. 20.实数a 在数轴上的位置如图所示,则()()233210a a -+-化简后为___________.21.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.三、解答题220,a b a b ⎪-<<⎩则2与2的大小;224-=,1619<<,则45<<,2240-=>,22>.请根据上述方法解答以下问题:(1_______3;(2)比较23-的大小,并说明理由. 23.定义一种新运算,观察下列式子: 212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________; (3)若12162a +=-★,求a 的值. 24.计算: (1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+; (4)311()()(2)424-⨯-÷-.25.计算:12(2)22(2)8x -=。

实数培优训练含答案

实数培优训练含答案

浙教七上数学第三章:实数培优训练一.选择题:1.下列各数中无理有( )10 π 14159.3 81327 32+73 169121A. 2个B. 3个C. 4个D. 5个2.①64的立方根是4±;②x x =33;③64的平方根为8±;④()4832±=±其中正确的有( )个A. 0B. 1C. 2D. 3 3. 的值等于则若n m n m --==,3,23( ) A. 31 B. 31- C.332+ D. 332-4.计算:=---+-π14.35351( )A.π+-5286.0B. π-14.5C. π+-14.752D. π+-14.1的整数有而小于大于53.5-( )A. 2,1,0,1,2--B. 3,2,1,0,1-C. 3,2,1,0,1,2--D. 2,1,0,1-则下列各式正确的是若,0.6>a ( )A. a a >B.a a >1 C. aa 11< D. a a < 的大小关系是则若cb ac b a ,,2,3),3(22.72--=-=-⨯+-=( )A. c a b >>B. c a b >>C. c b a >>D. b c a >>=-=+xx x x 1,71.8则已知( ) A.3 B. 3- C. 3± D. 5±9.一个自然数的算术平方根是a ,则与这个自然数相邻的后续自然数的平方根是( ) A.1+a B.12+a C. 1+±a D. 12+±a10.若1212=a ,1692=b ,且0<ab ,则b a -的值为( ) A.24± B.24- C.24 D.2±二.填空题:________,,25210.11的值是那么是整数且如果xxx<<-12.如果32x-和56x+是一个数的平方根,那么这个数是____________13、若225a=,3=b,则ba+的值是______________14. 20153的未位数字是_____________15.有一个数值转换器,原理如图所示:当输入错误!未找到引用源。

(完整版)实数培优专题

(完整版)实数培优专题

实数培优拓展1、利用概念解题:例1. 已知:18-+=b a M 是a +8的算术数平方根,423+--=b a b N 是b -3立方根,求N M +的平方根。

练习:1.若一个数的立方根等于它的算术平方根,则这个数是 。

2.已知234323-=-=+y x y x ,,求x y +的算术平方根与立方根。

3.若2a +1的平方根为±3,a -b +5的平方根为±2,求a+3b 的算术平方根。

例2、解方程(x+1)2=36.练习:(1)9)1(2=-x (2)251513=+)(x2、利用性质解题:例1 已知一个数的平方根是2a -1和a -11,求这个数.变式:①已知2a -1和a -11是一个数的平方根,则这个数是 ;②若2m -4与3m -1是同一个数两个平方根,则m 为 。

例2.若y =x -3+3-x +1,求(x +y )x 的值例3.x 取何值时,下列各式在实数范围内有意义。

⑴⑵ ⑶ ⑷例4.已知321x -与323-y 互为相反数,求yx 21+的值. 例5.若a a +=+3)3(2,则a 的取值范围是例6.对于每个非零有理数c b a ,,式子abc abc c c b b a a +++的所有可能__________________.练习: 1.若一个正数a 的两个平方根分别为x +1和x +3,求a2005的值。

2. 若(x -3)2+1-y =0,求x +y 的平方根;3. 已知,22421+-+-=x x y 求y x 的值.4. 当x 满足下列条件时,求x 的范围。

①2)2(x -=x -2 ② x -3=3-x ③x =x5. 若3387=-a ,则a 的值是 3、利用取值范围解题: 例1.已知052522=--+-x x x y ,求7(x +y )-20的立方根。

例2. 已知有理数a 满足a a a =-+-20052004,求a -20042的值。

《实数》单元培优测试卷(含答案)

《实数》单元培优测试卷(含答案)

第六章实数(满分:150分时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1【】A.±3B.C.3D2.下列说法中正确的是…………………………………………………………………【】A.任何数都有平方根B.-4的平方根是±2C.1的算术平方根是±1D.平方根和算术平方根都为本身的数是03.下列四个说法:①0没有算术平方根;②-18的立方根是-12;-64没有立方根;互为相反数的两个数的立方根也互为相反数.其中正确的是……………………………【】A. ①③B. ②④C. ①②D. ③④4.立方根为本身的数有…………………………………………………………………【】A.1个B.2个C.3个D.4个5.下列说法正确的是……………………………………………………………………【】A.无理数是带根号的数B.无理数是开方开不尽的数C.无理数是无限不循环小数D.π既是有理数也是无理数6的整数部分与小数部分的差是…………………………………………………【】A.2B. 2C-1 D.17.如图,在数轴上点P表示的数可能为………………………………………………【】A B C D8.x的值是……………………………………………………【】A. -1B.0C.12D.-129.若a,b均为正整数,且a,b则a+b的最小值是………………………【】A.1B.2C.3D.410.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,….若m3“分裂”后,其中有一个奇数是2013,则m的值是…………………………………………………………………………【】A.43B.44C.45D.55二、填空题(本大题共4小题,每小题5分,满分20分)11.1,2,3,…,100这100个自然数的算术平方根与立方根中,无理数的个数有______________.12.1=1,则a的取值范围是_____________________.13.设[x)表示大于x的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是_______________(填写所有正确结论的序号).①[0)=0. ②[x)-x的最小值是0.③[x)-x的最大值是0. ④存在实数x,使[x)-x=0.5成立.14.请你规定一种合适任意非零实数a,b的新运算“a□b”,使得下列算式成立:1□2=2□1=3,(-3)□(-4)=(-4)□(-3)=-76,(-3)□5=5□(-3)=-415,….你规定的新运算a□b=____________(用a,b的一个代数式表示).三、(本大题共两小题,每小题8分,满分16分)15.求下列各式中x的值:(1)(2x-5)2=64;(2)3(x-1)3+19=0.16.计算:(-2)21.四、(本大题共两小题,每小题8分,满分16分)17.把下列各数填入相应的括号内:-5, 0.23, 12, 0, , π, 0.1010010001…(相邻两个1之间依次多一个0).(1)负数: { …};(2)有理数: { …};(3)无理数: { …};(4)非负实数:{ …}.18.已知m 的两个平方根是方程3x +2y =1的一组解,求-(-m )3的立方根.五、(本大题共两小题,每小题10分,满分20分)19.0.20. 要比较两个无理数的大小,在不借助计算器的情况下,有一种简便的估算方法:先找出一个中间量分别与要比较的两个数作比较,再利用“若a >b ,b >c ,则a >c ”这一性质比较大小.请根据这种思路,比较与的大小.六、(本题满分12分)21.请在如图所示的3×3的网格中画出一个边长为无理数的格点正方形,并求出它的边长和面积.七、(本题满分12分)22.如图,在一个正方形纸板的四个角剪下同样大小的四个小正方形纸板.(1)若剩下的纸板恰好能折叠成一个无盖的正方体纸盒,如图①,且大正方形纸板的边长为2cm,请你求出正方体纸盒的体积;(2)如图②,若剩下的纸板折叠成一个无盖的长方体纸盒,而剪下的四个小正方形纸板正好拼成一个大正方形纸板作为长方体纸盒的盖.若长方体纸盒的体积是108cm3,求原大正方形纸板的边长.图①图②八、(本题满分14分)23.观察下列一组数:,….(1)写出第5个数,第2015个数;(2)写出第n个数;(3与.并猜想这一组数的大小规律.参考答案18. -(-m )3的立方根是1. 19. 3()x y --=-1.20.∵17>16=4,364=4>362,∴17>362.21.答案不唯一,如:,边长为5,面积为5.。

第六章实数培优资料带答案

第六章实数培优资料带答案

第六章实数培优训练班级:姓名:1.在实数,,中,分数的个数是.2.若√x−13=x-1,则x= ;若一个数的算术平方根等于它的立方根,则这个数是 .3.﹣8的立方根与的平方根之和是.4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 .5.若2m﹣4与3m﹣1是同一个数的平方根,则m为.6.已知a为实数,若√−(2a−4)2有意义,则a= .8.若代数式√xx−1有意义,则实数x的取值范围是 .9.若式子√1−x有意义,则化简√(x−1)2−√(2−x)2= .10.当x= 时,√2x+7+6有最小值,最小值为.11.已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是 .12.是整数,则正整数n的最小值为;若√200a3是一个整数,那么最大的负整数a等于 .13.若√(a−1)2=1−a,则a的取值范围为;若m+√m−8=8,则m= .14.已知5+√11的小数部分为m,5-√11的小数部分为n,则m+n= .15.对于X,Y定义一种新的运算*:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法.若b=8成立,则1*3= .16.设a、h为正数,已知(a+ℎ2a)2=a2+h+(ℎ2a)2,当ℎa很小(此处约定ℎa<0.1)时,(ℎ2a )2≈0,所以(a+ ℎ2a)2≈a2+h,于是√a2+ℎ≈a+ ℎ2a(*).利用公式(*)可求某些数的平方根的近似值.如√10005=√1002+5≈100+ 52×100=100.025.计算√32409的近似值为 .17.设[x)表示大于x 的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是 . ①[)00=;②[)x x -的最小值是0;③[)x x -的最大值是0;④存在实数x ,使[)5.0=-x x 成立.18.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:= .= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1.(3)对100连续求根整数, 次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 . 19.设a ,b 都是有理数,规定a*b=√a +√b 3,求(4*8)*[25*(—64)]的值.20. 我们知道,无限循环小数都可以转化为分数.例如,将0..3.转化为分数时,可设0..3=x ,则x =0.3+ 110x ,解得x =13,即0..3=13.仿此方法,将..0.45化成分数.1.1;2.0或1或2、0或1;3.1或-5;4.16;5.1或-3;6.27.√13-6;8.x≥0且x≠1;9.-1;10.6;11.√a2+1;12.5、-5;13.a≤1、8;14.1;15.11;16.180.025;17.④;18.(1)2、5;(2)1,2,3;(3)3;(4)255;19.3;20.511。

(完整版)初一下册数学讲义:实数复习培优

(完整版)初一下册数学讲义:实数复习培优

初一数学讲义实数一.教学衔接回顾实数相关知识点.1、3(6)-的平方根是( )A 、—6B 、6C 、±6D 、±62、下列命题:①(—3)2的平方根是-3 ;②—8的立方根是—2;③9的算术平方根是3;④平方根与立方根相等的数只有0; 其中正确的命题的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个3、若35,b a b ++的小数部分是a ,3-5的小数部分是则的值为( )A 、0B 、1C 、—1D 、24、已知5,14,0.063a b ===则( )A 、10ab B 、310ab C 、100ab D 、3100ab5、使等式2()x x --=成立的x 的值( )A 、是正数B 、是负数C 、是0D 、不能确定 6、如果30,aa -那么等于( ) A 、a a B 、a a - C 、a a - D 、a a --二.教学新课经典例题类型一.有关概念的识别1.下面几个数:0.23 ,1.010010001…,,3π,,,其中,无理数的个数有( )A 、1B 、2C 、3D 、4举一反三:【变式1】下列说法中正确的是( ) A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是( )A、1B、1.4C、D、【变式3】类型二.计算类型题2.设,则下列结论正确的是()A. B. C。

D.举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)—27立方根是__________.3)___________, ___________,___________。

【变式2】求下列各式中的(1)(2)(3)类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是( ).A.-1 B.1- C.2- D.-2[变式2]已知实数、、在数轴上的位置如图所示:化简类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2)|π—3。

实数(第一轮复习培优)

实数(第一轮复习培优)

1、 当10<<x 时,x 、x1、2x 的大小顺序是( )A 、 21x x x <<B 、xx x 12<<C 、x x x 12<<D 、x x x<<212.已知2(3)0x y -+=,x y +则的值为A . 0B .-1 C.1 D .53.已知x -=3,则4-x 2+x 的值为(A )1 (B ) (C ) (D )4. 如果整式x n-2-5x+2是关于x 的三次三项式,那么n 等于( ) A .3 B .4 C .5 D .6 5. 若0≤a,化简2a a -的结果是( )A 、0B 、a 2C 、a 2-D 、a 2或a 2- 6.将代数式262++x x化成q p x ++2)(的形式为( )A 、11)3(2+-x B 、7)3(2--x C 、11)3(2-+x D 、4)2(2++x7. 如果单项式13a x y+-与212b y x 是同类项,那么a 、b 的值分别为( ) (A )2a=,3b = (B )1a =,2b =(C )1a =,3b = (D )2a =,2b =8、计算a 3.(1 a)2的结果是 ( ) (A) a (B) a 5(C) a 6(D) a 99、计算的结果是( )(A ) (B ) (C ) (D )10、 下列运算正确的是( ). (A ) (B )(C ) (D )11、图11(1)是一个长为2a ,宽为2b (a>b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2ab B. (a+b)2C. (a-b)2D. D .a 2-b 212. 如图12,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( ) A .m +3 B .m +6 C .2m +3 D .2m +613、已知 7张如图1的长为a ,宽为b (b a >)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( ) (A )b a25=(B )b a 3= (C )b a 27= (D )b a 4= 14.把四张形状大小完全相同的小正方形卡片(如图○1)不重叠的放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图○2)盒子底面未被卡片覆盖的部分用阴影表示,则图○2中两块阴影部分的周长和是 A . 4m cmB . 4n cmC . 2(m +n )cmD . 4(m -n )cm15、如图15,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm aa + B .2(315)cm a +C .2(69)cm a + D .2(615)cm a + 二、填空题 16、 2(2)--=_____。

部编数学七年级下册实数的运算大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)

部编数学七年级下册实数的运算大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题6.5实数的运算大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•右玉县期末)计算:(1)−12+×(2)【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)−12+×=﹣1+(﹣3)﹣6=﹣4﹣6=﹣10;(2)=2﹣2+(﹣4)=2﹣2++4=2.(2021秋•兰考县期末)(1+(2.【分析】(1)首先计算开方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算开方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1=5﹣2+2=5.(2=2+(−32)﹣(2=12−2+=−323.(2021秋•安宁市校级期末)计算:(1)−12018+(2+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简绝对值,然后再进行计算即可解答.【解答】解:(1)−12018++=﹣1+51﹣2﹣3=(2+=+2=2.4.(2021秋•大丰区校级月考)计算:(1)(−1)2021+(2【分析】(1)直接利用有理数的乘方运算法则、二次根式的性质化简,进而得出答案;(2)直接利用有理数的乘方运算法则、二次根式的性质化简,进而得出答案.【解答】解:(1)(−1)2021+=﹣1+5=4;(2=2﹣(﹣2)=4.5.(2021秋•道里区期末)计算:(1(2.【分析】(1)先化简各数,然后再进行计算即可;(2)先化简各式,然后再进行计算即可.【解答】解:(1+=5+(﹣2)﹣6=﹣3;(2=3+3=6.6.(2022春•仁怀市校级月考)计算:−43÷+.【分析】直接利用有理数的乘方运算法则、立方根的性质、绝对值的性质、算术平方根分别化简,进而合并得出答案.【解答】解:原式=﹣64÷(﹣32)+2﹣(1﹣3)+1=2+2+2+1=57.(2022秋•铜山区期中)计算:(1(2)|﹣3|+(﹣1)0【分析】(1)首先计算开平方和开立方,然后计算除法,最后计算减法,求出算式的值即可.(2)首先计算零指数幂、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1÷=9÷(﹣3)﹣5=﹣3﹣5=﹣8.(2)|﹣3|+(﹣1)0=3+1﹣3+2=3.8.(2022秋•永康市期中)计算:(1(﹣1)2023(22|【分析】(1)根据算术平方根,立方根和有理数的乘方运算可解答;(2)根据绝对值,算术平方根,立方根运算可解答.【解答】解:(1(﹣1)2023=5﹣4+1=2;(22|=23+3=29.(2022秋•镇平县期中)计算:(1|1(2)+(3(﹣3)(﹣2)2.【分析】(1)先算开方,再去绝对值符号,再进行计算即可;(2)先开方,再算加减即可;(3)先算乘方,开方,再算乘法,最后算加减即可.【解答】解:(1)原式=2﹣|1﹣4|=2﹣3=﹣1;(2)原式=−54+5=15 4;(3)原式=﹣6+(﹣3)×10﹣4=﹣6﹣30﹣4=﹣40.10.(2022秋•南岗区校级期中)计算:(2)+3+;(3+【分析】(1)先去括号,再合并同类二次根式;(2)先计算绝对值、去括号,再合并同类二次根式;(3)先计算平方根和立方根,再计算加减.【解答】解:(1)==(2)+3+=1+3+1=+1;(3+=2﹣2−1 2=−1 2.11.求下列各式的值.(1(2×+×【分析】(1)原式利用平方根的定义化简,计算即可得到结果;(2)原式利用平方根定义及二次根式的性质化简,计算即可得到结果.【解答】解:(1)原式=5﹣4+2=3;(2)原式=0.01×100+6×0.2=1+1.2=2.2.12.计算:(2×|﹣(3×1|0.001)(4(5+【分析】原式各项利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+(2)原式=×=4(3)原式=×1)=3≈0.150;(4)原式=2=2﹣(5)原式=+9﹣2+7.13.计算.(1(2+【分析】(1)原式利用平方根定义化简,计算即可得到结果;(2)原式利用平方根及立方根定义化简,计算即可得到结果.【解答】解:(1)原式=0.6+35=1.2;(2)原式=12−52×(−15)﹣7+3=﹣4.14.计算(12;(2+0;(3+−2;(4.【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式利用平方根,立方根,绝对值,以及零指数幂法则计算即可得到结果;(3)原式利用平方根,立方根,绝对值,以及负指数幂法则计算即可得到结果;(4)原式利用立方根,平方根,以及绝对值的定义化简即可得到结果.【解答】解:(1)原式=﹣2+2﹣3=﹣3;(2)原式=5﹣2+3+1=7(3)原式=2﹣4+3+13=43+(4)原式=﹣1﹣2+2+1=15.计算:(1(2)+(3×(−12)2(41|﹣|3【分析】(1)原式利用平方根及立方根定义化简即可得到结果;(2)原式利用平方根及立方根定义化简即可得到结果;(3)原式利用平方根及立方根定义化简即可得到结果;(4)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式﹣0.5﹣(﹣3)=0.5+3=3.5;(2)原式=﹣8+8=0;(3)原式=4﹣4×14−(﹣3)=4﹣1+3=6;(4)原式=2+11﹣37.16.计算:(1)2)(2)|1【分析】(1)原式去括号合并即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=2=2;(2)原式=1++21.17.(2021春•柳南区校级期中)计算(1(2)﹣22×(12)2+|﹣2|.【分析】(1)首先根据二次根式的性质、立方根计算,再算加减即可;(2)首先计算有理数的乘方,开立方,根据绝对值的性质计算绝对值,然后再算乘除,后算加减即可.【解答】解:(1)原式=5﹣3−13=123;(2)原式=﹣4×14−4÷2=﹣1﹣2=﹣3.18.(2021春•青川县期末)计算:(1)(﹣3)2+2×1)﹣|﹣(2+|2+【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=2﹣=7;(2)原式=﹣2+2+4=﹣2−35+2+4=−35.19.(2021春•柳南区校级期末)计算:(1)﹣12+(﹣2)×(21)2|【分析】(1)原式利用乘方的意义,立方根定义,以及乘法法则计算即可求出值;(2)原式利用二次根式乘法法则,绝对值的代数意义计算即可求出值.【解答】解:(1)原式=﹣1+(﹣3)+2×3=﹣1﹣3+6=2;(2)原式=3+2=5.20.(2020秋•江都区期末)计算:(1+(2)|1(﹣2)2【分析】(1)直接利用立方根以及算术平方根分别化简得出答案;(2)直接利用绝对值的性质分别化简得出答案.【解答】解:(1)原式=1﹣2+4 3=1 3;(2)原式=1+4=3.21.(2022春•连山区期末)计算.(1(2)+(−5)2【分析】(1)实数的混合运算,先分别化简算术平方根,立方根,然后再计算;(2)实数的混合运算,先化简绝对值,有理数的乘方,然后再计算.【解答】解:(1)原式=7﹣3+3=7;(2)原式=1+25=24.22.(2020秋•松北区期末)计算:(1|2(2)【分析】(1)首先计算开方、绝对值,然后从左向右依次计算即可.(2)首先计算绝对值,然后从左向右依次计算即可.【解答】解:(1|2=﹣42)﹣=﹣42﹣=5.(2)=+=23.(2021春•福州期末)计算:(1)|﹣2|+(﹣1)2019;(2)6+2.【分析】(1)直接利用实数的混合运算法则计算得出答案;(2)直接利用实数的混合运算法则计算得出答案.【解答】解:(1)|﹣2|+(﹣1)2019,=2﹣2﹣(﹣1),=1,(2)6+2,=6×13−3+2,=2﹣3+2,=1.24.(2020秋•道里区期末)计算:(1(2+【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用绝对值的性质和算术平方根分别化简得出答案.【解答】解:(1)原式=4+3+7=14;(2)原式=+5=525.计算(1(2)+(﹣1)3【分析】(1)原式各项化简后,合并即可得到结果;(2)原式利用算术平方根、立方根定义,以及乘方的意义计算即可得到结果.【解答】解:(1)原式=0.8−32+1.2=0.5;(2)原式=14−1−32=−94.26.(2021春•安定区校级期中)计算下列各题(1+|1(2【分析】(1)原式利用平方根、立方根定义,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用平方根、立方根的定义计算即可得到结果.【解答】解:(1)原式=2﹣2﹣3+14;(2)原式=5+3+12=812.27.(2018春•遵义期中)计算下列各题:(1++(2)|7|【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7π+7=﹣π.28.计算:(1(2)﹣【分析】(1)先进行开方运算,再合并同类项即可;(2)先开方运算,再合并即可得到答案.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣=﹣8﹣4×(﹣4)=﹣8+16=8.29.计算下列各题:(1+(2)(3+2.【分析】(1)先计算算术平方根、立方根,再计算有理数的加减即可;(2)先化简绝对值、计算平方根,再计算实数的加减即可;(3)先计算算术平方根、化简绝对值、立方根、实数的平方,再计算实数的加减即可.【解答】解:(1+=4+(﹣3)−12+0.5+18=11 8;(2)=(7π7=7π7=﹣π;(3+2=6+1)﹣2+5=830.(2022春•罗定市期中)计算:(﹣2)2+2|.【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.【解答】解:原式=4+2=4+3﹣3+2=6。

北师大版八年级上册第二章实数复习培优教案

北师大版八年级上册第二章实数复习培优教案
北师大版八年级上册第二章实数复习培优教案
一、教学内容
北师大版八年级上册第二章实数复习培优教案:
1.实数的定义及其分类;
2.有理数的性质与运算法则;
3.无理数的理解与估算;
4.实数的数轴表示及大小比较;
5.实数的混合运算;
6.实数在实际问题中的应用。
二、核心素养目标
1.理解实数的概念,培养学生的数学抽象素养,使其能够把握数的本质属性;
-实数的概念及其分类:理解实数的定义,掌握有理数与无理数的区别,明确实数的包含关系。
-举例:解释有理数的有限小数和无限循环小数特性,以及无理数的无限不循环特性,如π和√2等。
-实数的数轴表示:能够准确地在数轴上表示实数,并进行大小比较。
-举例:在数轴上标出√3和2的位置,并比较它们的大小。
-实数的混合运算:掌握实数的加减乘除运算法则,特别是带根号的运算。
2.通过实数的性质与运算,提升学生的逻辑推理能力和数学运算能力;
3.利用数轴和估算无理数,增强学生的直观想象和数学建模能力;
4.在解决实际问题时,提高学生的数据分析能力和数学应用意识;
5.通过实数的学习,引导学生形成严谨的科学态度和良好的数学学习习惯,培养其终身学习的素养。
三、教学难点与重点
1.教学重点
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾实数的基本概念。实数是包含有理数和无理数的数集,它们在数轴上有着广泛的应用。实数的重要性在于它们可以精确地描述自然界中的各种量。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有一个边长为√2的正方形,我们如何计算它的面积?通过这个案例,我们可以看到实数在实际问题中的应用。
-实数的运算规则:特别是无理数的运算,学生容易混淆运算规则,导致计算错误。

数学第六章 实数的专项培优易错试卷练习题含答案

数学第六章 实数的专项培优易错试卷练习题含答案

数学第六章 实数的专项培优易错试卷练习题含答案一、选择题1.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数2.下列计算正确的是( )A .42=±B .1193±=C .2(5)5-=D .382=± 3.25的算术平方根是( )A .5±B .5C .52±D .54.下列各数中3.1415926,-39,0.131131113……,94,-117无理数的个数有( ) A .1个B .2个C .3个D .4个 5.下列说法正确的是 ( ) A .m -一定表示负数B .平方根等于它本身的数为0和1C .倒数是本身的数为1D .互为相反数的绝对值相等 6.下列各式中,正确的是( )A .()233-=-B .42=±C .164=D .393=7.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒ 8.估计65的立方根大小在( ) A .8与9之间B .3与4之间C .4与5之间D .5与6之间 9.2的平方根为( ) A .4 B .±4 C 2 D .210.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.13.m 的平方根是n +1和n ﹣5;那么m +n =_____.14.如果某数的一个平方根是﹣5,那么这个数是_____.15.27的立方根为 .16.49的平方根是________,算术平方根是______,-8的立方根是_____.17.将2π,93,3-272这三个数按从小到大的顺序用“<”连接________. 18.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.19.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.20.0.050.55507.071≈≈≈≈,按此规500_____________三、解答题21.你能找出规律吗?(149= ,49⨯= ;1625= ,1625⨯= .4949⨯1625 1625⨯“<”).(2)请按找到的规律计算:520;②231935⨯. (3)已知:a =2,b =10,则40= (可以用含a ,b 的式子表示). 22.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.23.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).24.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++25.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…②由② ﹣ ①式,得2S ﹣S =231﹣1即(2﹣1)S =231﹣1 所以 3131212121S -==-- 请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若M 点在此数轴上运动,请求出M 点到AB 两点距离之和的最小值;(3)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒12个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 能追上点P ?(4)在数轴上找一点N ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有的N 对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A、实数包括有理数和无理数,故此命题是假命题;B、有理数就是有限小数或无限循环小数,故此命题是假命题;C、无限不循环小数就是无理数,故此命题是假命题;D、无论是无理数还是有理数都是实数,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.2.C解析:C【分析】A、根据算术平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的性质计算即可判定;D、根据立方根的定义即可判定.【详解】A2=,故选项错误;B、13=±,故选项错误;C、2(=5,故选项正确;D2,故选项错误.故选:C.【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.3.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】,∴5故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】32,3.1415926,-117是有理数,0.131131113……是无理数,共2个. 故选B.【点睛】本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.5.D解析:D【分析】当m 是负数时,-m 表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等.【详解】A. 若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A 选项错误;B. 平方根等于它本身的数为0,故B 选项错误;C. 倒数是本身的数为1和﹣1,故C 选项错误;D. 互为相反数的绝对值相等,故D 选项正确;故选D【点睛】本题考查了平方根、倒数以及相反数的概念,熟练掌握各个知识点是解题关键. 6.C解析:C【分析】对每个选项进行计算,即可得出答案.【详解】3=,原选项错误,不符合题意;2=,原选项错误,不符合题意;4=,原选项正确,符合题意;D. 3≠,原选项错误,不符合题意.故选:C【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG ,∴∠BEF=180°-50°=130°,又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=65°, ∴∠2=65°.故选:B .【点睛】 此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.8.C解析:C【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案. 【详解】解:∵3464=,35125=∴6465125<<∴45<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.9.D解析:D【分析】利用平方根的定义求解即可.【详解】解:∵2的平方根是.故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.10.C【分析】分别计算四个选项,找到正确选项即可.【详解】=,故选项A错误;2==,故选项B错误;2=-,故选项C正确;2--=-,故选项D错误;D. |2|2故选C.【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1、的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:,解得:,故答案解析:2-【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,,解得:,根据中点坐标公式可得:=12故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.13.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.14.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.15.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算16.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±77-2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.17.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解<2π 【分析】的值,再比较各数大小即可. 【详解】3=33=22=32-=32, ∵π>3>2,∴22<32<2π,即3<2π,故答案为:3<2π 【点睛】本题考查实数的大小比较,正确化简得出3的值是解题关键. 18.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】 本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.19.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.20.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】7.071≈≈≈≈,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的估值扩大1022.36≈.故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.三、解答题21.(1)6,6,20,20,=,=;(2)①10,②4;(3)2a b【分析】(1)0,0a b =≥≥,据此判断即可.(2=10===,4===,据此解答即可.(3)根据a =b =2a b ==,据此解答即可.【详解】解:(1236=⨯=6==;4520=⨯=20==.==故答案为:6,6,20,20,=,=;(210===;4===;(3)∵a =b =2a b==,故答案为:2a b.【点睛】本题考查算数平方根,掌握求一个数算术平方根的方法为解题关键.22.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.23.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t =⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO ,∴∠OAC=∠AOD.∵x 轴平分∠GOD ,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC ,∴∠FHC=∠ACE.∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC ,即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.24.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -=即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.25.(1)12 ,1712 ,n-112 ;(2)24332-;(3)()11111n a a a -- 【分析】(1)12÷1即可求出q ,根据已知数的特点求出a 18和a n 即可; (2)根据已知先求出3S ,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】 解:(1)12÷1=12, a 18=1×(12)17=1712,a n =1×(12)n ﹣1=112n -, 故答案为:12,1712,112n -; (2)设S =3+32+33+ (323)则3S =32+33+…+323+324,∴2S =324﹣3, ∴S =24332- (3)a n =a 1•qn ﹣1,a 1+a 2+a 3+…+a n =()11111n a a a --.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.26.(1)a=﹣1,b=5,c=﹣2,数轴详见解析;(2)6;(3)运动4秒后,点Q可以追上点P;(4)M对应的数为2或﹣223.【解析】【分析】(1)根据题意易得a,b,c的值,然后在数轴上表示出来即可;(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为AB的长;(3)用AB的长度除以点Q与点P的速度差即可得解;(4)分析M点在不同的位置时,所得到的M的值即可.【详解】(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5﹣(﹣1)=6;(3)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣12,∴6÷(2﹣12)=4,答:运动4秒后,点Q可以追上点P;(4)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:﹣22 3 .综上所述,M对应的数为2或﹣223.【点睛】本题主要考查实数与数轴,数轴上两点之间的距离.解此题的关键在于根据题意准确画出数轴上各点所表示的数.。

部编数学七年级下册【单元测试】第六章实数(夯实基础培优卷)(解析版)含答案

部编数学七年级下册【单元测试】第六章实数(夯实基础培优卷)(解析版)含答案

人教版七年级数学下册【单元测试】第六章 实数(夯实基础培优卷)(考试时间:90分钟 试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时90分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。

在每小题给出的四个选项中只有一项是符合题目要求的。

1.(2022·湖南南县·七年级期末)()22-的算术平方根为( )A .4B .2±CD .2【答案】D【分析】先求出2(2)4-=,根据算术平方根的定义求出4的算术平方根即可.【详解】解:2(2)4-=,∵4的算术平方根是2,∴2(2)-的算术平方根是2.故选D .【点睛】本题考查算术平方根的定义,掌握算术平方根的定义“若一个正数x 的平方等于a ,即2x a =,则这个正数x 为a 的算术平方根”是解题关键.2.(2022·江苏江阴·1的相反数是( )A .1B .1C .1-+D .1-【答案】B【分析】根据相反数的定义,只有符号不同的两个数互为相反数,实数的性质求解即可1-的相反数是1故选B【点睛】本题考查了实数的性质,相反数的定义,理解相反数的定义是解题的关键.3.(2022·浙江义乌·3的结果在两个相邻整数之间,则这两个整数分别是( )A .1和2B .2和3C .3和4D .4和5【答案】D3的取值范围,即可求解【详解】解:∵78∴453-<3在4和5之间,故选:D4.(2021·全国·七年级单元测试)如果()02012a =-,()10.1b -=-,23()2c -=-,那么a 、b 、c 三个数的大小为( )A .a b c>>B .c a b >>C .a c b >>D .c b a>>【答案】C【分析】首先分别求出a 、b 、c 三个数的值各是多少,然后根据实数大小比较的方法,判断出a 、b 、c 三个数的大小关系即可.【详解】解:()020121a =-= ()110.1100.1b -=-=-=- 22324239c -æöæö=-=-=ç÷ç÷èøèø41109>>-Q a c b \>>.故选C .【点睛】此题主要考查了实数大小比较的方法,负整数指数幂的运算,零指数幂的运算,熟练掌握是解答此问题的关键.5.(2021·全国·182=-2=,=4=±,⑥2=-;正确的有( )A .4个B .3个C .2个D .1个【答案】A 【分析】根据算术平方根定义及立方根定义解答.14=,故①错误;2=-2=,故③正确;=4=,故⑤错误;2=-,故⑥正确;故选:A .【点睛】此题考查求一个数的算术平方根及立方根,正确掌握算术平方根定义及立方根定义是解题的关键.6.(2021·河南省淮滨县第一中学七年级单元测试)设某代数式为A ,若存在实数0x 使得代数式A 的值为负数,则代数式A 可以是( )A .|32|x -B .2x x +C D .9【答案】B【分析】根据绝对值的非负性以及算术平方根的非负性判断即可.【详解】解:对于任意的x ,都有|32|0x -³0³,90>,∵2211()24x x x +=+-,∴对于任意的x 的取值,代数式A 的可以为正数、负数或0,即存在实数0x 使得代数式A 的值为负数,故选:B .【点睛】本题主要考查了代数式的求值问题,解答此题的关键是判断出:|32|0x -³,0³.7.(2019·浙江婺城· )A .4和5B .5和6C .6和7D .7和8【答案】C【详解】解:∵36<40<49,∴6<7,6和7之间,故选:C .【点睛】本题考查估算无理数的大小,掌握算术平方根的意义是正确解答的关键.8.(2021·福建石狮·A .78B .56C .34D .23【答案】C,可得答案.,∴34.故选:C .【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.9.(2022·江苏·无锡市东林中学七年级期末)下列说法正确的是( )A .有理数和无理数统称为实数B .实数是由正实数和负实数组成C .无限小数是无理数D .有理数和数轴上的点一一对应【答案】A【分析】根据实数的有关概念判断即可.【详解】解:A 、有理数和无理数统称为实数,根据实数的概念知A 正确,符合题意;B 、实数分为正实数,零,负实数,故B 错误,不符合题意;C 、无限循环小数是有理数,故C 错误,不符合题意;D 、任意一个实数可以用数轴上的一个点表示,数轴上的任意一个点都表示一个实数,而有理数不能与数轴上的点一一对应,故D 错误,不符合题意.故选:A .【点睛】本题考查实数的分类及实数的性质,解题的关键是正确认识实数的有关概念.10.(2021·全国·七年级单元测试)实数,,x y z 在数轴上的对应点的位置如图所示,若z y x y +<+,则A ,B ,C ,D 四个点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点【答案】D 【分析】分①若原点的位置为A 点时,②若原点的位置为B 点或C 点时,③若原点的位置为D 点时,结合有理数的加法法则和点在数轴上的位置分析即可得出正确选项.【详解】解:根据数轴可知x y z <<,①若原点的位置为A 点时,x >0,则z y z y +=+,x y x y +=+,x y z y +<+, ∴z y x y +>+,舍去;②若原点的位置为B 点或C 点时,0,0,0,||||,||||x y z z x z y <>>>>,则||||x y y +<或||||x y x +<,||||z y z y +=+,∴z y x y +>+,舍去;③若原点的位置为D 点时,0,0,0,||||x y z y z <<>>则||||||x y y x +<+ ||z y y +<,∴z y x y +<+,符合条件,∴最有可能是原点的是D 点,故选:D .【点睛】本题考查实数与数轴,有理数的加法法则,化简绝对值.熟记有理数的加法法则是解题关键.二、填空题:本题共8个小题,每题3分,共24分。

实数培优复习

实数培优复习

课题实数培优复习知识点梳一、知识梳理:1、平方根一般地,如果一个数x的平方等于a,即ax=2,那么这个数x叫做a的平方根或二次方根。

a的平方根记为a±.性质:(1)一个正数有两个平方根,且它们互为相反数,记为a±;(2)0平方根是0;(3)负数没有平方根。

2、算术平方根如果一个正数x的平方等于a,即ax=2,那么正数x叫做a的算术平方根。

正数a的算术平方根记作a,a叫做被开方数。

规定:0的算术平方根是0,记作注意:(1)双重非负性:被开方数a≥0;算术平方根≥0 (2)只有当0≥a时,数a才有算术平方根。

非负性回顾①绝对值②平方数③算术平方根。

归纳总结:关于a、2)(a、2a的重要结论:(1)a表示非负数a的算术平方根,其结果也是非负数;(2)2)(a: 若0≥a,则2)(a=a,若0≤a,则2)(a无意义;(3)0=a专题复习二、专题复习专题一:有关概念的识别例题:(无理数的概念)下面几个数:,1.010010001…,,3π,,,其中,无理数的个数有( C )A、1B、2C、3D、4练习:判断下列说法是否正确:(1)实数不是有理数就是无理数()(2)无限小数都是无理数()(3)无理数都是无限小数()(4)带根号的数都是无理数()(5)两个无理数之和一定是无理数()(6)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

()例2:(方根的概念)例题:下列说法中正确的是( A )A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数练习:1、计算= 1 方程中x= 1或-72、 C3、 A4、已知:A=yx yx-++3是3++yx的算术平方根,B=322+-+yx yx是yx2+的立方根。

则A-B的平方根= 。

±25、b ac专题二:巧用算术平方根的性质例题:式子1x -在实数范围内有意义,则x 的取值范围 练习:1、化简:11x x -+-= O2、已知25523,y x x xy =-+--则的值。

浙教版七年级上册数学第三章实数培优提高练习题(含答案)

浙教版七年级上册数学第三章实数培优提高练习题(含答案)

13.1 平方根(一)1.(1)求下列各数的算术平方根:① 64; ② 0.0001; ③ 125.(2)求下列各式的值:① 4√225; ② √49144⋅√1449; ③ √(−3)2(3)下列各式中正确的是( ).A .√25=±5 B.±√25=5C.±√25=±5D.±√(−5)2=-5课后练习1.求下列各数的算术平方根:(1)104; (2)√16; (3)10000.2.求下列各式的值:(1)√214+√0.25; (2)√(−2)2−√1.21.3下列说法:① 0.09是0.81的平方根;② -9的平方根是±3;③ (-5)2的算术平方根是-5;④ √−2是一个负数;⑤ 0的相反数和绝对值都是0;⑥ √4=±2;⑦ 全体实数和数轴上的点一一对应.其中正确的是_________.(填序号)24.已知√a −17+√17−a =b +8. (1)求a 的值.(2)求a 2−b 2的平方根.5.已知一个正数的平方根是3x-2和5x+6,则这个数是____________.6.已知(x −3)2+√y 2+2y +1=0,求x+y 的平方根.7.已知√23.5=a ,√2.35=b ,求下列各式的值(用含a 或b 的代数式表示): (1)√2350; (2)√235; (3)√0.000235.3.2平方根(二)1.(1)试估计√5的大小(精确到0.01); (2)试比较3√2与2√3的大小;(3)若0<x <1,则x,1x,√x,x 2的大小关系为( ).A .x <1x <√x <x 2 B.x 2<x <√x <1x C .1x <x <x 2<√x D .√x <1x <x <x 2 2.(1)设a =√15−1,a 在两个相邻整数之间,则这两个整数是( ). A.1和2 B.2和3 C.3和4 D.4和5(2)若√10在两个连续整数a 和b 之间,即a <√10<b ,则a+b =______.3.(1)比较大小:① √3−√2与√2−1,② √4−√3与√3−√2,③ √5−√4与√4−√3;(2)由(1)中比较的结果,猜想√(n +1)−√n 与√(n )−√(n −1)的大小关系.4.已知2a−1的算数平方根是3,3a+b−1的平方根是±4,c是√13的整数部分,求a+2b−c的平方根.5.若实数x满足|1-x|=1+|x|,则√(x−1)2=_______.36.求满足√x+√y=√99的正整数x、y的值.7.对于有理数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当a>b时,min{a,b}=b.例如:min{1,-2}=-2,min{3,-1}=-1.已知min{√21,a}=√21,min{√21,b}=b,且a和b为两个连续正整数,则a+b的平方根为______.43.3 平方根(三)1.求下列各数的平方根:(1)64; (2)425; (3)0.0001.2.填空.(1)如果x 的一个平方根是7.12,那么它的另一个平方根是______;(2)一个正数的两个平方根的和是______.一个正数的两个平方根的商是______;(3)要使√(3x −5)有意义,则x 可以取的最小整数是______.3.若实数x 满足√(x −2)·|x+1|≤0,则x 的值为( ).A.2或-1B.2≥x ≥-1C.2D. -14.(1)如果b 是a 的一个平方根,那么a 的平方根是________,a 算术平方根是_______.(2).若一个正数的平方根是2a −1和−a +2,求a 的值.5.已知a 、b 、c 、x 、y 、z 都是非零实数,且满足a 2+b 2+c 2+x 2+y 2+z 2=2ax+2by+2cz,求√xa +yb +zc 的值.6.已知y =1+√2x −1+√1−2x ,则2x+3y 的平方根为_____.7.先观察下列等式,再回答下列问题: ① √1+112+122=1+11−11+1=112② √1+122+132=1+12−12+1=116 ③ √1+132+142=1+13−13+1=1112(1)请你根据上面三个等式提供的信息,猜想√1+142+152的结果,并验证;(2)请你将上面各等式反映的规律用含n 的等式表示(n 为正整数).53.4 立方根1.(1)求下列各数的立方根:① -64; ② 127; ③ -0.001.(2)计算:① √16+√0.25−√273 ② √144−√−83+√1692.计算:(1)√0.1253−√116+√(1−78)23; (2)√641253−√83+√1100−(−2)3×√0.0643.3.求下列各式中,x 的值.(1)(x+1)3=8; (2)√(x +3)33=|x +2|.4.(1)在实数范围内定义运算“⊕”,其法则为:a ⊕b =a 2-b 2,求方程(4⊕3)⊕x =24的解.(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.5.如果A=√a +3b a−2b+3为a +3b 的算数平方根,B=√1−a 22a−b−1为1−a 2的立方根,求A+B 的立方根.66.一个正方体的表面积是2400cm 2. (1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少? 7.若√a 3+633=2|a |,求a 的值.8.先观察下列各式:√1=1;√1+3=√4=2;√1+3+5=√9=3; √1+3+5+7=√16=4;(1)计算:√1+3+5+7+9+11=__________________;(2)已知n 为正整数,通过观察并归纳,请计算√1+3+5+7+9+11+⋯+(2n −1)=_________________;(3)应用上述结论,请计算√4+12+20+28+36+44+⋯+204的值.73.5 实数1.(1)下列各数中,是分数的有哪些?−23,√3 ,13,π3,√4 3,√22,227.(2)求下列各数的相反数与绝对值: ① √5−√6; ②√−643; ③ √3−1.73.2.把下列各数填在相应的大括号里:-|-2|, 0, -1.04, −23,−√54, -(-3), π2,√2,√36,√93, 0.1010010001…(小数点后面每两个1之间依次多一个0).分数:{______________________}整数:{______________________}负有理数:{_____________________}无理数:{______________________}3.实数a 、b 、c 在数轴上对应点的位置如图所示,以下结论中正确的是( ).A.ac <0B. |a+b|=a-bC. | c-a| =a - cD. | a |>|b |4.实数a 在数轴上的位置如图,则a 、-a 、1a、√a 3的大小关系是( ).A .a <−a <1a <√a 3B .−a <1a <a <√a 3C .1a <a <√a 3<-a D .1a <√a 3<a <−a 5.求证√2是无理数.86.已知a √33√2b √23+m √3+m c √33+m√2+m,其中m >0,那么a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.a >c >bD.b >c >a7.将下列循环小数化成分数:(1)0. 7 (2)3.13(3)0.238.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B,点A 表示−√2. 设点B 所表示的数为m.(1)实数m 的值是_______;(2)求|m+1|+|m-1|的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d,且有|2c+d|与√d 2−16互为相反数,求2c-3d 的平方根.3.6实数(二) 1.化简:(1)√5−√5×(√5−2+2√5); (2)|1−√2|+|√2−√3|-|2−√3|2.化简:(1)|√10−3|+|√10−4|; (2)|√2+√3−2|-|4−√2−√3|.93.计算:(1)|√2−3|+√(−3)2-(-1)2019+√−273, (2)14√16+√25−√−273-|√5−3|.4.已知a −1a=√10,则a +1a的值是_______.5.设x 、y 是有理数,并且x 、y 满足等式x 2+2y +√2y =17−4√2,求x+y 的值.6.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长:(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;(3)把正方形ABCD 放到数轴上,如图2,使得A 与一1重合,求D 在数轴上表示的数.6.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图1中正方形的面积为5,则此正方形的边长为√5,我们通过画正方形可求出无理数的线段长度.(1)请在图2中画出一个面积为10的正方形,此正方形的边长为______; (2)求出图3中A 、B 、C 点为顶点的三角形的面积和AB 的长度.CBA图3图2图110 7.若a、b满足3√a+5|b|=7,求s=2√a−3|b|的取值范围.3.7 实数复习(一)1.解答下列各题(1)分别求下列各数的平方根、算术平方根和立方根.① 3; ② 16; ③ 8; ④√4.(2)把下列各数分别填入相应的集合里:2,π3, 1.414, −√5,−34,√43,54√3,76, 1.3.有理数集合:{________________________};无理数集合:{_______________________};实数集合:{________________________}.2.填空:(1)√−73的相反数是______;绝对值等于√3的数是_____;(2)当x_____时,√2x−3有意义,当x_____时,√1−x有意义;(3)当0≤x≤1时,化简√x2+|x-1|=________.3.选择题:(1)a、b的位置如图所示,则下列各式中有意义的是().A.√a+bB.√a−bC.√abD.√b−a11(2)下列运算中,错误的有( ). ① √125144=1512 . ② √(−4)2=±4. ③ √−22=−√22=−2; ④ √116+14=14+12=34.A.1个B.2个C.3个D.4个(3)下列命题中正确的是( ).A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数(4)已知a =2−√5,b =√5−2,c =5−2√5,则a 、b 、c 的大小关系是( ). A.a <c <b B.b <a <c C.c <a <b D.a <b <c4.(1)已知:10+√3=x +y ,其中x 是整数,且0<y <1,求x-y 的相反数;(2)已知y =√3x −1−√1−3x +9x ,求√3x +2y −3的平方根.5.细心观察图,认真分析各式,然后解答问题.(√1)2+1=2, S 1=√12;(√2)2+1=3.S 2=√22,(√3)2+1=4, S 3=√32;… …(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出s 12+S 22+S 3+22…+S 102的值.12A 1126.已知|2015-a|+√a −2016=a,求a-20152的值.7.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数“,如:4=22-02,12=42-22,20=62-42,因此,4、12、20都是”神秘数“. (1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构成的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方和是神秘数吗?为什么?8.某同学在解答题目:“化简并求值1a+√1a2+a 2−2,其中a =15.”时,解答过程是: 1a +√1a 2+a 2−2=1a +√(a −1a )2=1a +a −1a =15. (1)请判断他的解答是否正确;如果不正确,请写出正确的解答过程; (2)设S =√12+112+122+√12+122+132+√12+132+142+…+ √12+1n 2+1(n+1)2(n 为正整数).考察所求式子的结构特征: ① 先化简通项公式√1+1n 2+1(n+1)2;② 求出与S 最接近的整数是多少133.8 实数复习(二) 1.计算:(1√32−2√50+4√12−4√18(2)|√2+√3−2|+|−4+√2+√3|;(3)[5-2×(√3−2)]-3×(√2+1).2.计算:(1)−√425−√−81253; (2)√5−√5×(√5−2×√5);(3)√−8273−(−12)3×√(−4)2+√(−4)33×(12)2−√9② 设a 、b 都是实数,且满是b =√a 2−1+√1−a 2+4a+1,求√2a −b 的值.3.已知实数a 、b 、c 在数轴上的位置如图所示,化简|-a|+|a+c|-|b-2a|+|b-c|的结果为( ).A.-2bB. -bC. -2aD.a144.已知√m +n +5+√(m −2n )2=m-2n,且√2m −n −2=0,求m-n 的值.5. 观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a-b =ab+1成立的一对有理数a 、b 为“共生有理数对”,记为(a, b),如:数对(2,13),(5,23),都是“共生有理数对”.(1)判断数对(-2,1),(3,12)是不是“共生有理数对”,写出过程;(2)若(a,3)是“共生有理数对”,求a 的值;(3)若(m,n)是“共生有理数对”,则(-n,-m)_____“共生有理数对”(填“是”或“不是”);说明理由;(4)请再写出一对符合条件的“共生有理数对”_________________.(注意:不能与题目中已有的“共生有理数对”重复)6.已知整数a 0,a 1,a 2,a 3,a 4,…满足下列条件:a 0=0,a 1=-|a 0+1|,a 2=-|a 1+2|,a 3=-|a 2+3|,…,以此类推,则a 2018的值为( ).A.-1007B.-1008C.-1009D.-20167.设a 、b 是两个不相等的有理数,求证:+√2b +√2必为无理数.153.1 平方根(一)1.(1)求下列各数的算术平方根:① 64;=8 ② 0.0001;=0.01 ③ 125.=15 (2)求下列各式的值: ① 4√225;=60 ② √49144⋅√1449; =73 ③ √(−3)2=3(3)下列各式中正确的是( C ).A .√25=±5 B.±√25=5C.±√25=±5D.±√(−5)2=-5课后练习1.求下列各数的算术平方根:(1)104;=100 (2)√16;=4 (3)10000.=100 2.求下列各式的值:(1)√214+√0.25;=2 (2)√(−2)2−√1.21.=0.93下列说法:① 0.09是0.81的平方根;② -9的平方根是±3;③ (-5)2的算术平方根是-5;④ √−2是一个负数;⑤ 0的相反数和绝对值都是0;⑥ √4=±2;⑦ 全体实数和数轴上的点一一对应.其中正确的是⑤⑦(填序号4.已知√a −17+√17−a =b +8. (1)求a 的值.(2)求a 2−b 2的平方根.(1)a 的值为17.b 的值为-8.(2)a 2−b 2=225,所以±√225=±15.5.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 6.已知(x −3)2+√y 2+2y +1=0,求x+y 的平方根.x=3,y=-1,x+y=2,±√2=±√27.已知√23.5=a ,√2.35=b ,求下列各式的值(用含a 或b 的代数式表示): (1)√2350;=10a (2)√235;=10b (3)√0.000235.=b 1003.2平方根(二)1.(1)试估计√5的大小(精确到0.01);√5≈2.24 (2)试比较3√2与2√3的大小;3√3>2√3(3)若0<x <1,则x,1x,√x,x 2的大小关系为( B ).A .x <1x <√x <x 2 B.x 2<x <√x <1xC .1x <x <x 2<√x D .√x <1x <x <x 22.(1)设a =√15−1,a 在两个相邻整数之间,则这两个整数是( B ). A.1和2 B.2和3 C.3和4 D.4和(2)若√10在两个连续整数a 和b 之间,即a <√10<b ,则a+b =7.3.(1)比较大小:① √3−√2与√2−1,② √4−√3与√3−√2,③ √5−√4与√4−√3;(2)由(1)中比较的结果,猜想√(n +1)−√n 与√(n )−√(n −1)的大小关系.√(n +1)−√n <√(n )−√(n −1)164.已知2a −1的算数平方根是3,3a +b −1的平方根是±4,c 是√13的整数部分,求a +2b −c 的平方根.a =5,b =2,c =3,a +2b −c =6,∴±√a +2b −c =±√65.若实数x 满足|1-x|=1+|x|,则√(x −1)2=1−x .6.求满足√x +√y =√99的正整数x 、y 的值.{x =11y =44 {x =44y =117.对于有理数a 、b,定义min{a,b}的含义为:当a <b 时,min{a,b}=a,当a >b 时,min{a,b}=b.例如:min{1,-2}=-2,min{3,-1}=-1.已知min{√21,a}=√21,min{√21,b}=b,且a 和b 为两个连续正整数,则a+b 的平方根为±3.a =5,b =4,a +b =9,±√9=±33.3 平方根(三)1.求下列各数的平方根:(1)64;±√64=±8 (2)425;±√425=±25 (3)0.0001.±√0.0001=±0.01 2.填空.(1)如果x 的一个平方根是7.12,那么它的另一个平方根是-7.12;(2)一个正数的两个平方根的和是0.一个正数的两个平方根的商是-1; (3)要使√(3x −5)有意义,则x 可以取的最小整数是2.3.若实数x 满足√(x −2)·|x+1|≤0,则x 的值为( C ).A.2或-1B.2≥x ≥-1C.2D. -1 4.(1)如果b 是a 的一个平方根,那么a 的平方根是±b ,a 算术平方根是|b |. (2).若一个正数的平方根是2a −1和−a +2,求a 的值.a =−15.已知a 、b 、c 、x 、y 、z 都是非零实数,且满足a 2+b 2+c 2+x 2+y 2+z 2=2ax+2by+2cz,求√xa +yb +zc 的值.a =x,b =y,c =z,∴√x a +√y b +√zc=√36.已知y =1+√2x −1+√1−2x ,则2x+3y 的平方根为±2.7.先观察下列等式,再回答下列问题: ① √1+112+122=1+11−11+1=112② √1+122+132=1+12−12+1=116 ③ √1+132+142=1+13−13+1=1112 (1)请你根据上面三个等式提供的信息,猜想√1+142+152的结果,并验证;(2)请你将上面各等式反映的规律用含n 的等式表示(n 为正整数).(1) √1+142+152=1+14−14+1=1+14−15=1120(2)√1+1n 2+1(n+1)2=1+1n×(n+1)173.4 立方根1.(1)求下列各数的立方根:① -64;=-4 ② 127;=13 ③ -0.001.=-0.1(2)计算:① √16+√0.25−√273=1.5 ② √144−√−83+√169=27 2.计算:(1)√0.1253−√116+√(1−78)23;=0.5 (2)√641253−√83+√1100−(−2)3×√0.0643.=2.13.求下列各式中,x 的值.(1)(x+1)3=8; (2)√(x +3)33=|x +2|.x =1 x +3=|x +2|,解得x =−524.(1)在实数范围内定义运算“⊕”,其法则为:a ⊕b =a 2-b 2,求方程(4⊕3)⊕x =24的解. 72−x 2=24,x =±5(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.a =2,b =21,a −2b =−405.如果A=√a +3b a−2b+3为a +3b 的算数平方根,B=√1−a 22a−b−1为1−a 2的立方根,求A+B 的立方根.{a −2b +3=22a −b −1=3,解得{a =3b =2.∴A =3,B =−2,∴√A +B 3=√3−23=1.6.一个正方体的表面积是2400cm 2.(1)求这个正方体的体积; 6a 2=2400,a =20(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少? 6a 2=1200,a =10√2.体积:10√2×10√2×10√2=2000√2 原体积 20×20×20=8000 体积变为原来的2000√28000=√247.若√a 3+633=2|a |,求a 的值.分a ≥0,a =√93. 当a <0,a =−√73.8.先观察下列各式:√1=1;√1+3=√4=2;√1+3+5=√9=3; √1+3+5+7=√16=4;(1)计算:√1+3+5+7+9+11=√62=6;(2)已知n 为正整数,通过观察并归纳,请计算 √1+3+5+7+9+11+⋯+(2n −1)=√n 2=n ;(3)应用上述结论,请计算√4+12+20+28+36+44+⋯+204.的值.√4×(1+3+5+7+⋯+51)=√4×262=2×26=52.181.(1)下列各数中,是分数的有哪些?(2)求下列各数的相反数与① √5−√6; ②√−643; ③ √3−1.73.相反数√6−√5 4 1.73−√3 绝对值√6−√5 4 √3−1.732.把下列各数填在相应的大括号里:-|-2|, 0, -1.04, −23,−√54, -(-3), π2,√2,√36,√93, 0.1010010001…(小数点后面每两个1之间依次多一个0).分数:{−23,−1.04}整数:{−|−2|,0,−(−3),√36}负有理数:{ −23,−1.04,−|−2|} 无理数:{−√54,π2,√2,√93,0.1010010001……} 3.实数a 、b 、c 在数轴上对应点的位置如图所示,以下结论中正确的是( C ).A.ac <0B. |a+b|=a-bC. | c-a| =a - cD. | a |>|b |4.实数a 在数轴上的位置如图,则a 、-a 、1a、√a 3的大小关系是( D ).A .a <−a <1a <√a 3B .−a <1a <a <√a 3C .1a <a <√a 3<-a D .1a <√a 3<a <−a 5.求证√2是无理数.假设√2不是无理数,则它一定可以用最简分数表示出来,则设√2=q p,所以(√2)2=q 2p 2,∴q 2=2p 2.∴p 2为偶数,q 2也为偶数,令q =2k,所以4k 2=2p 2,∴p 2=2k 2,∴P 2为偶数,则P 为偶数,q 也为偶数,所以q p可以化简,不是最简分数,所以假设不成立.6.已知a √33√2b √23+m √3+m c √33+m√2+m,其中m >0,那么a 、b 、c 的大小关系是( C ).A.a >b >cB.c >a >bC.a >c >bD.b >c >a 7.将下列循环小数化成分数:(1)0. 7 =79 (2)3.13 =4715 (3)0.23=2399 3.13 ×100−3.13 ×10=3.13 ×908.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B,点A 表示−√2. 设点B 所表示的数为m.(1)实数m 的值是2−√2; (2)求|m+1|+|m-1|的值;=4-2√2.(3)在数轴上还有C 、D 两点分别表示实数c 和d,且有|2c+d|与√d 2−16互为相反数,求2c-3d 的平方根.±4 解得d =±4,c =±2.191.化简:(1)√5−√5×(√5−2+2√5); (2)|1−√2|+|√2−√3|-|2−√3| =3√5−15 =2√3−3 2.化简:(1)|√10−3|+|√10−4|; (2)|√2+√3−2|-|4−√2−√3|. =1 =2√2+2√3−6 3.计算:(1)|√2−3|+√(−3)2-(-1)2019+√−273, (2)14√16+√25−√−273-|√5−3|.=4−√2 =6+√54.已知a −1a =√10,则a +1a的值是±√14.(a −1a )2=10,(a +1a)2−4=105.设x 、y 是有理数,并且x 、y 满足等式x 2+2y +√2y =17−4√2,求x+y 的值.{x 2+2y −17=0−(y +4)=0解得{y =−4x =5或{y =−4x =−5∴x +y 的值为1或-9.6.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长:√643=4(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;2√2 (3)把正方形ABCD 放到数轴上,如图2,使得A 与一1重合,求D 在数轴上表示的数.AD =2√2,点D 表示的数为−1−2√2.6.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图1中正方形的面积为5,则此正方形的边长为√5,我们通过画正方形可求出无理数的线段长度.(1)请在图2中画出一个面积为10的正方形,此正方形的边长为√10;(2)求出图3中A 、B 、C 点为顶点的三角形的面积和AB 的长度.AB =√57.若a 、b 满足3√a +5|b|=7,求s =2√a −3|b|的取值范围.联立{3√a +5|b|=7s =2√a −3|b|,可求得√a =21+5s 19,|b |=14−3s 19.从而{21+5s19≥014−3s 19≥0,解得−215≤s ≤143.CBA图3图2图1203.7 实数复习(一) 1.解答下列各题(1)分别求下列各数的平方根、算术平方根和立方根.① 3; ② 16; ③ 8; ④ √4. 平方根±√3 ±4 ±√8 ±√2 算数平方根√3 4 √8 √2立方根√33 √163 (2√23) 2 √2 3(2)把下列各数分别填入相应的集合里: 2, π3, 1.414, −√5,−34,√43,54√3,76, 1.3.有理数集合:{ 2, 1.414, −34,√43, 76, 1.3}; 无理数集合:{ π3,−√5,54√3};实数集合:{ 2, π3, 1.414, −√5,−34,√43,54√3,76, 1.3}2.填空:(1)√−73的相反数是√73;绝对值等于√3的数是±√3; (2)当x ≥32时,√2x −3有意义,当x <1时,√1−x 有意义;(3)当0≤x ≤1时,化简√x 2+|x-1|=1. 3.选择题:(1)a 、b 的位置如图所示,则下列各式中有意义的是( D ).A .√a +bB .√a −bC .√abD .√b −a (2)下列运算中,错误的有( D ). ① √125144=1512 . ② √(−4)2=±4. ③ √−22=−√22=−2; ④ √116+14=14+12=34.A.1个B.2个C.3个D.4个(3)下列命题中正确的是( D ).A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数(4)已知a =2−√5,b =√5−2,c =5−2√5,则a 、b 、c 的大小关系是( D ). A.a <c <b B.b <a <c C.c <a <b D.a <b <c 4.(1)已知:10+√3=x +y ,其中x 是整数,且0<y <1,求x-y 的相反数;x =11,y =√3−1,x −y =12−√3.∴x −y 的相反数为√3−12.(2)已知y =√3x −1−√1−3x +9x ,求√3x +2y −3的平方根.x =13,y =3,3x +2y −3=2,±√2215.细心观察图,认真分析各式,然后解答问题. (√1)2+1=2, S 1=√12;(√2)2+1=3. S 2=√22, (√3)2+1=4,S 3=√32;… …(1) 请用含有n(n 是正整数)的等式表示上述变化规律; 可推知(√n)2+1=n +1,s n =√n2(2)推算出OA 10的长;OA 10=√10(3)求出s 12+S 22+S 3+22…+S 102的值.(√12)2+(√22)2+(√32)2+⋯+(√102)2=14(1+2+3+⋯+10)=5546.已知|2015-a|+√a −2016=a,求a-20152的值.a −2016≥0,解得a −20152=20167.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数“,如:4=22-02,12=42-22,20=62-42,因此,4、12、20都是”神秘数“. (1)28和2012这两个数是“神秘数”吗?为什么? 28=82−62,2012=5042−5022,都是神秘数.(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构成的神秘数是4的倍数吗?为什么?(2k +2)2−(2k )2=4(2k +1),是4的倍数.(3)两个连续奇数的平方和是神秘数吗?为什么? 不是,(2k +1)2−(2k −1)2=8k8.某同学在解答题目:“化简并求值1a+√1a2+a 2−2,其中a =15.”时,解答过程是: 1a +√1a 2+a 2−2=1a +√(a −1a )2=1a +a −1a =15. (1) 请判断他的解答是否正确;如果不正确,请写出正确的解答过程;他的解答不正确,原式=1a +√(a −1a )2=1a +|a −1a |,当a =15时,1a −a +1a =10−15=945(2)设S =√12+112+122+√12+122+132+√12+132+142+…+ √12+1n 2+1(n+1)2(n 为正整数).考察所求式子的结构特征: ① 先化简通项公式√1+1n 2+1(n+1)2;√1+1n 2+1(n+1)2=√(n 2+n+1)2[n (n+1)]2=√n (n+1)2+2n (n+1)+1[n (n+1)]2=√(n 2+n+1)2[n (n+1)]2=n 2+n+1n (n+1)=1+1n (n+1)② 求出与S 最接近的整数是多少S =(1+11×2)+(1+12×3)+⋯+(1+1n (n+1)) =n +1−12+12−13+13−14+⋯+1n −1n+1=n +1−1n+1当n =1时,S 最接近的整数是1和2;当n >1时,S 最接近的整数是n +1.2A 1223.8 实数复习(二) 1.计算:(1)√32−2√50+4√12−4√18=−5√2 (2)|√2+√3−2|+|−4+√2+√3|;=(3)[5-2×(√3−2)]-3×(√2+1).=6−2√3−3√22.计算:(1)−√425−√−81253; =0 (2)√5−√5×(√5−2×√5);=√5+5(3)√−8273−(−12)3×√(−4)2+√(−4)33×(12)2−√9=−256 ② 设a 、b 都是实数,且满是b =√a 2−1+√1−a 2+4a+1,求√2a −b 的值.解得a =1,b =2,√2a −b =03.已知实数a 、b 、c 在数轴上的位置如图所示,化简|-a|+|a+c|-|b-2a|+|b-c|的结果为( A ).A.-2bB. -bC. -2aD.a4.已知√m +n +5+√(m −2n )2=m-2n,且√2m −n −2=0,求m-n 的值.{m +n +5=02m −n −2=0解得{m =−1n =−4 m −n =35. 观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a-b =ab+1成立的一对有理数a 、b 为“共生有理数对”,记为(a, b),如:数对(2,13),(5,23),都是“共生有理数对”.(1)判断数对(-2,1),(3,12)是不是“共生有理数对”,写出过程;−2−1=−3,(−2)×1+1=−1,−3≠−1,故(-2,1)不是共生有理数对. (2)若(a,3)是“共生有理数对”,求a 的值;a −3=3a +1,解得a =−2.(3)若(m,n)是“共生有理数对”,则(-n,-m)是“共生有理数对”(填“是”或“不是”);说明理由;−n—(−m)=−n +m,−n ⋅(−m )+1=mn +1,m −n =mn +1即−n +m =mn +1,所以(-n,-m)是“共生有理数对” (4)请再写出一对符合条件的“共生有理数对”(4,35)(6,57).(注意:不能与题目中已有的“共生有理数对”重复)答案不唯一6.已知整数a 0,a 1,a 2,a 3,a 4,…满足下列条件:a 0=0,a 1=-|a 0+1|,a 2=-|a 1+2|,a 3=-|a 2+3|,…,以此类推,则a 2018的值为( C ).A.-1007B.-1008C.-1009D.-2016 a 0=0,a 1=−1,a 2=−1,a 3=−2,a 4=−2,a 5=−3,a 6=−3,由此可得a 2n−1=−na 2n =−n ,a 2018=−10097.设a 、b 是两个不相等的有理数,求证:+√2b +√2必为无理数.设+√2b +√2=A,若A 为有理数,去分母得(A-1)√2=a −Ab.当A=1时,则a =b.与已知矛盾,所以A≠1,故原式可化为√2=a−Ab A−1,由于a,b,A,1均为有理数,所以上述等式右边为有理数,而左边√2是无理数,故等式不可能成立,所以+√2b +√2是无理数.。

中考一轮复习实数(培优训练)

中考一轮复习实数(培优训练)

实数(培优训练)知识解读1.实数的大小比较常用的两种方法来比较无理数的大小:用无理数的近似值来进行比较;通过乘方将一些无理数转化为有理数进行比较。

2.实数的估算通过与相近的有理数比较来估算无理数的近似值。

3.整数部分和小数部分小数x由其整数部分和小数部分组成,如果其整数部分是,则其小数部分是。

4.实数的性质有理数和无理数具有下面的基本性质:两个有理数的和、差、积、商(除数不为0)都是有理数;一个无理数和一个非零的有理数的和、差、积商都是无理数。

一个无理数与某个有理数相乘,如果其结果为有理数,那么只能是0.培优学案典例示范1.实数的比较大小例1 比较大小:;【提示】(1)因为5>3,所以;(2;【答案】(1)< (2) < (3) >【技巧点评】如果,那么;两个算术平方根比较大小,可先将它们乘方,化成有理数,对于整数,如果,那么;借助一个数的近似值来比较大小,也是常用的方法。

【跟踪训练1】比较下列各组数的大小:;;;【答案】(1) > (2) > (3) > (4) >2.实数的估算例2 是两个连续的整数,若,则分别是()A.2,3B. 3,2C. 3,4D. 6,8【答案】A【提示】的平方等于7,7介于连续的两个正整数2和3的平方之间。

【点评】将算术平方根乘方化为有理数后,通过两面夹的办法与相近的有理数比较大小,给出其估算值。

【跟踪训练2】估计在()A.0-1之间B.1-2之间C.2-3之间D.3-4之间【答案】C3.整数部分和小数部分例3 已知是的整数部分,是的值。

【提示】根据估算,可知所以。

【答案】0【技巧点评】先估算出实数在哪两个相邻的整数之间,然后写出其整数部分,其小数部分就是。

【跟踪训练3】已知的小数部分为,的小数部分为b。

(1)的值;(2)的值。

【答案】(1) 1 (2)4.实数的性质例4 已知,求的值。

【提示】把原等式整理成有理数与无理数两部分,运用实数的性质建立关于的方程组。

实数及其运算——专题培优、能力提升复习讲义(含答案)

实数及其运算——专题培优、能力提升复习讲义(含答案)

实数及其运算——专题培优、能力提升讲义中考考点梳理:一、实数的分类.⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎭⎨⎩⎪⎧⎫⎪⎪⎨⎬⎪⎪⎭⎩⎩正有理数有理数零有限小数和无限循环小数.负有理数实数正无理数无理数无限不循环小数负无理数 注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如23π+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等二、数轴规定了正方向,原点和单位的直线叫做数轴,数轴上所有的点与全体实数一一对应.三、相反数只有符号不同,而数字相同的两个数称为互为相反数. a ,b 互为相反数⇔a +b =0.四、倒数1除以一个不等于零的实数所得的商,叫做这个数的倒数. a ,b 互为倒数则ab =1.五、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

六、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

0)(0)(a a a a a ≥-≤⎧==⎨⎩ 七、立方根 如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

(1)0一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

八、实数的运算实数的运算顺序是先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的.中考考点典例精选考点典例一、实数的分类【例1】下列各数中为无理数的是( )A .﹣2019B .3.14C .πD .0 【答案】C.【解析】试题分析:无限不循环小数无理数,π是无限不循环小数是无理数.故答案选C.考点:无理数.【点睛】理解有理数的概念,一定要同时理解无理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【举一反三】1. 在:0,﹣2,1,21这四个数中,最小的数是( ) A .0 B .﹣2 C .1 D .21 【答案】B.【解析】试题分析:根据正数都大于0,负数都小于0,正数大于一切负数即可判定在0,﹣2,1,21这四个数中,最小的数是-2,故答案选B.考点:有理数的大小比较.2.下列实数中,是无理数的为()13C.0D.-3【答案】A【解析】考点:无理数考点典例二、绝对值【例2】﹣6的绝对值是()A.﹣6 B.6 C.61D.61【答案】B.【解析】试题分析:负数的绝对值是它相反数,-6的绝对值是6.故选B.考点:绝对值.【点睛】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【举一反三】1.﹣3的绝对值是()A.3 B.﹣3 C.﹣13D.13【答案】A.【解析】试题分析:根据绝对值的定义可得﹣3的绝对值是3.故选A.考点:绝对值.2.计算:|1﹣3|= .【答案】2.【解析】试题分析:|1﹣3|=|﹣2|=2.故答案为:2.考点:有理数的减法;绝对值.考点典例三、相反数【例3】31-的相反数是【 】 (A )31- (B )31 (C )3- (D )3 【答案】B.【解析】 试题分析:根据相反数的定义可得31-的相反数是31,故答案选B. 考点:相反数. 【点睛】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【举一反三】1.-43的相反数是( ) A. -43 B. -34 C. 43 D. 34 【答案】C.【解析】 试题分析:根据相反数的定义可得答案.-43的相反数是43.故答案选C. 考点:相反数.考点典例四、倒数【例4】21的倒数是( ) A .2 B .﹣2 C .21 D .﹣21【答案】A.【解析】 试题分析:根据乘积为的1两个数互为倒数,可得21的倒数是2,故答案选A. 考点:倒数.【点睛】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.【举一反三】1.﹣5的倒数是( )A .51B .51 C .﹣5 D .5 【答案】A【解析】试题分析:根据倒数的定义可得-5的倒数是-15.故选A. 考点:倒数.2.23的倒数是( )A .32B .-32C .23D .-23【答案】A.【解析】试题分析:根据倒数的定义可得23的倒数是32,故选A. 考点:倒数.考点典例五、平方根、立方根【例5】(﹣2)2的平方根是( )A .2B .﹣2C .±2 D.【答案】C.考点:平方根的定义.2. -8的立方根是( )A 、2 2.-B 2.±C 32.-D【答案】B.【解析】试题分析:。

部编数学七年级下册专题6.3实数专项提升训练(重难点培优)2023培优(解析版)【人教版】含答案

部编数学七年级下册专题6.3实数专项提升训练(重难点培优)2023培优(解析版)【人教版】含答案

2022-2023学年七年级数学下册尖子生培优题典【人教版】专题6.3实数专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•锦江区校级期中)以下四个数: 3.14,227,0.101,无理数的个数是( )A .1B .2C .3D .4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:3.14,0.101是有限小数,属于有理数;227是分数,属于有理数;无理数有1个.故选:A .2.(2022秋•开福区校级期中)在四个数﹣2,﹣0.6,12,A .﹣2B .﹣0.6C .12D 【分析】根据实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣2<﹣0.6<12<∴四个数中最小的数是﹣2.故选:A .3.(2022秋•鄞州区校级期中)现有4个数:﹣3.5,π,﹣22,其中在﹣3和4之间的有( )A .1 个B .2 个C .3 个D .4 个【分析】根据实数大小比较方法,比较各数与﹣3,4的大小即可得答案.【解答】解:∵﹣3.5<﹣3<π<4<22,∴在﹣3和4之间的有π两个,故选:B .4.(2022秋•A.点E B.点F C.点M D.点P∴23,∴点M符合题意,故选:C.5.(2022秋•杭州期中)以下几种说法:①每一个无理数都可以用数轴上的点来表示;②近似数1.70所表示的准确数x的范围是1.695≤x<1.705;③在数轴上表示的数在原点的左边;④立方根是它本身的数是0和1;其中正确的有( )A.1个B.2个C.3个D.4个【分析】①数轴上的点与实数是一一对应关系,每一个无理数都可以用数轴上的点来表示;②根据四舍五入来判定x的取值范围;③在数轴上表示的数可以在原点的左边右边或原点上;④根据立方根的定义解答.【解答】解:①数轴上的点与实数是一一对应关系,每一个无理数都可以用数轴上的点来表示;②根据四舍五入来判定近似数1.70所表示的准确数x的范围是1.695≤x<1.705;③在数轴上表示的数可以在原点的左边右边或原点上;④立方根是它本身的数为0,1,﹣1.故选B.6.(2022秋•杭州期中)下列大小关系判断正确的是( )A.0>|﹣10|B.−19>−(−110)C.﹣3>D.﹣32>﹣π【分析】根据实数比较大小的法则对各选项进行比较即可.【解答】解:|﹣10|=10>0,故A不符合题意;∵−19<0,﹣(−110)=110>0,∴−19<−(−110),故B不符合题意;∵10>9,3,∴﹣3>C符合题意;∵32=9,π≈3.14,∴32>π,∴﹣32<﹣π,故D不符合题意.故选:C.7.(2022秋•+1介于整数( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间1的大小即可.【解答】解:∵23,∴3+1<4,故选:C.8.(2022秋•朝阳区校级期中)在数轴上,点A表示的数为﹣1,点B B关于点A的对称点为C,则C所表示的数为( )A B C.D.【分析】首先根据数轴上点A表示的数为1,点B AB的长度,然后根据点B和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标.【解答】解:∵数轴上点A表示的数为1,点B∴BA=(﹣1)1,∵点B关于点A的对称点为点C,∴BA=AC,设点C表示的数为x,则1=﹣1﹣x,∴x=﹣2∴点C的坐标为:﹣2故选:C.9.(2022•[n ]表示不超过n 的最大整数)( )A 2B 3C .4D .﹣2【分析】根据算术平方根的性质(被开方数越大,则其算术平方根越大)解决此题.【解答】解:∵1<1.96<2<2.89<3<4,∴1<1.42.∴1.4 1.72..故选:B .10.(2022•南京模拟)对于示数x ,规定f (x )=x 2﹣2x ,例如f (5)=52﹣2×5=15,f(−13)=(−13)2−2×(−13)=79,现有下列结论:①若f (x )=3,则x =﹣1;②f (x )的最小值为﹣1;③对于实数a ,b ,若a +bab =﹣1,则f(a)+f(b)=④f (10)﹣f (9)+f (8)﹣f (7)+⋯+f (2)﹣f (1)=65.以上结论正确的是( )A .①②B .②③C .③④D .②④【分析】依据题意,规定f (x )=x 2﹣2x ,①题直接解一元二次方程;②题用配方法求最值;③题用完全平方公式进行变形;④题把特殊值代入,即可得出答案.【解答】解:依据题意f (x )=x 2﹣2x ,①f (x )=3,即x 2﹣2x =3,解得x 1=﹣1,x 2=3,因此①错误,不符合题意,②f (x )=x 2﹣2x =(x ﹣1)2﹣1,故f (x )的最小值为﹣1,因此②正确,符合题意,③对于实数a ,b ,若a +bab =﹣1,即f (a )+f (b )=(a 2﹣2a )+(b 2﹣2b )=(a +b )2﹣2ab ﹣2(a +b )=2−2×(−1)−2×5−2③正确,符合题意,④∵f (10)=102﹣2×10=80,f (9)=92﹣2×9=63,f (8)=82﹣2×8=48,f (7)=72﹣2×7=35,f (6)=62﹣2×6=24,f (5)=52﹣2×5=15,f (4)=42﹣2×4=8,f (3)=32﹣2×3=3,f(2)=22﹣2×2=0,f (1)=12﹣2×1=﹣1,∴f (10)﹣f (9)+f (8)﹣f (7)+f (6)﹣f (5)+f (4)﹣f (3)+f (2)﹣f (1)=45,故④错误,不符合题意.∴答案为②③.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•−2 > 4.【分析】比较两数的大小,可以比较两数差与0的大小,差大于0,被减数大于减数,反之,则被减数小于减数.2﹣4=6=0,2>4.故答案为:>.12.(2022秋•萧山区校级期中)已知a,小数部分b,则a= 2 ,2a﹣b【分析】先估算6a和小数部分b,最后代入计算2a﹣b.34,∴﹣4<−3,∴6﹣4<66﹣3,即2<63.∴a=2,b=62=4∴2a﹣b=2×2﹣(4=4﹣4+=故答案为:213.(2022春•3的相反数是 3− ±3 .2 > 4,2.【分析】利用相反数的意义,平方根的意义和有理数的大小比较的法则解答即可.3的相反数是33;故答案为:3±3;6,4+2,2>4;故答案为:>;2,∴−2.故答案为:<.14.(2022春•海丰县期末)实数a,b在数轴上对应的点的位置如图所示,则|a﹣b|﹣|b+a|= 2b .【分析】根据点在数轴的位置,知:a<0,b>0,且a的绝对值大于b的绝对值.根据实数的运算法则,知:a﹣b<0,a+b<0.再根据绝对值的性质进行化简即可.【解答】解:根据数轴得:a﹣b<0,a+b<0,∴原式=b﹣a+b+a=2b.故答案为:2b.15.(2022春•牡丹江期中)已知a b a)3+(b+2)2= 0 .【分析】根据4<8<9a与b的值,代入所求式子计算即可求出值.【解答】解:∵4<8<9,∴23,a=2,小数部分b=2,则原式=﹣8+8=0.故答案为:016.(2022春•滨州期末)m,n1的整数部分和小数部分,则2m﹣n= 1−1的整数部分和小数部分,从而可得到m、n的值,最后代入计算即可.【解答】解:∵1<2<4,∴12,∴01<1.∴m=0,n=1.∴2m﹣n=01)=1故答案为:117.(2022春•启东市期中)对于任意两个正数x和y,规定x⊕y=≥y)y),例如,4⊕1=1=1.请计算(5⊕2)﹣(5⊕3−5 .【分析】利用规定x⊕y的运算法则分别计算5⊕2和5⊕3后,再利用实数的运算法则运算即可.【解答】解:∵5⊕22,5⊕3=3∴(5⊕2)﹣(5⊕3)2)﹣(3=2﹣3+=5,故答案为:5.18.(2022春•黔西南州期末)如图,面积为4的正方形ABCD的边AB在数轴上,且点B表示的数为1.将正方形ABCD沿着数轴水平移动,移动后的正方形记为A′B′C′D′,点A,B,C,D的对应点分别为A′,B′,C′,D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分图形的面积记为S.当S=1时,数轴上点B'表示的数是 2.5 .【分析】根据正方形ABCD的面积为4得到边长AD=AB=2,移动方向不确定,应该分类讨论,即可得到点B'表示的数.【解答】解:∵正方形ABCD的面积为4,∴边长AD=AB=2,∴点A表示的数为3,当正方形沿数轴向右移动时,当S=1时,AD×AB′=1,∴AB′=1 2,∴点B'表示的数为2.5;当正方形沿数轴向左移动时,当S=1时,BC×A′B=1,∴A′B=1 2,∴BB′=1.5,∴点B'表示的数为1﹣1.5=﹣0.5;故答案为:2.5或﹣0.5.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•安岳县校级月考)计算:(1)2+(2)(﹣2)3×(﹣1)2013(3+【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)2=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×(﹣1)2013=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3+=4+32+32−5=2.20.(2022秋•萧山区校级期中)课堂上,老师让同学们从下列数中找一个无理数:−47,|−12|,0,π3,−“−47”,乙同学说,丙同学说“π3”.(1)甲、乙、丙三位同学中,说错的是 甲 .(2)请将老师所给的数字按要求填入横线内:整数: 0、−负分数: −47 .【分析】(1)根据无理数的定义解答即可;(2)根据有理数的分类解答即可.【解答】解:(1)因为“−47”是负分数,属于有理数;是无理数,“π3”是无理数.所以甲、乙、丙三个人中,说错的是甲;故答案为:甲;(2)−4,|−12|=12,整数有:0,负分数有:−47.故答案为:0,−47.21.(2022春•重庆月考)a b ,c ﹣1是9的算术平方根,2b a+|b +1|的值.【分析】估算无理数的大小得到a ,b 的值,再根据算术平方根的定义求出c 的值,然后代入代数式进行计算即可得出答案.【解答】解:∵4<5<9,∴23,∴a =2,b =2,∵c ﹣1是9的算术平方根,∴c ﹣1=3,∴c =4,+2b a −+|b +1|=+2+1|=22﹣22+1=3.22.(2022秋•杭州期中)(1)若a是最小的正整数,b是绝对值最小的数,c=,|x+2|+ =0.则a= 1 ;b= 0 ;c x= ﹣2 ;y= 3 .(2)若a与b互为相反数,c与d互为倒数,|e|=4(a+b)+(﹣cd)2﹣e2的值.【分析】(1)根据绝对值,算术平方根的非负性,进行计算即可解答;(2)根据相反数,倒数,绝对值的意义可得a+b=0,cd=1,e=解答.【解答】解:(1)∵a是最小的正整数,b是绝对值最小的数,∴a=1,b=0,∵c=,∴c∵|x+2|=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,故答案为:1;02;3;(2)∵a与b互为相反数,c与d互为倒数,|e|=∴a+b=0,cd=1,e∴4(a+b)+(﹣cd)2﹣e2的=4×0+(﹣1)﹣2=0﹣1﹣2=﹣3,∴4(a+b)+(﹣cd)2﹣e2的值为﹣3.23.(2022秋•南岸区校级期中)(1)若|2x﹣4|+(y+3)2+=0,求x﹣2y+z的平方根.(2)如图,实数a,b,c是数轴上A,B,C+|c﹣b||a+c|.【分析】(1)已知等式为三个非负数的和为0的形式,只有这几个非负数都为0,求x、y、z的值,即可求得x﹣2y+z的值,进一步得出答案;(2)根据数轴判断a、b、c的正负,然后判断c﹣b、a﹣b、a+c的正负,然后去绝对值,去根号,最后整理即可.【解答】解:(1)∵|2x﹣4|+(y+3)20,∴2x﹣4=0,y+3=0,x+y+z=0,∴x=2,y=﹣3,z=1,∴x﹣2y+z=2+6+1=9,∴x﹣2y+z的平方根为±3.(2)由数轴可知,b<a<0<c,|c|>|a|,∴c﹣b>0,a﹣b>0,a+c>0,+|c﹣b||a+c|=c+c﹣b﹣(a﹣b)+a+c=c+c﹣b﹣a+b+a+c=3c.24.(2022秋•温州期中)操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示 2 的点重合;(2)折叠纸片,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示 ﹣3 的点重合;②若数轴上A、B两点之间的距离为13(A在B的左侧),且A、B两点经折叠后重合,此时点A表示的数是 −112 ;点B表示的数是 152 .③ 2−(3)已知数轴上P,Q两点表示的数分别为﹣1和3,有一只电子小蜗牛从P点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P的距离是到点Q的距离的2倍?【分析】(1)根据题意确定纸片是沿着0点进行折叠的,再求解即可;(2)①由题意确定纸片是沿着表示1的点进行折叠的,再求解即可;②设点A表示的数是x,则点B表示的数是x+13,根据折叠的性质可得x x132=1,求出x的值再求解即可;③由①2(3)设运动时间为t秒,小电子小蜗牛运动的点表示的数为x,则x=﹣1+2t,根据题意列出方程|x+1|=2|x﹣2|,求出x后再求t的值即可求解.【解答】解:(1)∵表示1的点与表示﹣1的点重合,∴纸片是沿着0点进行折叠的,∴表示﹣2的点与表示2的点重合,故答案为:2;(2)①∵表示﹣1的点与表示3的点重合,又∵−132=1,∴纸片是沿着表示1的点进行折叠的,∴表示5的点与表示﹣3的点重合,故答案为:﹣3;②设点A表示的数是x,则点B表示的数是x+13,∵A、B两点经折叠后重合,∴x x132=1,解得x=−11 2,∴−112+13=152,∴点A表示的数是−112,点B表示的数是152,故答案为:−112,152;③∵纸片是沿着表示1的点进行折叠的,2故答案为:2(3)设运动时间为t秒,小电子小蜗牛运动的点表示的数为x,∴x=﹣1+2t,∵它到点P的距离是到点Q的距离的2倍,∴|x+1|=2|x﹣2|,解得x=1或x=5,当x=1时,2t﹣1=1,解得t=1,当x=5时,2t﹣1=5,解得t=3,∴运动1秒或3秒时,它到点P的距离是到点Q的距离的2倍.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲:实数
例题
例1 已知一个立方体盒子的容积为216cm 3,问做这样的一个正方体盒子(无盖)需要多少平方厘米的纸板? 例2 若某数的立方根等于这个数的算术平方根,求这个数。

例3 下列说法中:①无限小数是无理数;②无理数是无限小数;③无理数的平方一定是无理数;④实数与数轴上的点是一一对应的。

正确的个数是( )
A 、1
B 、2
C 、3
D 、4
例4 (1)
已知22(4)0,()y x y xz -+++求的平方根。

(2
a 2,小数部分为
b ,求-16ab-8b 的立方根。

(3
,,4x y m m -试求的算术平方根。

(4)设a 、b
例5 (1)已知2m-3和m-12是数p 的平方根,试求p 的值。

(2)已知m ,n
是有理数,且2)(370m n +-+=,求m ,n 的值。

(3)△ABC 的三边长为a 、b 、c ,a 和b
2440b b -+=,求c 的取值范围。

(4
)已知19932(4a x a -=+,求x 的个位数字。

分类讲解
一、二次根式的非负性
1
.若2004a a -=,则22004a -=_____________.
2.已知:211881+-+-=x x y ,求22-+-++x y
y x
x y y x 的值.
3.若m
m 的值.
4.已知x 、y 为实数,且499+---=y x y ,求y x +的值.
5.已知1888+-+-=x x y ,求代数式x y y x xy
y x y x ---+2的值.
二、二次根式的化简技巧
(一)构造完全平方
1
_____________.
(拓展)计算2
222222220041200311413113121121111++++++++++++ . 2.化简:5225232-+---++y y y y . 3.化简241286+++.
4.化简:232
46623+--. 5
6
(二)分母有理化
1.计算:494747491
75571
53351
331
++++++++ 的值.
2.分母有理化:5
3262++. 3.计算:321232+++-.
三、二次根式的应用
(一)无理数的分割
1.设a 为5353--+的小数部分,b 为336336--+的小数部分,则
a b 12-的值为( ) (A )126+- (B )41 (C )12
-π (D )832π--
2的整数部分为x ,小数部分为y ,试求2212x xy y ++的值.
3a ,小数部分为b ,试求1a b b
++
的值 (二)最值问题 1.设a 、b 、c 均为不小于3的实数,则a b c -+++--2111||的最小值是_______.
2.实数b a ,10|3||2|b b =-+--,则22a b +的最大值为_____________.
(三)性质的应用
1.设m 、x 、y 均为正整数,且y x m -=
-28,则m y x ++ =_________. 2.设 +++=
222x , 222=y ,则( )(A y x >(B )y x <(C )y x =(D )不能确定
32=-的值为 .
4.已知x y ==,求5445x x y xy y +++的值. 5.已知732.13=,477.530=,求7.2的值.
(四)有二次根式的代数式化简
1.已知)56()2(y x y y x x +=+,求y xy x y
xy x 32++-+的值.
2= 3.已知:7
87
8+-=x ,7878-+=y ,求:y x xy
y x +++2的值. 4.已知3
21+=a ,求a a a a a a a -+---+-22212121的值. 5.已知:a ,b 为实数,且22222+-+-=
a a a
b .求()222a b a b ---+-的值. (五)比较数的大小
1.设a >b >c >d >0且,x y z ===x 、y 、z 的大小关系.
2
3
4与
5
与6
7
的大小. 练习
一、填空题
12(1)0,b -== 。

2、已知x y y +=则= 。

3=a 、x 、y 是两两不相等的实数,则22
223x xy y x xy y
+--+的值是 。

4、已知a 、b 为正数,则下列命题成立的:
若32,1;3,6, 3.2
a b a b a b +=+=≤+=≤若;若
根据以上3个命题所提供的规律,若a+6=9≤ 。

5、已知实数a 满足21999,1999a a a -=-=则 。

6、已知实数211,,a-b 0,24c a b c c c ab
-+=满足则的算术平方根是 。

7===…… 所揭示的规律,可得出一般的结论是 。

8、已知实数a 满足0,11a a a =-++=那么 。

9、设A B =则A 、B 中数值较小的是 。

1012 5.28,y -=则x= ,y= .
11有意义的x 的取值范围是 。

12、若101,6,a a
a += 且的值为 。

13、一个正数x 的两个平方根分别是a+1和a-3,则a= ,x= .
二、选择题:
1、若3,b a b +a ,则的值为( )
A 、0
B 、1
C 、-1
D 、2
2,a b ===( )
A 、10ab
B 、310ab
C 、100ab
D 、3100
ab
3、使等式2(x =成立的x 的值( )
4、如果0,a ( )
A 、
B 、-
C 、
D 、-
二、计算题:
1、已知0,0,150,x y x y -= 且
2、已知,,x y z =
试求x,y,z 的值。

3、在实数范围内,设20064(1x a x =++,求a 的个位数字是什么?
4、已知x 、y 是实数,且2(1)x y -+。

相关文档
最新文档